1
|
Ryan A, Rahman S, Williams RM. Optical Aptamer-Based Cytokine Nanosensor Detects Macrophage Activation by Bacterial Toxins. ACS Sens 2024; 9:3697-3706. [PMID: 38934367 PMCID: PMC11287749 DOI: 10.1021/acssensors.4c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Overactive or dysregulated cytokine expression is a hallmark of many acute and chronic inflammatory diseases. This is true for acute or chronic infections, neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, cancer, and others. Cytokines such as interleukin-6 (IL-6) are known therapeutic targets and biomarkers for such inflammatory diseases. Platforms for cytokine detection are, therefore, desirable tools for both research and clinical applications. Single-walled carbon nanotubes (SWCNT) are versatile nanomaterials with near-infrared fluorescence that can serve as transducers for optical sensors. When functionalized with an analyte-specific recognition element, SWCNT emission may become sensitive and selective toward the desired target. SWCNT-aptamer sensors are easily assembled, inexpensive, and biocompatible. In this work, we introduced a nanosensor design based on SWCNT and a DNA aptamer specific to IL-6. We first evaluated several SWCNT-aptamer constructs based on this simple direct complexation method, wherein the aptamer both solubilizes the SWCNT and confers sensitivity to IL-6. The sensor limit of detection, 105 ng/mL, lies in the relevant range for pathological IL-6 levels. Upon investigation of sensor kinetics, we found rapid response within seconds of antigen addition which continued over the course of 3 h. We found that this sensor construct is stable and the aptamer is not displaced from the nanotube surface during IL-6 detection. Finally, we investigated the ability of this sensor construct to detect macrophage activation caused by bacterial lipopolysaccharides (LPS) in an in vitro model of disease, finding rapid and sensitive detection of macrophage-expressed IL-6. We are confident that further development of this sensor will have novel implications for diagnosis of acute and chronic inflammatory diseases, in addition to contributing to the understanding of the role of cytokines in these diseases.
Collapse
Affiliation(s)
- Amelia
K. Ryan
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
| | - Syeda Rahman
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
| | - Ryan M. Williams
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
- PhD
Program in Chemistry, Graduate Center, City
University of New York, New York, New York 10016, United States
| |
Collapse
|
2
|
Ryan AK, Rahman S, Williams RM. An optical aptamer-based cytokine nanosensor detects macrophage activation by bacterial toxins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588290. [PMID: 38617274 PMCID: PMC11014583 DOI: 10.1101/2024.04.05.588290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Overactive or dysregulated cytokine expression is hallmark of many acute and chronic inflammatory diseases. This is true for acute or chronic infection, neurodegenerative diseases, autoimmune diseases, cardiovascular disease, cancer, and others. Cytokines such as interleukin-6 (IL-6) are known therapeutic targets and biomarkers for such inflammatory diseases. Platforms for cytokine detection are therefore desirable tools for both research and clinical applications. Single-walled carbon nanotubes (SWCNT) are versatile nanomaterials with near-infrared fluorescence that can serve as transducers for optical sensors. When functionalized with an analyte-specific recognition element, SWCNT emission may become sensitive and selective towards the desired target. SWCNT-aptamer sensors are easily assembled, inexpensive, and biocompatible. In this work, we introduced a nanosensor design based on SWCNT and a DNA aptamer specific to IL-6. We first evaluated several SWCNT-aptamer constructs based on this simple direct complexation method, wherein the aptamer both solubilizes the SWCNT and confers sensitivity to IL-6. The sensor limit of detection, 105 ng/mL, lies in the relevant range for pathological IL-6 levels. Upon investigation of sensor kinetics, we found rapid response within seconds of antigen addition which continued over the course of three hours. We found that this sensor construct is stable, and the aptamer is not displaced from the nanotube surface during IL-6 detection. Finally, we investigated the ability of this sensor construct to detect macrophage activation caused by bacterial lipopolysaccharides (LPS) in an in vitro model of disease, finding rapid and sensitive detection of macrophage-expressed IL-6. We are confident further development of this sensor will have novel implications for diagnosis of acute and chronic inflammatory diseases, in addition to contributing to the understanding of the role of cytokines in these diseases.
Collapse
Affiliation(s)
- Amelia K. Ryan
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Syeda Rahman
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Ryan M. Williams
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, City University of New York, New York, NY 10016
| |
Collapse
|
3
|
Metternich JT, Wartmann JAC, Sistemich L, Nißler R, Herbertz S, Kruss S. Near-Infrared Fluorescent Biosensors Based on Covalent DNA Anchors. J Am Chem Soc 2023. [PMID: 37367958 DOI: 10.1021/jacs.3c03336] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) are versatile near-infrared (NIR) fluorophores. They are noncovalently modified to create sensors that change their fluorescence when interacting with biomolecules. However, noncovalent chemistry has several limitations and prevents a consistent way to molecular recognition and reliable signal transduction. Here, we introduce a widely applicable covalent approach to create molecular sensors without impairing the fluorescence in the NIR (>1000 nm). For this purpose, we attach single-stranded DNA (ssDNA) via guanine quantum defects as anchors to the SWCNT surface. A connected sequence without guanines acts as flexible capture probe allowing hybridization with complementary nucleic acids. Hybridization modulates the SWCNT fluorescence and the magnitude increases with the length of the capture sequence (20 > 10 ≫ 6 bases). The incorporation of additional recognition units via this sequence enables a generic route to NIR fluorescent biosensors with improved stability. To demonstrate the potential, we design sensors for bacterial siderophores and the SARS CoV-2 spike protein. In summary, we introduce covalent guanine quantum defect chemistry as rational design concept for biosensors.
Collapse
Affiliation(s)
- Justus T Metternich
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| | | | - Linda Sistemich
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Robert Nißler
- Nanoparticle Systems Engineering Laboratory, ETH Zürich, 8092 Zürich, Switzerland
- Laboratory for Particles-Biology Interactions, Empa, 9014 St. Gallen, Switzerland
| | - Svenja Herbertz
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), 47057 Duisburg, Germany
| |
Collapse
|
4
|
Anusuyadevi K, Velmathi S. Design strategies of carbon nanomaterials in fluorescent sensing of biomolecules and metal ions -A review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
5
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202112372. [PMID: 34978752 PMCID: PMC9313876 DOI: 10.1002/anie.202112372] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/28/2021] [Indexed: 12/23/2022]
Abstract
Biosensors are powerful tools for modern basic research and biomedical diagnostics. Their development requires substantial input from the chemical sciences. Sensors or probes with an optical readout, such as fluorescence, offer rapid, minimally invasive sensing of analytes with high spatial and temporal resolution. The near-infrared (NIR) region is beneficial because of the reduced background and scattering of biological samples (tissue transparency window) in this range. In this context, single-walled carbon nanotubes (SWCNTs) have emerged as versatile NIR fluorescent building blocks for biosensors. Here, we provide an overview of advances in SWCNT-based NIR fluorescent molecular sensors. We focus on chemical design strategies for diverse analytes and summarize insights into the photophysics and molecular recognition. Furthermore, different application areas are discussed-from chemical imaging of cellular systems and diagnostics to in vivo applications and perspectives for the future.
Collapse
Affiliation(s)
- Julia Ackermann
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department EBSUniversity Duisburg-EssenBismarckstrasse 8147057DuisburgGermany
| | - Justus T. Metternich
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Svenja Herbertz
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Sebastian Kruss
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| |
Collapse
|
6
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Ackermann
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
- Department EBS University Duisburg-Essen Bismarckstrasse 81 47057 Duisburg Germany
| | - Justus T. Metternich
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Svenja Herbertz
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Sebastian Kruss
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| |
Collapse
|
7
|
Nißler R, Kurth L, Li H, Spreinat A, Kuhlemann I, Flavel BS, Kruss S. Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes. Anal Chem 2021; 93:6446-6455. [PMID: 33830740 DOI: 10.1021/acs.analchem.1c00168] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR) region, and the emission wavelength depends on their chirality (n,m). Interactions with the environment affect the fluorescence and can be tailored by functionalizing SWCNTs with biopolymers such as DNA, which is the basis for fluorescent biosensors. So far, such biosensors have been mainly assembled from mixtures of SWCNT chiralities with large spectral overlap, which affects sensitivity as well as selectivity and prevents multiplexed sensing. The main challenge to gain chirality-pure sensors has been to combine approaches to isolate specific SWCNTs and generic (bio)functionalization approaches. Here, we created chirality-pure SWCNT-based NIR biosensors for important analytes such as neurotransmitters and investigated the effect of SWCNT chirality/handedness as well as long-term stability and sensitivity. For this purpose, we used aqueous two-phase extraction (ATPE) to gain chirality-pure (6,5)-, (7,5)-, (9,4)-, and (7,6)-SWCNTs (emission at ∼990, 1040, 1115, and 1130 nm, respectively). An exchange of the surfactant sodium deoxycholate (DOC) to specific single-stranded (ss)DNA sequences yielded monochiral sensors for small analytes (dopamine, riboflavin, ascorbic acid, pH). DOC residues impaired sensitivity, and therefore substantial removal was necessary. The assembled monochiral (6,5)-SWCNTs were up to 10 times brighter than their nonpurified counterparts, and the ssDNA sequence determined the absolute fluorescence intensity as well as colloidal (long-term) stability and selectivity for the analytes. (GT)40-(6,5)-SWCNTs displayed the maximum fluorescence response to the neurotransmitter dopamine (+140%, Kd = 1.9 × 10-7 M) and a long-term stability of >14 days. The specific ssDNA sequences imparted selectivity to the analytes mostly independent of SWCNT chirality and handedness of (±) (6,5)-SWCNTs, which allowed a predictable design. Finally, multiple monochiral/single-color SWCNTs were combined to achieve ratiometric/multiplexed sensing of the important analytes dopamine, riboflavin, H2O2, and pH. In summary, we demonstrated the assembly, characteristics, and potential of monochiral (single-color) SWCNTs for NIR fluorescence sensing applications.
Collapse
Affiliation(s)
- Robert Nißler
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany.,Physical Chemistry II, Bochum University, 44801 Bochum, Germany
| | - Larissa Kurth
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Spreinat
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Ilyas Kuhlemann
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany.,Physical Chemistry II, Bochum University, 44801 Bochum, Germany.,Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
8
|
Nißler R, Bader O, Dohmen M, Walter SG, Noll C, Selvaggio G, Groß U, Kruss S. Remote near infrared identification of pathogens with multiplexed nanosensors. Nat Commun 2020; 11:5995. [PMID: 33239609 PMCID: PMC7689463 DOI: 10.1038/s41467-020-19718-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are worldwide a major cause of morbidity and mortality. Fast and specific detection of pathogens such as bacteria is needed to combat these diseases. Optimal methods would be non-invasive and without extensive sample-taking/processing. Here, we developed a set of near infrared (NIR) fluorescent nanosensors and used them for remote fingerprinting of clinically important bacteria. The nanosensors are based on single-walled carbon nanotubes (SWCNTs) that fluoresce in the NIR optical tissue transparency window, which offers ultra-low background and high tissue penetration. They are chemically tailored to detect released metabolites as well as specific virulence factors (lipopolysaccharides, siderophores, DNases, proteases) and integrated into functional hydrogel arrays with 9 different sensors. These hydrogels are exposed to clinical isolates of 6 important bacteria (Staphylococcus aureus, Escherichia coli,…) and remote (≥25 cm) NIR imaging allows to identify and distinguish bacteria. Sensors are also spectrally encoded (900 nm, 1000 nm, 1250 nm) to differentiate the two major pathogens P. aeruginosa as well as S. aureus and penetrate tissue (>5 mm). This type of multiplexing with NIR fluorescent nanosensors enables remote detection and differentiation of important pathogens and the potential for smart surfaces.
Collapse
Affiliation(s)
- Robert Nißler
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
- Physical Chemistry II, Bochum University, Bochum, Germany
| | - Oliver Bader
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Dohmen
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Sebastian G Walter
- Department for Cardiothoracic Surgery and Intensive Care, University Hospital Cologne, Cologne, Germany
| | - Christine Noll
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriele Selvaggio
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
- Physical Chemistry II, Bochum University, Bochum, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany.
- Physical Chemistry II, Bochum University, Bochum, Germany.
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany.
| |
Collapse
|
9
|
Meyer D, Telele S, Zelená A, Gillen AJ, Antonucci A, Neubert E, Nißler R, Mann FA, Erpenbeck L, Boghossian AA, Köster S, Kruss S. Transport and programmed release of nanoscale cargo from cells by using NETosis. NANOSCALE 2020; 12:9104-9115. [PMID: 32286598 DOI: 10.1039/d0nr00864h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cells can take up nanoscale materials, which has important implications for understanding cellular functions, biocompatibility as well as biomedical applications. Controlled uptake, transport and triggered release of nanoscale cargo is one of the great challenges in biomedical applications of nanomaterials. Here, we study how human immune cells (neutrophilic granulocytes, neutrophils) take up nanomaterials and program them to release this cargo after a certain time period. For this purpose, we let neutrophils phagocytose DNA-functionalized single-walled carbon nanotubes (SWCNTs) in vitro that fluoresce in the near infrared (980 nm) and serve as sensors for small molecules. Cells still migrate, follow chemical gradients and respond to inflammatory signals after uptake of the cargo. To program release, we make use of neutrophil extracellular trap formation (NETosis), a novel cell death mechanism that leads to chromatin swelling, subsequent rupture of the cellular membrane and release of the cell's whole content. By using the process of NETosis, we can program the time point of cargo release via the initial concentration of stimuli such as phorbol 12-myristate-13-acetate (PMA) or lipopolysaccharide (LPS). At intermediate stimulation, cells continue to migrate, follow gradients and surface cues for around 30 minutes and up to several hundred micrometers until they stop and release the SWCNTs. The transported and released SWCNT sensors are still functional as shown by subsequent detection of the neurotransmitter dopamine and reactive oxygen species (H2O2). In summary, we hijack a biological process (NETosis) and demonstrate how neutrophils transport and release functional nanomaterials.
Collapse
Affiliation(s)
- Daniel Meyer
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu H, Nißler R, Morris V, Herrmann N, Hu P, Jeon SJ, Kruss S, Giraldo JP. Monitoring Plant Health with Near-Infrared Fluorescent H 2O 2 Nanosensors. NANO LETTERS 2020; 20:2432-2442. [PMID: 32097014 DOI: 10.1021/acs.nanolett.9b05159] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Near-infrared (nIR) fluorescent single-walled carbon nanotubes (SWCNTs) were designed and interfaced with leaves of Arabidopsis thaliana plants to report hydrogen peroxide (H2O2), a key signaling molecule associated with the onset of plant stress. The sensor nIR fluorescence response (>900 nm) is quenched by H2O2 with selectivity against other stress-associated signaling molecules and within the plant physiological range (10-100 H2O2 μM). In vivo remote nIR imaging of H2O2 sensors enabled optical monitoring of plant health in response to stresses including UV-B light (-11%), high light (-6%), and a pathogen-related peptide (flg22) (-10%), but not mechanical leaf wounding (<3%). The sensor's high biocompatibility was reflected on similar leaf cell death (<5%) and photosynthetic rates to controls without SWCNT. These optical nanosensors report early signs of stress and will improve our understanding of plant stress communication, provide novel tools for precision agriculture, and optimize the use of agrochemicals in the environment.
Collapse
Affiliation(s)
- Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert Nißler
- Institute of Physical Chemistry, Georg August University, Göttingen, 37077 Göttingen, Germany
| | - Victoria Morris
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Niklas Herrmann
- Institute of Physical Chemistry, Georg August University, Göttingen, 37077 Göttingen, Germany
| | - Peiguang Hu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Su-Ji Jeon
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Sebastian Kruss
- Institute of Physical Chemistry, Georg August University, Göttingen, 37077 Göttingen, Germany
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
11
|
Cetin AE, Topkaya SN. Photonic crystal and plasmonic nanohole based label-free biodetection. Biosens Bioelectron 2019; 132:196-202. [DOI: 10.1016/j.bios.2019.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 11/27/2022]
|
12
|
Wen J, Sun S. Carbon Nanomaterials in Optical Detection. CARBON-BASED NANOMATERIALS IN ANALYTICAL CHEMISTRY 2018. [DOI: 10.1039/9781788012751-00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Owing to their unique optical, electronic, mechanical, and chemical properties, flexible chemical modification, large surface coverage and ready cellular uptake, various carbon nanomaterials such as carbon nanotubes (CNTs), graphene and its derivatives, carbon dots (CDs), graphene quantum dots, fullerenes, carbon nanohorns (CNHs) and carbon nano-onions (CNOs), have been widely explored for use in optical detection. Most of them are based on fluorescence changes. In this chapter, we will focus on carbon nanomaterials-based optical detection applications, mainly including fluorescence sensing and bio-imaging. Moreover, perspectives on future exploration of carbon nanomaterials for optical detection are also given.
Collapse
Affiliation(s)
- Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling, Shaanxi 712100 PR China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling, Shaanxi 712100 PR China
| |
Collapse
|
13
|
Pan J, Cha TG, Li F, Chen H, Bragg NA, Choi JH. Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers. SCIENCE ADVANCES 2017; 3:e1601600. [PMID: 28116353 PMCID: PMC5249260 DOI: 10.1126/sciadv.1601600] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/30/2016] [Indexed: 05/23/2023]
Abstract
DNA walkers are designed with the structural specificity and functional diversity of oligonucleotides to actively convert chemical energy into mechanical translocation. Compared to natural protein motors, DNA walkers' small translocation distance (mostly <100 nm) and slow reaction rate (<0.1 nm s-1) make single-molecule characterization of their kinetics elusive. An important indication of single-walker kinetics is the rate-limiting reactions that a particular walker design bears. We introduce an integrated super-resolved fluorescence microscopy approach that is capable of long-term imaging to investigate the stochastic behavior of DNA walkers. Subdiffraction tracking and imaging in the visible and second near-infrared spectra resolve walker structure and reaction rates. The distributions of walker kinetics are analyzed using a stochastic model to reveal reaction randomness and the rate-limiting biochemical reaction steps.
Collapse
|
14
|
Pan J, Li F, Choi JH. Single-walled carbon nanotubes as optical probes for bio-sensing and imaging. J Mater Chem B 2017; 5:6511-6522. [PMID: 32264414 DOI: 10.1039/c7tb00748e] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A review on the applications of single-walled carbon nanotube photoluminescence in biomolecular sensing and biomedical imaging.
Collapse
Affiliation(s)
- Jing Pan
- School of Mechanical Engineering
- Purdue University
- West Lafayette
- USA
| | - Feiran Li
- School of Mechanical Engineering
- Purdue University
- West Lafayette
- USA
| | - Jong Hyun Choi
- School of Mechanical Engineering
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
15
|
Recent progress on DNA based walkers. Curr Opin Biotechnol 2015; 34:56-64. [DOI: 10.1016/j.copbio.2014.11.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/16/2014] [Indexed: 12/22/2022]
|
16
|
Cha TG, Pan J, Chen H, Robinson HN, Li X, Mao C, Choi JH. Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation. J Am Chem Soc 2015; 137:9429-37. [PMID: 26151085 DOI: 10.1021/jacs.5b05522] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tae-Gon Cha
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jing Pan
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haorong Chen
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Heather N. Robinson
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiang Li
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chengde Mao
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, ‡Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Du F, Guo L, Qin Q, Zheng X, Ruan G, Li J, Li G. Recent advances in aptamer-functionalized materials in sample preparation. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Jain A, Homayoun A, Bannister CW, Yum K. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine. Biotechnol J 2015; 10:447-59. [DOI: 10.1002/biot.201400168] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/26/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022]
|
19
|
Huang Y, Wen W, Du D, Zhang X, Wang S, Lin Y. A universal lateral flow biosensor for proteins and DNAs based on the conformational change of hairpin oligonucleotide and its use for logic gate operations. Biosens Bioelectron 2014; 61:598-604. [PMID: 24967748 DOI: 10.1016/j.bios.2014.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/22/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023]
Abstract
A universal lateral flow biosensor for proteins and DNAs was designed on the base of target-induced conformational changes of hairpin oligonucleotide (HO). CEA (carcinoembryonic antigen) protein and c-DNA were detected both with the naked eye and a strip reader. The scheme of detecting proteins and DNAs were based on the unique molecular recognition properties of HO to the targets to form different quantities of "active" biotin groups on the surface of gold nanoparticles (AuNPs). The output of the strip is the color of the test line, which inspired us to combine strip biosensor with logic gate. Two strip logic gates ("OR" and "INH") were designed in our paper and the combinatorial logic gates in our paper could be used to make high-throughput judgment about what targets were present in the input samples according to the output results. The biosensor facilitates a portable analysis at ambient temperature as it is simple to be conducted and no requirement of training is needed. The strip logic system is proved an excellent selection and can operate effectively as well as in human serum samples. Therefore, we indicate that such logic strips a foreseeable promise in application of intelligent point-of-care and in-field diagnostics.
Collapse
Affiliation(s)
- Yan Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman 99164, USA; Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman 99164, USA.
| |
Collapse
|
20
|
Kang Z, Yan X, Zhang Y, Pan J, Shi J, Zhang X, Liu Y, Choi JH, Porterfield DM. Single-stranded DNA functionalized single-walled carbon nanotubes for microbiosensors via layer-by-layer electrostatic self-assembly. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3784-3789. [PMID: 24606733 DOI: 10.1021/am500118k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this letter, the facial noncovalent adsorption of single-stranded DNA (ssDNA) provided single-walled carbon nanotubes (SWNTs) with biofunctionality while their superior properties were retained. In this case, we innovatively demonstrated the feasibility of employing the negative surface charge of ssDNA-SWNTs to realize layer-by-layer electrostatic self-assembly. On the basis of such a sandwichlike structure, an applicable glucose microbiosensor with direct electrochemistry and high performance was fabricated. The proposed protocol provided an ideal platform for various sensing applications, and might have profound influence on related nanotechnology.
Collapse
Affiliation(s)
- Zhuo Kang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, and §Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing , Beijing 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|