1
|
Ishida K, Kasahara Y, Hoshino H, Okuda T, Obika S. Systematic Analysis of 2'- O-Alkyl Modified Analogs for Enzymatic Synthesis and Their Oligonucleotide Properties. Molecules 2023; 28:7911. [PMID: 38067640 PMCID: PMC10708256 DOI: 10.3390/molecules28237911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Enzymatic oligonucleotide synthesis is used for the development of functional oligonucleotides selected by in vitro selection. Expanding available sugar modifications for in vitro selection helps the functional oligonucleotides to be used as therapeutics reagents. We previously developed a KOD DNA polymerase mutant, KOD DGLNK, that enzymatically synthesized fully-LNA- or 2'-O-methyl-modified oligonucleotides. Here, we report a further expansion of the available 2'-O-alkyl-modified nucleotide for enzymatic synthesis by KOD DGLNK. We chemically synthesized five 2'-O-alkyl-5-methyluridine triphosphates and incorporated them into the oligonucleotides. We also enzymatically synthesized a 2'-O-alkyl-modified oligonucleotide with a random region (oligonucleotide libraries). The 2'-O-alkyl-modified oligonucleotide libraries showed high nuclease resistance and a wide range of hydrophobicity. Our synthesized 2'-O-alkyl-modified oligonucleotide libraries provide novel possibilities that can promote the development of functional molecules for therapeutic use.
Collapse
Affiliation(s)
- Kenta Ishida
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki 567-0085, Osaka, Japan; (K.I.); (H.H.)
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki 567-0085, Osaka, Japan; (K.I.); (H.H.)
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hidekazu Hoshino
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki 567-0085, Osaka, Japan; (K.I.); (H.H.)
| | - Takumi Okuda
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki 567-0085, Osaka, Japan; (K.I.); (H.H.)
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Satoshi Obika
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki 567-0085, Osaka, Japan; (K.I.); (H.H.)
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
2
|
Hervey JRD, Freund N, Houlihan G, Dhaliwal G, Holliger P, Taylor AI. Efficient synthesis and replication of diverse sequence libraries composed of biostable nucleic acid analogues. RSC Chem Biol 2022; 3:1209-1215. [PMID: 36320888 PMCID: PMC9533476 DOI: 10.1039/d2cb00035k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
Functional nucleic acids can be evolved in vitro using cycles of selection and amplification, starting from diverse-sequence libraries, which are typically restricted to natural or partially-modified polymer chemistries. Here, we describe the efficient DNA-templated synthesis and reverse transcription of libraries entirely composed of serum nuclease resistant alternative nucleic acid chemistries validated in nucleic acid therapeutics; locked nucleic acid (LNA), 2'-O-methyl-RNA (2'OMe-RNA), or mixtures of the two. We evaluate yield and diversity of synthesised libraries and measure the aggregate error rate of a selection cycle. We find that in addition to pure 2'-O-methyl-RNA and LNA, several 2'OMe-RNA/LNA blends seem suitable and promising for discovery of biostable functional nucleic acids for biomedical applications.
Collapse
Affiliation(s)
- John R D Hervey
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge Cambridge CB2 0AW UK
| | - Niklas Freund
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Gillian Houlihan
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Gurpreet Dhaliwal
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge Cambridge CB2 0AW UK
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Alexander I Taylor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge Cambridge CB2 0AW UK
| |
Collapse
|
3
|
Kawai K, Fujitsuka M. Single-molecule fluorescence kinetic sandwich assay using a DNA sequencer. CHEM LETT 2022. [DOI: 10.1246/cl.210726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kiyohiko Kawai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
4
|
Xeno-Nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor-Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding. Viruses 2021; 13:v13101983. [PMID: 34696413 PMCID: PMC8539646 DOI: 10.3390/v13101983] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor-binding domain (RBD) on the viral S protein with angiotensin-converting enzyme 2 (ACE2) on the surface of human host cells. Systematic evolution of ligands by exponential enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2ʹ-fluoro-arabinonucleic acid (FANA). The best selected ~79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants (KD,app) of ~10–20 nM, and binding half-life for the RBD, S1 domain, and full trimeric S protein of 53 ± 18, 76 ± 5, and 127 ± 7 min, respectively. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S1 protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.
Collapse
|
5
|
Nagano M, Oguro T, Sawada R, Yoshitomi T, Yoshimoto K. Accelerated Discovery of Potent Bioactive anti-TNFα Aptamers by Microbead-Assisted Capillary Electrophoresis (MACE)-SELEX. Chembiochem 2021; 22:3341-3347. [PMID: 34549879 DOI: 10.1002/cbic.202100478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Indexed: 11/09/2022]
Abstract
Dysregulation of tumor necrosis factor-α (TNFα), a pro-inflammatory cytokine, causes several diseases, making it an important therapeutic target. Here, we identified a novel DNA aptamer against human TNFα using in vitro selection, which included a high exclusion pressure process against non-binding and weak binders through microbead-assisted capillary electrophoresis (MACE) in only three rounds. Among the 15 most enriched aptamers, Apt14 exhibited the highest inhibitory activity for the interaction between TNFα and its cognate receptor in mouse L929 cells. For further improving the bioactivity of the aptamer, dimerization programed by hybridization was evaluated, resulting in the Apt14 dimer exhibited a twofold higher binding affinity and stronger inhibition compared to the monomer counterpart. Rapid identification of bioactive aptamers using MACE in combination with facile dimerization by hybridization accelerates the discovery of novel bioactive aptamers, paving the way toward replacing current monoclonal antibody therapy with the less expensive and non-immunogenic aptamer therapy.
Collapse
Affiliation(s)
- Masanobu Nagano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takumi Oguro
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Ryo Sawada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Present address: Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
6
|
Ferreira-Bravo IA, DeStefano JJ. Xeno-nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34282416 DOI: 10.1101/2021.07.13.452259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor binding domain (RBD) on the viral S protein with angiotensin converting enzyme 2 (ACE2) on the surface of human host cells. Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2'-fluoroarabinonucleic acid (FANA). The best selected ~ 79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants ( K D,app ) of ~ 10-20 nM and a binding half-life for the RBD of 53 ± 18 minutes. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.
Collapse
|
7
|
Hybrid-Type SELEX for the Selection of Artificial Nucleic Acid Aptamers Exhibiting Cell Internalization Activity. Pharmaceutics 2021; 13:pharmaceutics13060888. [PMID: 34204006 PMCID: PMC8232673 DOI: 10.3390/pharmaceutics13060888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers have attracted considerable attention as next-generation pharmaceutical agents and delivery vehicles for small molecule drugs and therapeutic oligonucleotides. Chemical modification is an effective approach for improving the functionality of aptamers. However, the process of selecting appropriately modified aptamers is laborious because of many possible modification patterns. Here, we describe a hybrid-type systematic evolution of ligands by exponential enrichment (SELEX) approach for the generation of the artificial nucleic acid aptamers effective against human TROP2, a cell surface protein identified by drug discovery as a promising target for cancer therapy. Capillary electrophoresis SELEX was used for the pre-screening of multiple modified nucleic acid libraries and enrichment of TROP2 binding aptamers in the first step, followed by functional screening using cell-SELEX in the second step for the generation of cell-internalizing aptamers. One representative aptamer, Tac-B1, had a nanomolar-level affinity to human TROP2 and exhibited elevated capacity for internalization by cells. Because of the growing interest in the application of aptamers for drug delivery, our hybrid selection approach has great potential for the generation of functional artificial nucleic acid aptamers with ideal modification patterns in vitro.
Collapse
|
8
|
Saito S, Sakamoto T, Tanaka N, Watanabe R, Kamimura T, Ota K, Riley KR, Yoshimoto K, Tasaki-Handa Y, Shibukawa M. Single-Round DNA Aptamer Selection by Combined Use of Capillary Electrophoresis and Next Generation Sequencing: An Aptaomics Approach for Identifying Unique Functional Protein-Binding DNA Aptamers. Chemistry 2021; 27:10058-10067. [PMID: 33991022 DOI: 10.1002/chem.202100177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/05/2022]
Abstract
In DNA aptamer selection, existing methods do not discriminate aptamer sequences based on their binding affinity and function and the reproducibility of the selection is often poor, even for the selection of well-known aptamers like those that bind the commonly used model protein thrombin. In the present study, a novel single-round selection method (SR-CE selection) was developed by combining capillary electrophoresis (CE) with next generation sequencing. Using SR-CE selection, a successful semi-quantitative and semi-comprehensive aptamer selection for thrombin was demonstrated with high reproducibility for the first time. Selection rules based on dissociation equilibria and kinetics were devised to obtain families of analogous sequences. Selected sequences of the same family were shown to bind thrombin with high affinity. Furthermore, data acquired from SR-CE selection was mined by creating sub-libraries that were categorized by the functionality of the aptamers (e. g., pre-organized aptamers versus structure-induced aptamers). Using this approach, a novel fluorescent molecular recognition sensor for thrombin with nanomolar detection limits was discovered. Thus, in this proof-of-concept report, we have demonstrated the potential of a "DNA Aptaomics" approach to systematically design functional aptamers as well as to obtain high affinity aptamers.
Collapse
Affiliation(s)
- Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Toshiki Sakamoto
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Naoki Tanaka
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Ryo Watanabe
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Takuya Kamimura
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kazuki Ota
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kathryn R Riley
- Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuiko Tasaki-Handa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Masami Shibukawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
9
|
Guo X, Chen GH. Capillary electrophoresis-based methodology for screening of oligonucleotide aptamers. Biomed Chromatogr 2021; 35:e5109. [PMID: 33660332 DOI: 10.1002/bmc.5109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/28/2023]
Abstract
As a new molecular recognition element, oligonucleotide aptamer not only has higher affinity and specificity to target molecules, but also has the advantages of wide recognition range, in vitro synthesis and chemical stability compared with conventional antibodies. Since a kind of screening method termed systematic evolution of ligands by exponential enrichment (SELEX) was reported, scientists have extensively researched the methodology of how to highly and efficiently screen out aptamers from a library consisting of a large number of random oligonucleotides. Certainly capillary electrophoresis-based screening methodologies, including nonequilibrium capillary electrophoresis of equilibrium mixtures, equilibrium capillary electrophoresis of equilibrium mixtures, non-SELEX, ideal-filter capillary electrophoresis, capillary transient isotachophoresis, etc., are revolutionary. Compared with conventional SELEX, these capillary electrophoresis-based methodologies show incomparable advantages such as the single-round screening of aptamers and increased successful screening rate. Methodology studies on the screening process of aptamers are comprehensively reviewed.
Collapse
Affiliation(s)
- Xin Guo
- College of Food and Bioengineering, Jiangsu University, Zhenjiang, China.,Periodicals Agency of Jiangsu University, Zhenjiang, China
| | - Guan-Hua Chen
- College of Food and Bioengineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Liu LS, Wang F, Ge Y, Lo PK. Recent Developments in Aptasensors for Diagnostic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9329-9358. [PMID: 33155468 DOI: 10.1021/acsami.0c14788] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aptamers are exciting smart molecular probes for specific recognition of disease biomarkers. A number of strategies have been developed to convert target-aptamer binding into physically detectable signals. Since the aptamer sequence was first discovered, a large variety of aptamer-based biosensors have been developed, with considerable attention paid to their potential applications in clinical diagnostics. So far, a variety of techniques in combination with a wide range of functional nanomaterials have been used for the design of aptasensors to further improve the sensitivity and detection limit of target determination. In this paper, the advantages of aptamers over traditional antibodies as the molecular recognition components in biosensors for high-throughput screening target molecules are highlighted. Aptamer-target pairing configurations are predominantly single- or dual-site binding; the design of recognition modes of each aptamer-target pairing configuration is described. Furthermore, signal transduction strategies including optical, electrical, mechanical, and mass-sensitive modes are clearly explained together with examples. Finally, we summarize the recent progress in the development of aptamer-based biosensors for clinical diagnosis, including detection of cancer and disease biomarkers and in vivo molecular imaging. We then conclude with a discussion on the advanced development and challenges of aptasensors.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Fei Wang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yonghe Ge
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
11
|
Saito S. SELEX-based DNA Aptamer Selection: A Perspective from the Advancement of Separation Techniques. ANAL SCI 2021; 37:17-26. [PMID: 33132238 DOI: 10.2116/analsci.20sar18] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022]
Abstract
DNA aptamers, which are short, single-stranded DNA sequences that selectively bind to target substances (proteins, cells, small molecules, metal ions), can be acquired by means of the systematic evolution of ligands by exponential enrichment (SELEX) methodology. In the SELEX procedure, one of the keys for the effective acquisition of high-affinity and functional aptamer sequences is the separation stage to isolate target-bound DNA from unbound DNA in a randomized DNA library. In this review, various remarkable advancements in separation techniques for SELEX-based aptamer selection developed in this decade, are described and discussed, including CE-, microfluidic chip-, solid phase-, and FACS-based SELEX along with other methods.
Collapse
Affiliation(s)
- Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo Sakura, Saitama, 338-8570, Japan.
| |
Collapse
|
12
|
Hoshino H, Kasahara Y, Kuwahara M, Obika S. DNA Polymerase Variants with High Processivity and Accuracy for Encoding and Decoding Locked Nucleic Acid Sequences. J Am Chem Soc 2020; 142:21530-21537. [PMID: 33306372 DOI: 10.1021/jacs.0c10902] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Xenobiotic nucleic acids (XNAs) are chemically modified nucleic acid analogues with potential applications in nucleic acid-based therapeutics including nucleic acid aptamers, ribozymes, small interfering RNAs, and antisense oligonucleotides. We have developed a promising XNA for therapeutic uses, 2',4'-bridged nucleic acid (2',4'-BNA), also known as locked nucleic acid (LNA). Unlike the rational design of small interfering and antisense oligonucleotides, the development of LNA aptamers and catalysts requires genetically engineered polymerases that enable the synthesis of LNA from DNA and the converse reverse transcription. However, no LNA decoders or encoders with sufficient performance have been developed. In this study, we developed variants of KOD DNA polymerase, a family B DNA polymerase derived from Thermococcus kodakarensis KOD1, which are effective LNA decoders and encoders, via structural analyses. KOD DGLNK (KOD: N210D/Y409G/A485L/D614N/E664K) enabled LNA synthesis from DNA (DNA → LNA), and KOD DLK (KOD: N210D/A485L/E664K) enabled LNA reverse transcription to DNA (LNA → DNA). Both variants exhibited greatly improved efficiency and accuracy. Notably, we synthesized LNAs longer than one kilobase using KOD DGLNK. We also showed that these variants can accept 2'-O-methyl (2'-OMe), a common modification for therapeutic uses. Here, we also show that LNA and 2'-OMe mix aptamer can be practically obtained via SELEX. The variants can be used as powerful tools for creating XNA aptamers and catalysts to completely eliminate the natural species, DNA and RNA.
Collapse
Affiliation(s)
- Hidekazu Hoshino
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Satoshi Obika
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Bifunctional Aptamer Drug Carrier Enabling Selective and Efficient Incorporation of an Approved Anticancer Drug Irinotecan to Fibrin Gels. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously developed a bifunctional aptamer (bApt) binding to both human thrombin and camptothecin derivative (CPT1), and showed that bApt acts as a drug carrier under the phenomenon named selective oligonucleotide entrapment in fibrin polymers (SOEF), which enables efficient enrichment of CPT1 into fibrin gels, resulting in significant inhibition of tumor cell growth. However, although the derivative CPT1 exhibits anticancer activity, it is not an approved drug. In this study, we evaluated the binding properties of bApt to irinotecan, a camptothecin analog commonly used for anticancer drug therapy, in addition to unmodified camptothecin (CPT). Furthermore, we have revealed that irinotecan binds to bApt like CPT1 and is selectively concentrated on fibrin gels formed around the tumor cells under the SOEF phenomenon to suppress cell proliferation.
Collapse
|
14
|
Modified DNA Aptamers for C-Reactive Protein and Lactate Dehydrogenase-5 with Sub-Nanomolar Affinities. Int J Mol Sci 2020; 21:ijms21082683. [PMID: 32294882 PMCID: PMC7215426 DOI: 10.3390/ijms21082683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Human C-reactive protein (CRP) and lactate dehydrogenase are important markers in clinical laboratory testing-the former is used to detect in vivo inflammation, and the latter is used to detect cell necrosis and tissue destruction. We developed aptamers that bind to human CRP and human lactate dehydrogenase-5 (LDH-5) with high affinities (dissociation constants of 6.2 pM and 235 pM, respectively), applying the systematic evolution of ligands by exponential enrichment (SELEX) method, and by using a modified DNA library containing the following base-appended base modifications: analog adenine derivative at the fifth position of uracil (Uad), analog guanine derivative at the fifth position of uracil (Ugu), and analog adenine derivative at the seventh position of adenine (Aad). A potential application of these aptamers as sensor elements includes high-sensitivity target detection in point-of-care testing.
Collapse
|
15
|
A high affinity modified DNA aptamer containing base-appended bases for human β-defensin. Anal Biochem 2020; 594:113627. [PMID: 32067984 DOI: 10.1016/j.ab.2020.113627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
We used base-appended base modification to develop a new adenine analog, which incorporates an adenine derivative at position 7 of adenine. Using the systematic evolution of ligands by exponential enrichment method with a modified DNA library including this analog, we obtained Aad1, an aptamer that binds strongly to human β-defensin 2, a biomarker of physical stress found in saliva. The dissociation constant of Aad1 with respect to human β-defensin 2 was found to be low (6.8 nM), and was found to bind specifically to human β-defensin 2 in saliva spiked with the protein, as confirmed using pull-down with magnetic beads. To our knowledge, there are no prior reports of nucleic-acid aptamers that bind specifically to human β-defensin 2. However, our results indicated that such adenine analog-containing DNA libraries are extremely effective in the acquisition of high-affinity aptamers.
Collapse
|
16
|
Minagawa H, Shimizu A, Kataoka Y, Kuwahara M, Kato S, Horii K, Shiratori I, Waga I. Fluorescence Polarization-Based Rapid Detection System for Salivary Biomarkers Using Modified DNA Aptamers Containing Base-Appended Bases. Anal Chem 2020; 92:1780-1787. [PMID: 31855403 DOI: 10.1021/acs.analchem.9b03450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The field of care testing toward the analysis of blood and saliva lacks nowadays simple test techniques for biomarkers. In this study, we have developed a novel nucleobase analog, Ugu, which is a uracil derivative bearing a guanine base at the 5-position. Moreover, we attempted the development of aptamers that can bind to secretory immunoglobulin A (SIgA), which has been examined as a stress marker in human saliva. It was observed that the acquired aptamer binds strongly and selectively to the SIgA dimer (Kd = 13.6 nM) without binding to the IgG and IgA monomers of human serum. Reduction of the aptamer length (41 mer) successfully improved 4-fold the binding affinity (Kd = 3.7 nM), compared to the original, longer aptamer (78 mer). Furthermore, the development of a simple detection system for human saliva samples by fluorescence polarization was investigated, using the reported human salivary α-amylase (sAA) and the SIgA-binding aptamer. Comparison of the present method with conventional enzyme-linked immunosorbent assay techniques highlighted a significant Pearson's correlation of 0.94 and 0.83 when targeting sAA and SIgA, respectively. It is thus strongly suggested that a new simple test of stress markers in human saliva can be quantified quickly without bound/free (B/F) separation.
Collapse
Affiliation(s)
- Hirotaka Minagawa
- NEC Solution Innovators, Ltd. , 1-18-7, Shinkiba, Koto-ku , Tokyo 136-8627 , Japan
| | - Akihisa Shimizu
- NEC Solution Innovators, Ltd. , 1-18-7, Shinkiba, Koto-ku , Tokyo 136-8627 , Japan
| | - Yuka Kataoka
- Graduate School of Integrated Basic Sciences , Nihon University , 3-25-40 Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences , Nihon University , 3-25-40 Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| | - Shintaro Kato
- NEC Solution Innovators, Ltd. , 1-18-7, Shinkiba, Koto-ku , Tokyo 136-8627 , Japan
| | - Katsunori Horii
- NEC Solution Innovators, Ltd. , 1-18-7, Shinkiba, Koto-ku , Tokyo 136-8627 , Japan
| | - Ikuo Shiratori
- NEC Solution Innovators, Ltd. , 1-18-7, Shinkiba, Koto-ku , Tokyo 136-8627 , Japan
| | - Iwao Waga
- NEC Solution Innovators, Ltd. , 1-18-7, Shinkiba, Koto-ku , Tokyo 136-8627 , Japan
| |
Collapse
|
17
|
Kuwahara M, Fujita H, Kataoka Y, Nakajima Y, Yamada M, Sugimoto N. In situ condensation of an anti-cancer drug into fibrin gel enabling effective inhibition of tumor cell growth. Chem Commun (Camb) 2019; 55:11679-11682. [PMID: 31524892 DOI: 10.1039/c9cc06418d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We show herein the highly effective inhibition of tumor cell growth using a gel consisting of a fibrin polymer formed with the in situ condensation of a camptothecin (CPT) derivative as an anti-cancer drug, which is efficiently conveyed with a carrier aptamer from a solution to the gel in a phenomenon, called selective oligonucleotide entrapment in fibrin polymers (SOEF).
Collapse
Affiliation(s)
- Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Hiroto Fujita
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Yuka Kataoka
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Yasuyo Nakajima
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Graduate School of Medicine, Gunma University, 3-39-15 Showa-machi, Maebashi, 371-8511, Japan
| | - Masanobu Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Graduate School of Medicine, Gunma University, 3-39-15 Showa-machi, Maebashi, 371-8511, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan
| |
Collapse
|
18
|
Zhu C, Yang G, Ghulam M, Li L, Qu F. Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers. Biotechnol Adv 2019; 37:107432. [PMID: 31437572 DOI: 10.1016/j.biotechadv.2019.107432] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Aptamers have drawn considerable attention as newly emerging molecular recognition elements in clinical diagnostics, drug delivery, therapeutics, environmental monitoring, and food safety analyses. As the in vitro screening antibody analogs, aptamers are enabled to recognize various types of targets with high affinity and specificity like or even superior to antibodies. However, the restrictions and inefficiency of selection have been hampering their wider application. Among various modified systematic evolution of ligands by exponential enrichment (SELEX) methods, capillary electrophoresis (CE)-SELEX holds multiple functions and advantages with the powerful qualitative and quantitative analysis capabilities, less consumption of sample and analytical reagent, natural binding environment, higher screening efficiency, and availability in multiple modes. This review summarizes the key developments in the area of CE-SELEX by leading research groups, including our teams' ten years of research and experience to help researchers fully understand and utilize CE-SELEX. Aptamers' history, applications, as well as the SELEX developments, have been briefly described; the advantages of CE-SELEX are highlighted compared with the conventional SELEX methods. Further, we describe some essential CE-SELEX models and provide an overview of the CE-SELEX, including the targets and ssDNA library, every technical point in the selection process, and post-SELEX protocol. We expect this review will inspire more researchers to have insight into the screening problems from CE-SELEX viewpoint and will help to improve the selection efficiency and probability of success to meet the growing needs of aptamers' discovery in bioanalytical and medical fields.
Collapse
Affiliation(s)
- Chao Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Ge Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Murtaza Ghulam
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China.
| |
Collapse
|
19
|
High-efficiency selection of aptamers for bovine lactoferrin by capillary electrophoresis and its aptasensor application in milk powder. Talanta 2019; 205:120088. [PMID: 31450439 DOI: 10.1016/j.talanta.2019.06.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
Capillary electrophoresis-based systematic evolution of ligands by exponential enrichment (CE-SELEX) is a high-efficient technique for aptamers selection, and has been evolved into many modes. In this study, we obtained the aptamer against bovine lactoferrin (BLF) with high affinity (dissociation constant, Kd = 20.74 ± 6.89 nM) and good specificity (>1000 folds) using single step CE-SELEX (ssCE-SELEX) mode. In the selection process, ssCE demonstrated high-efficiency selection with bulk Kd reaching at 0.19 ± 0.04 μM by only two rounds, as compared to capillary zone electrophoresis (CZE) mode with Kd of 0.39 ± 0.03 μM. Next-generation sequencing (NGS) was performed by two methods of high output (Hiseq) and medium output (Miseq) with different sequencing depths, and their same results of high-frequency sequences confirmed the reliability of the obtained sequences. Through affinity analysis, the primer region and single base mutation (SBM) were observed to affect the sequence structure and to result in affinity change. Besides, molecular dynamics (MD) simulation was performed to validate the binding affinity of the candidates with BLF by analyzing binding sites, interaction forces, and binding free energy. Moreover, BLF detection in milk powder matrices was completed successfully with the optimized CE-aptasensor. The signal response was in a good linear relationship (R2 = 0.9930) with 4-128 nM of BLF and the detection limit was 1 nM. The obtained results of BLF in four milk powder samples were in an acceptable agreement with the labeled concentrations. This study presented a completed CE based process including aptamers selection, affinity characterization, and detection application, which also validated the high-efficiency selection of ssCE-SELEX mode.
Collapse
|
20
|
Taylor AI, Houlihan G, Holliger P. Beyond DNA and RNA: The Expanding Toolbox of Synthetic Genetics. Cold Spring Harb Perspect Biol 2019; 11:11/6/a032490. [PMID: 31160351 DOI: 10.1101/cshperspect.a032490] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The remarkable physicochemical properties of the natural nucleic acids, DNA and RNA, define modern biology at the molecular level and are widely believed to have been central to life's origins. However, their ability to form repositories of information as well as functional structures such as ligands (aptamers) and catalysts (ribozymes/DNAzymes) is not unique. A range of nonnatural alternatives, collectively termed xeno nucleic acids (XNAs), are also capable of supporting genetic information storage and propagation as well as evolution. This gives rise to a new field of "synthetic genetics," which seeks to expand the nucleic acid chemical toolbox for applications in both biotechnology and molecular medicine. In this review, we outline XNA polymerase and reverse transcriptase engineering as a key enabling technology and summarize the application of "synthetic genetics" to the development of aptamers, enzymes, and nanostructures.
Collapse
Affiliation(s)
- Alexander I Taylor
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Gillian Houlihan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
21
|
Online reaction based single-step capillary electrophoresis-systematic evolution of ligands by exponential enrichment for ssDNA aptamers selection. Anal Chim Acta 2019; 1070:112-122. [PMID: 31103164 DOI: 10.1016/j.aca.2019.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/29/2022]
Abstract
Capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX) has proven to be an effective technique for aptamers selection. In this study, we present an online reaction based convenient single-step CE-SELEX (ssCE-SELEX) mode with human thrombin (H-Thr) as a model target. The selection progress was monitored through bulk Kd analysis, which showed more than a 1000-fold improvement over the initial library after two rounds of selection. Three selected candidate sequences presented high binding affinities against H-Thr with nanomolar (nM) Kd determined by nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM, 56.4-177.1 nM) and CE based non-linear fitting (CE-NLF, 98.2-199.7 nM). They also exhibited high specificities towards H-Thr compared with bovine thrombin, IgG, lysozyme, and lactoferrin. Meanwhile, the Kd results by isothermal titration calorimetry (ITC) confirmed the effective CE in measuring the aptamer affinity. In addition, three candidates were applied as aptasensors in the AuNPs based colorimetric assay, which showed visible color change and good linear relationships (R2 > 0.93) with H-Thr concentration. Furthermore, molecular dynamics (MD) simulation was performed to validate the binding of the three candidates with H-Thr by binding sites and binding free energy. The ssCE-SELEX method avoids off-line incubation, saves time and sample, and may provide a universal and convenient method for aptamers selection.
Collapse
|
22
|
Wakui K, Yoshitomi T, Yamaguchi A, Tsuchida M, Saito S, Shibukawa M, Furusho H, Yoshimoto K. Rapidly Neutralizable and Highly Anticoagulant Thrombin-Binding DNA Aptamer Discovered by MACE SELEX. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:348-359. [PMID: 30986696 PMCID: PMC6462803 DOI: 10.1016/j.omtn.2019.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
We present a rapidly neutralizable and highly anticoagulant thrombin-binding aptamer with a short toehold sequence, originally discovered by systematic evolution of ligands by exponential enrichment (SELEX) with microbead-assisted capillary electrophoresis (MACE). MACE is a novel CE-partitioning method for SELEX and able to separate aptamers from a library of unbound nucleic acids, where the aptamer and target complexes can be detected reliably and partitioned with high purity even in the first selection cycle. Three selection rounds of MACE-SELEX discovered several TBAs with a nanomolar affinity (Kd = 4.5-8.2 nM) that surpasses previously reported TBAs such as HD1, HD22, and NU172 (Kd = 118, 13, and 12 nM, respectively). One of the obtained aptamers, M08, showed a 10- to 20-fold longer prolonged clotting time than other anticoagulant TBAs, such as HD1, NU172, RE31, and RA36. Analyses of the aptamer and thrombin complexes using both bare and coated capillaries suggested that a large number of efficient aptamers are missed in conventional CE-SELEX because of increased interaction between the complex and the capillary. In addition, the toehold-mediated rapid antidote was designed for safe administration. The efficient aptamer and antidote system developed in the present study could serve as a new candidate for anticoagulant therapy.
Collapse
Affiliation(s)
- Koji Wakui
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Akane Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Maho Tsuchida
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masami Shibukawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hitoshi Furusho
- Chemical General Division, Nissan Chemical Industries, Ltd., 2-10-2 Tsuboi-nishi, Funabashi, Chiba 274-8507, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; JST, PRESTO, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.
| |
Collapse
|
23
|
Tanaka K, Kasahara Y, Miyamoto Y, Okuda T, Kasai T, Onodera K, Kuwahara M, Oka M, Yoneda Y, Obika S. Development of oligonucleotide-based antagonists of Ebola virus protein 24 inhibiting its interaction with karyopherin alpha 1. Org Biomol Chem 2019; 16:4456-4463. [PMID: 29850750 DOI: 10.1039/c8ob00706c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of protein-protein interactions (PPIs) and the preparation of antagonists are important for determining whether certain proteins are suitable medical targets. In the present study, we used the capillary electrophoresis-systematic evolution of ligands by exponential enrichment to generate natural and artificial nucleic acid aptamers targeting Ebola virus protein 24 (eVP24), demonstrating that artificial aptamers, synthesised utilising a uridine analogue with an adenine residue at its C5 position, exhibited activities exceeding those of natural ones. To confirm the functionality of the as-prepared aptamers, their abilities to inhibit the PPIs of eVP24 were determined by capillary electrophoresis and bio-layer interferometry, and the obtained results unambiguously demonstrated that these aptamers interacted with the functional site of eVP24 and were thus good antagonists.
Collapse
Affiliation(s)
- Keisuke Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhu C, Wang X, Li L, Hao C, Hu Y, Rizvi AS, Qu F. Online reaction based single-step CE for Protein-ssDNA complex obtainment to assist aptamer selection. Biochem Biophys Res Commun 2018; 506:169-175. [PMID: 30340834 DOI: 10.1016/j.bbrc.2018.08.189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 01/07/2023]
Abstract
CE application in aptamer selection (CE-SELEX) shows more advantages than other selection methods. In this study, an online reaction based single-step CE (ssCE) mode was employed for fast obtaining protein-ssDNA complex. Using human thrombin (H-Thr) and its aptamer Apt29 as models, we accomplished the procedures of mixing, reaction, separation, detection and complex collection in single step online process, which took about 10 min to obtain the H-Thr/Apt29 complex. Important factors, affecting the aptamer and H-Thr interaction (buffer, ratio of aptamer and H-Thr amount), and complex separation and collection (voltage and temperature) were discussed. Later, the online reaction of H-Thr with an 80 nt ssDNA library was realized under optimized conditions, and the H-Thr/ssDNA complex was collected and subjected to PCR. By analyzing the PCR product through capillary gel electrophoresis, the resulting approximative 80 nt DNA length validated the ssDNA sequence in complex. To confirm the availability of ssCE mode, two ssDNA libraries with different lengths (56 nt and 82 nt ssDNA) and three proteins (platelet derived growth factor, PDGF-BB; lactoferrin protein, LF; and single-strand DNA binding protein, SSB) were utilized. Their complex peaks were also observed in electropherograms as expected. Additionally, the online incubation of ssDNA and H-Thr was achieved by stopping the separation voltage for some time when ssDNA passed the H-Thr zone. Our results show the ssCE mode has apparent merits of saving time and sample cost for aptamer selection against protein targets.
Collapse
Affiliation(s)
- Chao Zhu
- The School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoqian Wang
- The School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Linsen Li
- The School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Chenxu Hao
- The School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Youhao Hu
- The School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Aysha Sarfraz Rizvi
- The School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Feng Qu
- The School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
25
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|
26
|
Kalra P, Dhiman A, Cho WC, Bruno JG, Sharma TK. Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity. Front Mol Biosci 2018; 5:41. [PMID: 29868605 PMCID: PMC5966647 DOI: 10.3389/fmolb.2018.00041] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 12/27/2022] Open
Abstract
Aptamers are structured nucleic acid molecules that can bind to their targets with high affinity and specificity. However, conventional SELEX (Systematic Evolution of Ligands by EXponential enrichment) methods may not necessarily produce aptamers of desired affinity and specificity. Thus, to address these questions, this perspective is intended to suggest some approaches and tips along with novel selection methods to enhance evolution of aptamers. This perspective covers latest novel innovations as well as a broad range of well-established approaches to improve the individual binding parameters (aptamer affinity, avidity, specificity and/or selectivity) of aptamers during and/or post-SELEX. The advantages and limitations of individual aptamer selection methods and post-SELEX optimizations, along with rational approaches to overcome these limitations are elucidated in each case. Further the impact of chosen selection milieus, linker-systems, aptamer cocktails and detection modules utilized in conjunction with target-specific aptamers, on the overall assay performance are discussed in detail, each with its own advantages and limitations. The simple variations suggested are easily available for facile implementation during and/or post-SELEX to develop ultrasensitive and specific assays. Finally, success studies of established aptamer-based assays are discussed, highlighting how they utilized some of the suggested methodologies to develop commercially successful point-of-care diagnostic assays.
Collapse
Affiliation(s)
- Priya Kalra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.,Faculty of Pharmacy, Uttarakhand Technical University, Dehradun, India
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - John G Bruno
- Operational Technologies Corporation, San Antonio, TX, United States
| | - Tarun K Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, India.,AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Faridabad, India
| |
Collapse
|
27
|
Ric A, Ecochard V, Iacovoni JS, Boutonnet A, Ginot F, Ong-Meang V, Poinsot V, Paquereau L, Couderc F. G-quadruplex aptamer selection using capillary electrophoresis-LED-induced fluorescence and Illumina sequencing. Anal Bioanal Chem 2018; 410:1991-2000. [PMID: 29380016 DOI: 10.1007/s00216-018-0865-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 01/15/2023]
Abstract
One of the major difficulties that arises when selecting aptamers containing a G-quadruplex is the correct amplification of the ssDNA sequence. Can aptamers containing a G-quadruplex be selected from a degenerate library using non-equilibrium capillary electrophoresis (CE) of equilibrium mixtures (NECEEM) along with high-throughput Illumina sequencing? In this article, we present some mismatches of the G-quadruplex T29 aptamer specific to thrombin, which was PCR amplified and sequenced by Illumina sequencing. Then, we show the proportionality between the number of sequenced molecules of T29 added to the library and the number of sequences obtained in Illumina sequencing, and we find that T29 sequences from this aptamer can be detected in a random library of ssDNA after the sample is fractionated by NECEEM, amplified by PCR, and sequenced. Treatment of the data by the counting of double-stranded DNA T29 sequences containing a maximum of two mismatches reveals a good correlation with the enrichment factor (fE). This factor is the ratio of the number of aptamer sequences found in the collected complex sample divided by the total number of sequencing reads (aptamer and non-aptamer) plus the quantity of T29 molecules (spiked into a DNA library) injected into CE.
Collapse
Affiliation(s)
- Audrey Ric
- Laboratoire des IMRCP, UMR 5623, Université de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077, Toulouse, France
- Picometrics Technologies, 478 Rue de la Découverte, 31670, Labège, France
| | - Vincent Ecochard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077, Toulouse, France
| | - Jason S Iacovoni
- I2MC, UMR1048, 1 Avenue du Professeur Jean Poulhès, 31432, Toulouse Cedex 4, France
| | - Audrey Boutonnet
- Picometrics Technologies, 478 Rue de la Découverte, 31670, Labège, France
| | - Frédéric Ginot
- Picometrics Technologies, 478 Rue de la Découverte, 31670, Labège, France
| | - Varravaddheay Ong-Meang
- Laboratoire des IMRCP, UMR 5623, Université de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Véréna Poinsot
- Laboratoire des IMRCP, UMR 5623, Université de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Laurent Paquereau
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077, Toulouse, France
| | - François Couderc
- Laboratoire des IMRCP, UMR 5623, Université de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
28
|
Fujita H, Inoue Y, Kuwahara M. Selective incorporation of foreign functionality into fibrin gels through a chemically modified DNA aptamer. Bioorg Med Chem Lett 2017; 28:35-39. [PMID: 29162456 DOI: 10.1016/j.bmcl.2017.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023]
Abstract
We found for the first time that a thrombin-binding DNA aptamer (TBA) is selectively entrapped in fibrin gels during the gel growth reaction catalyzed by thrombin. Furthermore, using this phenomenon, we successfully demonstrated multiple incorporation of amphiphilic aliphatic groups into fibrin gels via chemically modified TBA.
Collapse
Affiliation(s)
- Hiroto Fujita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yusuke Inoue
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
29
|
Specific Light-Up System for Protein and Metabolite Targets Triggered by Initiation Complex Formation. Sci Rep 2017; 7:15191. [PMID: 29123195 PMCID: PMC5680199 DOI: 10.1038/s41598-017-15697-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022] Open
Abstract
Gene regulation systems are mimicked by simple quantitative detection of non-nucleic acid molecular targets such as protein and metabolite. Here, we describe a one-tube, one-step real-time quantitative detection methodology for isothermal signal amplification of those targets. Using this system, real-time quantitative detection of thrombin and streptomycin, which were used as examples for protein and metabolite targets, was successfully demonstrated with detection limits of at most 50 pM and 75 nM, respectively. Notably, the dynamic range of target concentrations could be obtained for over four orders of magnitude. Thus, our method is expected to serve as a point-of-care or on-site test for medical diagnosis and food and environmental hygiene.
Collapse
|
30
|
Hughes QW, Le BT, Gilmore G, Baker RI, Veedu RN. Construction of a Bivalent Thrombin Binding Aptamer and Its Antidote with Improved Properties. Molecules 2017; 22:molecules22101770. [PMID: 29048375 PMCID: PMC6151750 DOI: 10.3390/molecules22101770] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Aptamers are short synthetic DNA or RNA oligonucleotides that adopt secondary and tertiary conformations based on Watson–Crick base-pairing interactions and can be used to target a range of different molecules. Two aptamers, HD1 and HD22, that bind to exosites I and II of the human thrombin molecule, respectively, have been extensively studied due to their anticoagulant potentials. However, a fundamental issue preventing the clinical translation of many aptamers is degradation by nucleases and reduced pharmacokinetic properties requiring higher dosing regimens more often. In this study, we have chemically modified the design of previously described thrombin binding aptamers targeting exosites I, HD1, and exosite II, HD22. The individual aptamers were first modified with an inverted deoxythymidine nucleotide, and then constructed bivalent aptamers by connecting the HD1 and HD22 aptamers either through a triethylene glycol (TEG) linkage or four consecutive deoxythymidines together with an inverted deoxythymidine nucleotide at the 3′-end. The anticoagulation potential, the reversal of coagulation with different antidote sequences, and the nuclease stability of the aptamers were then investigated. The results showed that a bivalent aptamer RNV220 containing an inverted deoxythymidine and a TEG linkage chemistry significantly enhanced the anticoagulation properties in blood plasma and nuclease stability compared to the existing aptamer designs. Furthermore, a bivalent antidote sequence RNV220AD efficiently reversed the anticoagulation effect of RNV220 in blood plasma. Based on our results, we believe that RNV220 could be developed as a potential anticoagulant therapeutic molecule.
Collapse
Affiliation(s)
- Quintin W Hughes
- Western Australian Centre for Thrombosis and Haemostasis, Discovery Way, Murdoch University, Perth, WA 6150, Australia.
- Perth Blood Institute, Hollywood Private Hospital, Monash Avenue, Perth, WA 6009, Australia.
| | - Bao T Le
- Centre for Comparative Genomics, Discovery Way, Murdoch University, Perth, WA 6150, Australia.
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Grace Gilmore
- Western Australian Centre for Thrombosis and Haemostasis, Discovery Way, Murdoch University, Perth, WA 6150, Australia.
- Perth Blood Institute, Hollywood Private Hospital, Monash Avenue, Perth, WA 6009, Australia.
| | - Ross I Baker
- Western Australian Centre for Thrombosis and Haemostasis, Discovery Way, Murdoch University, Perth, WA 6150, Australia.
- Perth Blood Institute, Hollywood Private Hospital, Monash Avenue, Perth, WA 6009, Australia.
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Discovery Way, Murdoch University, Perth, WA 6150, Australia.
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
31
|
Morihiro K, Kasahara Y, Obika S. Biological applications of xeno nucleic acids. MOLECULAR BIOSYSTEMS 2017; 13:235-245. [PMID: 27827481 DOI: 10.1039/c6mb00538a] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Xeno nucleic acids (XNAs) are a group of chemically modified nucleic acid analogues that have been applied to various biological technologies such as antisense oligonucleotides, siRNAs and aptamers.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Satoshi Obika
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
32
|
Minagawa H, Onodera K, Fujita H, Sakamoto T, Akitomi J, Kaneko N, Shiratori I, Kuwahara M, Horii K, Waga I. Selection, Characterization and Application of Artificial DNA Aptamer Containing Appended Bases with Sub-nanomolar Affinity for a Salivary Biomarker. Sci Rep 2017; 7:42716. [PMID: 28256555 PMCID: PMC5335659 DOI: 10.1038/srep42716] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 12/21/2022] Open
Abstract
We have attained a chemically modified DNA aptamer against salivary α-amylase (sAA), which attracts researchers’ attention as a useful biomarker for assessing human psychobiological and social behavioural processes, although high affinity aptamers have not been isolated from a random natural DNA library to date. For the selection, we used the base-appended base (BAB) modification, that is, a modified-base DNA library containing (E)-5-(2-(N-(2-(N6-adeninyl)ethyl))carbamylvinyl)-uracil in place of thymine. After eight rounds of selection, a 75 mer aptamer, AMYm1, which binds to sAA with extremely high affinity (Kd < 1 nM), was isolated. Furthermore, we have successfully determined the 36-mer minimum fragment, AMYm1-3, which retains target binding activity comparable to the full-length AMYm1, by surface plasmon resonance assays. Nuclear magnetic resonance spectral analysis indicated that the minimum fragment forms a specific stable conformation, whereas the predicted secondary structures were suggested to be disordered forms. Thus, DNA libraries with BAB-modifications can achieve more diverse conformations for fitness to various targets compared with natural DNA libraries, which is an important advantage for aptamer development. Furthermore, using AMYm1, a capillary gel electrophoresis assay and lateral flow assay with human saliva were conducted, and its feasibility was demonstrated.
Collapse
Affiliation(s)
- Hirotaka Minagawa
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| | - Kentaro Onodera
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Hiroto Fujita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Japan
| | - Joe Akitomi
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| | - Naoto Kaneko
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| | - Ikuo Shiratori
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Katsunori Horii
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| | - Iwao Waga
- Innovation Laboratory, NEC Solution Innovators, Ltd., 1-18-7, Shinkiba, Koto-Ku, Tokyo 136-8627, Japan
| |
Collapse
|
33
|
Lipi F, Chen S, Chakravarthy M, Rakesh S, Veedu RN. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies. RNA Biol 2016; 13:1232-1245. [PMID: 27715478 PMCID: PMC5207382 DOI: 10.1080/15476286.2016.1236173] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.
Collapse
Affiliation(s)
- Farhana Lipi
- a Western Australian Neuroscience Research Institute , Perth , Australia
| | - Suxiang Chen
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| | - Madhuri Chakravarthy
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| | - Shilpa Rakesh
- a Western Australian Neuroscience Research Institute , Perth , Australia
| | - Rakesh N Veedu
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| |
Collapse
|
34
|
Chen T, Hongdilokkul N, Liu Z, Thirunavukarasu D, Romesberg FE. The expanding world of DNA and RNA. Curr Opin Chem Biol 2016; 34:80-87. [PMID: 27565457 DOI: 10.1016/j.cbpa.2016.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/04/2016] [Indexed: 01/07/2023]
Abstract
DNA and RNA are remarkable because they can both encode information and possess desired properties, including the ability to bind specific targets or catalyze specific reactions. Nucleotide modifications that do not interfere with enzymatic synthesis are now being used to bestow DNA or RNA with properties that further increase their utility, including phosphate and sugar modifications that increase nuclease resistance, nucleobase modifications that increase the range of activities possible, and even whole nucleobase replacement that results in selective pairing and the creation of unnatural base pairs that increase the information content. These modifications are increasingly being applied both in vitro and in vivo, including in efforts to create semi-synthetic organisms with altered or expanded genetic alphabets.
Collapse
Affiliation(s)
- Tingjian Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Narupat Hongdilokkul
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Zhixia Liu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Deepak Thirunavukarasu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
35
|
Fujita H, Kuwahara M. Selection of Natural and Base-Modified DNA Aptamers for a Camptothecin Derivative. ACTA ACUST UNITED AC 2016; 65:9.10.1-9.10.19. [PMID: 27248786 DOI: 10.1002/cpnc.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nucleic acid aptamers for small molecules are currently being developed and have a potential role in diverse applications including biosensing, diagnostics, and therapeutics involving low-molecular-weight biomarkers and drugs. To enhance and broaden their functions through chemical modification, systematic evolution of ligands by exponential enrichment (SELEX) selection has been attempted with modified DNA/RNA libraries. Recently, we demonstrated the superior efficacy of base modification for affinity enhancement and the usefulness of unnatural nucleic acid libraries for development of small-molecule aptamers. In this unit, we describe construction of a modified DNA library that includes (E)-5-(2-(N-(2-(N(6) -adeninyl)ethyl))carbamylvinyl)uracil bases and acquisition of high-affinity camptothecin-binding DNA aptamers, in addition to those of the corresponding natural DNA library and aptamers, using the SELEX method. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Hiroto Fujita
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| |
Collapse
|
36
|
Meek KN, Rangel AE, Heemstra JM. Enhancing aptamer function and stability via in vitro selection using modified nucleic acids. Methods 2016; 106:29-36. [PMID: 27012179 DOI: 10.1016/j.ymeth.2016.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/29/2022] Open
Abstract
Nucleic acid aptamers have emerged as a promising alternative to antibodies for use as recognition elements in therapeutics, bioimaging, and analytical applications. A key benefit that aptamers possess relative to antibodies is their ability to be chemically synthesized. This advantage, coupled with the broad range of modified nucleotide building blocks that can be constructed using chemical synthesis, has enabled the discovery and development of modified aptamers having extraordinary affinity, specificity, and biostability. Early efforts to generate modified aptamers focused on selection of a native DNA or RNA aptamer, followed by post-selection trial-and-error testing of modifications. However, recent advances in polymerase engineering and templated nucleic acid synthesis have enabled the direct selection of aptamers having modified backbones and nucleobases. This review will discuss these technological advances and highlight the improvements in aptamer function that have been realized through in vitro selection of non-natural nucleic acids.
Collapse
Affiliation(s)
- Kirsten N Meek
- Department of Chemistry and the Center for Cell and Genome Science, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States
| | - Alexandra E Rangel
- Department of Chemistry and the Center for Cell and Genome Science, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States
| | - Jennifer M Heemstra
- Department of Chemistry and the Center for Cell and Genome Science, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States.
| |
Collapse
|
37
|
Wang M, Mao Z, Kang TS, Wong CY, Mergny JL, Leung CH, Ma DL. Conjugating a groove-binding motif to an Ir(iii) complex for the enhancement of G-quadruplex probe behavior. Chem Sci 2016; 7:2516-2523. [PMID: 28660021 PMCID: PMC5477052 DOI: 10.1039/c6sc00001k] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 01/28/2016] [Indexed: 12/15/2022] Open
Abstract
G-quadruplex groove binder benzo[d,e]isoquinoline was linked to a Ir(iii) complex to generate a highly selective DNA probe.
In this study, the reported G-quadruplex groove binder benzo[d,e]isoquinoline was linked to a cyclometallated Ir(iii) complex to generate a highly selective DNA probe 1 that retains the favorable photophysical properties of the parent complex. The linked complex 1 showed advantages of both parent complex 2 and groove binder 3. Similar to 3, the conjugated complex 1 exhibits a superior affinity and selectivity for G-quadruplex DNA over other conformations of DNA or proteins, with the fold enhancement ratio obviously improved compared with parent complex 2. The molecular modelling revealed a groove-binding mode between complex 1 and G-quadruplex. Meanwhile 1 also possesses the prominent advantages of transition metal complex probes such as a large Stokes shift and long lifetime phosphorescence, which could be recognized in strong fluorescence media through time-resolved emission spectroscopy (TRES). We then employed 1 to develop a detection assay for AGR2, a potential cancer biomarker, as a “proof-of-principle” demonstration of the application of a linked complex for DNA-based detection in diluted fetal bovine serum. We anticipate that this conjugation method may be further employed in the development of DNA probes and have applications in label-free DNA-based diagnostic platforms.
Collapse
Affiliation(s)
- Modi Wang
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Zhifeng Mao
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Chun-Yuen Wong
- Department of Biology and Chemistry , City University of Hong Kong , Kowloon Tong , Hong Kong , China
| | - Jean-Louis Mergny
- University of Bordeaux , ARNA Laboratory , Bordeaux , France . .,INSERM , U869 , IECB , Pessac , France
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| |
Collapse
|
38
|
Morihiro K, Hasegawa O, Mori S, Tsunoda S, Obika S. C5-azobenzene-functionalized locked nucleic acid uridine: isomerization properties, hybridization ability, and enzymatic stability. Org Biomol Chem 2016; 13:5209-14. [PMID: 25853508 DOI: 10.1039/c5ob00477b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotides (ONs) modified with a locked nucleic acid (LNA) are widely used in the fields of therapeutics, diagnosis, and nanotechnology. There have been significant efforts towards developing LNA analogues bearing modified bridges to improve their hybridization ability, nuclease resistance, and pharmacokinetic profiles. Moreover, nucleobase modifications of LNA are useful strategies for the functionalization of ONs. Modifications of the C5-position of pyrimidine nucleobases are particularly interesting because they enable predictable positioning of functional groups in the major groove of the duplex. Here we report the synthesis of C5-azobenzene-functionalized LNA uridine (LNA-U(Az)) and properties of LNA-U(Az)-modified ONs, including isomerization properties, hybridization ability, and enzyme stability. LNA-U(Az) in ON is photo-isomerized effectively and reversibly by irradiation at 365 nm (trans to cis) and 450 nm (cis to trans). LNA-U(Az)-modified ONs show RNA-selective hybridization ability despite the large hydrophobic azobenzene moiety extending into the major groove of the duplex. The enzymatic stability of LNA-U(Az)-modified ONs is higher than that of natural and LNA-modified ONs with or without photo-irradiation. Our results indicate that LNA-U(Az) holds promise for RNA targeting and photo-switchable technologies.
Collapse
Affiliation(s)
- K Morihiro
- National Institute of Biomedical Innovation (NIBIO), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| | | | | | | | | |
Collapse
|
39
|
Elle IC, Karlsen KK, Terp MG, Larsen N, Nielsen R, Derbyshire N, Mandrup S, Ditzel HJ, Wengel J. Selection of LNA-containing DNA aptamers against recombinant human CD73. MOLECULAR BIOSYSTEMS 2016; 11:1260-70. [PMID: 25720604 DOI: 10.1039/c5mb00045a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several steps including sequence unification, clustering and alignment to identify enriched sequences. Three enriched sequences were synthesised for further analysis, two of which showed sequence similarities. These sequences exhibited binding to the recombinant CD73 with KD values of 10 nM and 3.5 nM when tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences were able to decrease the activity of the protein. However, the aptamers exhibited no binding to cellular CD73 by flow cytometry analysis likely since the epitope recognised by the aptamer was not available for binding on the cellular protein.
Collapse
Affiliation(s)
- Ida C Elle
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hagiwara K, Kasahara Y, Fujita H, Kuwahara M. Non-Equilibrium Capillary Electrophoresis of Equilibrium Mixtures-Based Affinity Separation and Selective Enrichment of a Long-Length DNA Aptamer. Aust J Chem 2016. [DOI: 10.1071/ch16272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a kinetic capillary electrophoresis method used for the affinity analysis of DNA binding to proteins or ligands as well as a rapid selection of DNA aptamers. However, long DNA strands (100-mer or more) are generally difficult to analyse by this method owing to their poor peak separation. Herein, we report optimized conditions (use of a neutral phosphate buffer with an ionic strength of 0.074 as a binding buffer and use of an 80-cm fused silica capillary with a 75-μm internal diameter) for the peak separation of a 100-mer thrombin-binding DNA aptamer-target complex and its consequent enrichment using the NECEEM-based capillary electrophoresis–systematic evolution of ligands by exponential enrichment (CE-SELEX) method.
Collapse
|
41
|
Alves Ferreira-Bravo I, Cozens C, Holliger P, DeStefano JJ. Selection of 2'-deoxy-2'-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. Nucleic Acids Res 2015; 43:9587-99. [PMID: 26476448 PMCID: PMC4751925 DOI: 10.1093/nar/gkv1057] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/02/2015] [Indexed: 11/17/2022] Open
Abstract
Using a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) protocol capable of selecting xeno-nucleic acid (XNA) aptamers, a 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamer (referred to as FA1) to HIV-1 reverse transcriptase (HIV-1 RT) was selected. FA1 bound HIV-1 RT with KD,app values in the low pM range under different ionic conditions. Comparisons to published HIV-1 RT RNA and DNA aptamers indicated that FA1 bound at least as well as these aptamers. FA1 contained a 20 nucleotide 5′ DNA sequence followed by a 57 nucleotide region of FANA nucleotides. Removal of the fourteen 5′ DNA nucleotides did not affect binding. FA1's predicted structure was composed of four stems and four loops. All stem nucleotides could be modified to G-C base pairs (14 total changes) with a small effect on binding. Eliminating or altering most loop sequences reduced or abolished tight binding. Overall, results suggested that the structure and the sequence of FA1 were important for binding. FA1 showed strong inhibition of HIV-1 RT in extension assays while no specific binding to avian myeloblastosis or Moloney murine leukemia RTs was detected. A complete DNA version of FA1 showed low binding to HIV-1 RT, emphasizing the unique properties of FANA in HIV-1 RT binding.
Collapse
Affiliation(s)
- Irani Alves Ferreira-Bravo
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Maryland Pathogen Research Institute, College Park, MD 20742, USA
| | - Christopher Cozens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Maryland Pathogen Research Institute, College Park, MD 20742, USA
| |
Collapse
|
42
|
Durney BC, Crihfield CL, Holland LA. Capillary electrophoresis applied to DNA: determining and harnessing sequence and structure to advance bioanalyses (2009-2014). Anal Bioanal Chem 2015; 407:6923-38. [PMID: 25935677 PMCID: PMC4551542 DOI: 10.1007/s00216-015-8703-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
This review of capillary electrophoresis methods for DNA analyses covers critical advances from 2009 to 2014, referencing 184 citations. Separation mechanisms based on free-zone capillary electrophoresis, Ogston sieving, and reptation are described. Two prevalent gel matrices for gel-facilitated sieving, which are linear polyacrylamide and polydimethylacrylamide, are compared in terms of performance, cost, viscosity, and passivation of electroosmotic flow. The role of capillary electrophoresis in the discovery, design, and characterization of DNA aptamers for molecular recognition is discussed. Expanding and emerging techniques in the field are also highlighted.
Collapse
Affiliation(s)
- Brandon C Durney
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | | |
Collapse
|
43
|
Kokil GR, Veedu RN, Ramm GA, Prins JB, Parekh HS. Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem Rev 2015; 115:4719-43. [PMID: 25918949 DOI: 10.1021/cr5002832] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ganesh R Kokil
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rakesh N Veedu
- §Center for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.,∥Western Australian Neuroscience Research Institute, Perth, WA 6150, Australia.,‡School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Grant A Ramm
- ⊥The Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.,#Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Johannes B Prins
- ∇Mater Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Harendra S Parekh
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
44
|
Wang GL, Shu JX, Dong YM, Wu XM, Zhao WW, Xu JJ, Chen HY. Using G-Quadruplex/Hemin To “Switch-On” the Cathodic Photocurrent of p-Type PbS Quantum Dots: Toward a Versatile Platform for Photoelectrochemical Aptasensing. Anal Chem 2015; 87:2892-900. [DOI: 10.1021/ac5043945] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guang-Li Wang
- The
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
- State
Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Jun-Xian Shu
- The
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yu-Ming Dong
- The
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiu-Ming Wu
- The
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, Jiangsu, China
| |
Collapse
|
45
|
Galievsky VA, Stasheuski AS, Krylov SN. Capillary Electrophoresis for Quantitative Studies of Biomolecular Interactions. Anal Chem 2014; 87:157-71. [DOI: 10.1021/ac504219r] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victor A. Galievsky
- Department
of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Alexander S. Stasheuski
- Department
of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N. Krylov
- Department
of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
46
|
Fujita H, Nakajima K, Kasahara Y, Ozaki H, Kuwahara M. Polymerase-mediated high-density incorporation of amphiphilic functionalities into DNA: enhancement of nuclease resistance and stability in human serum. Bioorg Med Chem Lett 2014; 25:333-6. [PMID: 25475204 DOI: 10.1016/j.bmcl.2014.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Modified oligodeoxyribonucleotides (mdODNs) bearing multiple copies of an amphiphilic functional group were enzymatically synthesized by simultaneous incorporation of base-modified 5'-triphosphate analogs of 2'-deoxyguanosine (dG(am)TP), 2'-deoxyuridine (dU(am)TP), 2'-deoxyadenosine (dA(am)TP), and 2'-deoxycytosine (dC(am)TP). The amphiphilic functionality, that is, (E)-38,53-dioxo-2,5,8,11,14,17,20,23,26,29,32,35-dodecaoxa-39,52-diazapentapentacont-54-en-55-yl group, consists of the water soluble dodeca(ethylene glycol) chain and the hydrophobic dodecyl chain. An enzymatically synthesized ODN, composed of a 20-mer 5'-terminal segment containing 2'-O,4'-C-methylene-bridged/linked bicyclic ribonucleotide (B/L nucleotide) and a 12-mer 3'-terminal segment containing the nucleobase-modified analogs, exhibits very high resistance against phosphodiesterase I and is stable in human serum for a longer period when compared with ODN, where the 12-mer 3'-terminal segment contains unmodified nucleotides.
Collapse
Affiliation(s)
- Hiroto Fujita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Kohsuke Nakajima
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yuuya Kasahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan; National Institute of Biomedical Innovation (NIBIO), 7-6-8 Asagi, Saito, Ibaraki, Osaka 567-0085, Japan
| | - Hiroaki Ozaki
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
47
|
Hagiwara K, Fujita H, Kasahara Y, Irisawa Y, Obika S, Kuwahara M. In vitro selection of DNA-based aptamers that exhibit RNA-like conformations using a chimeric oligonucleotide library that contains two different xeno-nucleic acids. MOLECULAR BIOSYSTEMS 2014; 11:71-6. [PMID: 25325213 DOI: 10.1039/c4mb00436a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We successfully generated chimeric DNA aptamers that contained six nucleoside analogs of 2'-O,4'-C-methylene bridged/locked nucleic acid (2',4'-BNA/LNA) in the primer region and multiple guanosine analogs of 2'-deoxy-2'-fluoro-ribonucleic acid (FNA) in the non-primer region using capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX). Active species enrichment became saturated only after five selection rounds, and we obtained DNA-based xeno-nucleic acid (XNA) aptamers that had high binding affinities for the target human thrombin, with dissociation constant (Kd) values of ≥10 nanomolar. Based on sequence and circular dichroism (CD) analyses, these XNA aptamers exhibited RNA-like conformations, which could cause DNA-based strands to adopt structurally diverse conformations.
Collapse
Affiliation(s)
- Kenta Hagiwara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e183. [PMID: 25093707 PMCID: PMC4221594 DOI: 10.1038/mtna.2014.34] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/10/2014] [Indexed: 12/24/2022]
Abstract
Single-stranded oligonucleotide aptamers have attracted great attention in the past decade because of their diagnostic and therapeutic potential. These versatile, high affinity and specificity reagents are selected by an iterative in vitro process called SELEX, Systematic Evolution of Ligands by Exponential Enrichment. Numerous SELEX methods have been developed for aptamer selections; some that are simple and straightforward, and some that are specialized and complicated. The method of SELEX is crucial for selection of an aptamer with desired properties; however, success also depends on the starting aptamer library, the target molecule, aptamer enrichment monitoring assays, and finally, the analysis and characterization of selected aptamers. Here, we summarize key recent developments in aptamer selection methods, as well as other aspects of aptamer selection that have significant impact on the outcome. We discuss potential pitfalls and limitations in the selection process with an eye to aid researchers in the choice of a proper SELEX strategy, and we highlight areas where further developments and improvements are desired. We believe carefully designed multiplexed selection methods, when complemented with high-throughput downstream analysis and characterization assays, will yield numerous high-affinity aptamers to protein and small molecule targets, and thereby generate a vast array of reagents for probing basic biological mechanisms and implementing new diagnostic and therapeutic applications in the near future.
Collapse
|
49
|
Fukushima Y, Naito T, Sueyoshi K, Kubo T, Kitagawa F, Otsuka K. Quantitative Ligand Immobilization Using Alginate Hydrogel Formed in a Capillary: Application for Online Affinity Concentration. Anal Chem 2014; 86:5977-82. [DOI: 10.1021/ac501039j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yudai Fukushima
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toyohiro Naito
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Sueyoshi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takuya Kubo
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Fumihiko Kitagawa
- Department
of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Koji Otsuka
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
50
|
Perrier S, Zhu Z, Fiore E, Ravelet C, Guieu V, Peyrin E. Capillary gel electrophoresis-coupled aptamer enzymatic cleavage protection strategy for the simultaneous detection of multiple small analytes. Anal Chem 2014; 86:4233-40. [PMID: 24716781 DOI: 10.1021/ac5010234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This novel, multi small-analyte sensing strategy is the result of combining the target-induced aptamer enzymatic protection approach with the CGE-LIF (capillary gel electrophoresis with laser-induced fluorescence) technique. The implemented assay principle is based on an analysis of the phosphodiesterase I (PDE I)-mediated size variation of a fluorescein-labeled aptamer (FApt), the enzyme catalyzing the removal of nucleotides from DNA in the 3' to 5' direction. In the absence of the target, the unfolded aptamer was enzymatically cleaved into short DNA fragments. Upon target binding, the DNA substrate was partially protected against enzymatic hydrolysis. The amount of bound aptamer remaining after the exonuclease reaction was proportional to the concentration of the target. The CGE technique, which was used to determine the separation of FApt species from DNA digested products, permitted the quantification of adenosine (A), ochratoxin A (O), and tyrosinamide (T) under the same optimized enzymatic conditions. This assay strategy was subsequently applied to the simultaneous detection of A, O, and T in a single capillary under buffered conditions using corresponding FApt probes of different lengths (23, 36, and 49 nucleotides, respectively). Additionally, the detection of these three small molecules was successfully achieved in a complex medium (diluted, heat-treated human serum) showing a good recovery. It is worth noting that the multiplexed analysis was accomplished for targets with different charge states by using aptamers possessing various structural features. This sensing platform constitutes a rationalized and reliable approach with an expanded potential for a high-throughput determination of small analytes in a single capillary.
Collapse
Affiliation(s)
- Sandrine Perrier
- Université Grenoble Alpes , DPM UMR 5063, F-38041 Grenoble, France
| | | | | | | | | | | |
Collapse
|