1
|
Guo X, Hu F, Yong Z, Zhao S, Wan Y, Wang B, Peng N. Magnetic Nanoparticle-Based Microfluidic Platform for Automated Enrichment of High-Purity Extracellular Vesicles. Anal Chem 2024; 96:7212-7219. [PMID: 38660946 DOI: 10.1021/acs.analchem.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Extracellular vesicles (EVs) are available in various biological fluids and have highly heterogeneous sizes, origins, contents, and functions. Rapid enrichment of high-purity EVs remains crucial for enhancing research on EVs in tumors. In this work, we present a magnetic nanoparticle-based microfluidic platform (ExoCPR) for on-chip isolation, purification, and mild recovery of EVs from cell culture supernatant and plasma within 29 min. The ExoCPR chip integrates bubble-driven micromixers and immiscible filtration assisted by surface tension (IFAST) technology. The bubble-driven micromixer enhances the mixing between immunomagnetic beads and EVs, eliminating the need for manual pipetting or off-chip oscillatory incubation. The high-purity EVs were obtained after passing through the immiscible phase interface where hydrophilic or hydrophobic impurities nonspecifically bound to SIMI were removed. The ExoCPR chip had a capture efficiency of 75.8% and a release efficiency of 62.7% for model EVs. We also demonstrated the powerful performance of the ExoCPR in isolating EVs from biological samples (>90% purity). This chip was further employed in clinical plasma samples and showed that the number of GPC3-positive EVs isolated from hepatocellular carcinoma patients was significantly higher than that of healthy individuals. This ExoCPR chip may provide a promising tool for EV-based liquid biopsy and other fundamental research.
Collapse
Affiliation(s)
- Xiaoniu Guo
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zhang Yong
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Bingqing Wang
- Xi'an Key Laboratory of Biomedical Testing and High-End Equipment, Xi'an 710049, Shaanxi, China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Xi'an Key Laboratory of Biomedical Testing and High-End Equipment, Xi'an 710049, Shaanxi, China
| |
Collapse
|
2
|
Richerd M, Dumas S, Hajji I, Serra M, Descroix S. Multiomic Droplet-Based Assay for Ultralow Input Samples. Anal Chem 2023; 95:17988-17996. [PMID: 38032406 DOI: 10.1021/acs.analchem.3c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The extraction and separation of cellular compounds are crucial steps in numerous biological protocols, particularly in multiomics studies, where several cellular modalities are examined simultaneously. While magnetic particle extraction is commonly used, it may not be applicable for ultralow input samples. Microfluidics has made possible the analysis of rare or low-materiality samples such as circulating tumor cells or single cells through miniaturization of numerous protocols. In this study, a microfluidics workflow for separating different cellular modalities from ultralow input samples is presented. This approach is based on magnetic tweezers technology, allowing the extraction and resuspension of magnetic particles between consecutive nanoliter droplets to perform multistep assays on small volumes. The ability to separate and recover mRNA and gDNA in samples containing less than 10 cells is demonstrated, achieving separation efficiency comparable to the one obtained with conventional pipetting but with a significantly lower amount of starting material, typically 1-2 orders of magnitude less.
Collapse
Affiliation(s)
- Mathilde Richerd
- Institut Curie, Laboratoire PhysicoChimie (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean, Calvin 75005, Paris, France
| | - Simon Dumas
- Institut Curie, Laboratoire PhysicoChimie (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean, Calvin 75005, Paris, France
| | - Ismail Hajji
- Institut Curie, Laboratoire PhysicoChimie (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean, Calvin 75005, Paris, France
| | - Marco Serra
- Institut Curie, Laboratoire PhysicoChimie (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean, Calvin 75005, Paris, France
| | - Stéphanie Descroix
- Institut Curie, Laboratoire PhysicoChimie (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean, Calvin 75005, Paris, France
| |
Collapse
|
3
|
Wu M, Huang Y, Huang Y, Wang H, Li M, Zhou Y, Zhao H, Lan Y, Wu Z, Jia C, Feng S, Zhao J. Droplet magnetic-controlled microfluidic chip integrated nucleic acid extraction and amplification for the detection of pathogens and tumor mutation sites. Anal Chim Acta 2023; 1271:341469. [PMID: 37328249 DOI: 10.1016/j.aca.2023.341469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Traditional nucleic acid extraction and detection is based on open operation, which may cause cross-contamination and aerosol formation. This study developed a droplet magnetic-controlled microfluidic chip integrated nucleic acid extraction, purification and amplification. The reagent is sealed in oil to form a droplet, and the nucleic acid is extracted and purified by controlling the movement of the magnetic beads (MBs) through a permanent magnet, ensuring a closed environment. This chip can automatically extract nucleic acid from multiple samples within 20 min, and can be directly placed in the in situ amplification instrument for amplification without further transfer of nucleic acid, characterized by simple, fast, time-saving and labor-saving. The results showed that the chip was able to detect <10 copies/test SARS-CoV-2 RNA, and EGFR exon 21 L858R mutations were detected in H1975 cells as low as 4 cells. In addition, on the basis of the droplet magnetic-controlled microfluidic chip, we further developed a multi-target detection chip, which used MBs to divide the nucleic acid of the sample into three parts. And the macrolides resistance mutations A2063G and A2064G, and the P1 gene of mycoplasma pneumoniae (MP) were successfully detected in clinical samples by the multi-target detection chip, providing the possibility for future application in the detection of multiple pathogens.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Yaru Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Hua Wang
- Renji Hospital Affiliated to Shanghai Jiao Tong University, 200127, China
| | - Min Li
- Renji Hospital Affiliated to Shanghai Jiao Tong University, 200127, China
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Ma C, Sun Y, Huang Y, Gao Z, Huang Y, Pandey I, Jia C, Feng S, Zhao J. On-Chip Nucleic Acid Purification Followed by ddPCR for SARS-CoV-2 Detection. BIOSENSORS 2023; 13:bios13050517. [PMID: 37232879 DOI: 10.3390/bios13050517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
We developed a microfluidic chip integrated with nucleic acid purification and droplet-based digital polymerase chain reaction (ddPCR) modules to realize a 'sample-in, result-out' infectious virus diagnosis. The whole process involved pulling magnetic beads through drops in an oil-enclosed environment. The purified nucleic acids were dispensed into microdroplets by a concentric-ring, oil-water-mixing, flow-focusing droplets generator driven under negative pressure conditions. Microdroplets were generated with good uniformity (CV = 5.8%), adjustable diameters (50-200 μm), and controllable flow rates (0-0.3 μL/s). Further verification was provided by quantitative detection of plasmids. We observed a linear correlation of R2 = 0.9998 in the concentration range from 10 to 105 copies/μL. Finally, this chip was applied to quantify the nucleic acid concentrations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The measured nucleic acid recovery rate of 75 ± 8.8% and detection limit of 10 copies/μL proved its on-chip purification and accurate detection abilities. This chip can potentially be a valuable tool in point-of-care testing.
Collapse
Affiliation(s)
- Cong Ma
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Huang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yaru Huang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Ikshu Pandey
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Xiangfu Laboratory, Jiaxing 314102, China
| |
Collapse
|
5
|
Fan Y, Dai R, Guan X, Lu S, Yang C, Lv X, Li X. Rapid automatic nucleic acid purification system based on gas-liquid immiscible phase. J Sep Sci 2023; 46:e2200801. [PMID: 36661136 DOI: 10.1002/jssc.202200801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
The continuous expansion of nucleic acid detection applications has resulted in constant developments in rapid, low-consumption, and highly automated nucleic acid extraction methods. Nucleic acid extraction using magnetic beads across an immiscible phase interface offers significant simplification and parallelization potential. The gas-liquid immiscible phase valve eliminates the requirement for complicated cassettes and is suitable for automation applications. By analyzing the process of magnetic beads crossing the gas-liquid interface, we utilized a low magnetic field strength to drive large magnetic bead packages to cross the gas-liquid interface, providing a solution of high magnetic bead recovery rate for solid-phase extraction with a low-surfactant system based on gas-liquid immiscible phase valve. The recovery rate of magnetic beads was further improved to 90%-95% and the carryover of the reagents was below 1%. Consequently, a chip and an automatic system were developed to verify the applicability of this method for nucleic acid extraction. The Hepatitis B virus serum standard was used for the extraction test. The extraction of four samples was performed within 7 minutes, with nucleic acid recovery maintained above 80% and good purity. Thus, through analysis and experiments, a fast, highly automated, and low-consumption nucleic acid recovery method was proposed in this study.
Collapse
Affiliation(s)
- Yunlong Fan
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Rongji Dai
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Xuejun Guan
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Shuyu Lu
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Chunhua Yang
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Xuefei Lv
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| | - Xiaoqiong Li
- School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
6
|
Rodriguez-Mateos P, Ngamsom B, Iles A, Pamme N. Microscale immiscible phase magnetic processing for bioanalytical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Rodems TS, Juang DS, Stahlfeld CN, Gilsdorf CS, Krueger TEG, Heninger E, Zhao SG, Sperger JM, Beebe DJ, Haffner MC, Lang JM. SEEMLIS: a flexible semi-automated method for enrichment of methylated DNA from low-input samples. Clin Epigenetics 2022; 14:37. [PMID: 35272673 PMCID: PMC8908705 DOI: 10.1186/s13148-022-01252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 01/02/2023] Open
Abstract
Background DNA methylation alterations have emerged as hallmarks of cancer and have been proposed as screening, prognostic, and predictive biomarkers. Traditional approaches for methylation analysis have relied on bisulfite conversion of DNA, which can damage DNA and is not suitable for targeted gene analysis in low-input samples. Here, we have adapted methyl-CpG-binding domain protein 2 (MBD2)-based DNA enrichment for use on a semi-automated exclusion-based sample preparation (ESP) platform for robust and scalable enrichment of methylated DNA from low-input samples, called SEEMLIS. Results We show that combining methylation-sensitive enzyme digestion with ESP-based MBD2 enrichment allows for single gene analysis with high sensitivity for GSTP1 in highly impure, heterogenous samples. We also show that ESP-based MBD2 enrichment coupled with targeted pre-amplification allows for analysis of multiple genes with sensitivities approaching the single cell level in pure samples for GSTP1 and RASSF1 and sensitivity down to 14 cells for these genes in highly impure samples. Finally, we demonstrate the potential clinical utility of SEEMLIS by successful detection of methylated gene signatures in circulating tumor cells (CTCs) from patients with prostate cancer with varying CTC number and sample purity. Conclusions SEEMLIS is a robust assay for targeted DNA methylation analysis in low-input samples, with flexibility at multiple steps. We demonstrate the feasibility of this assay to analyze DNA methylation in prostate cancer cells using CTCs from patients with prostate cancer as a real-world example of a low-input analyte of clinical importance. In summary, this novel assay provides a platform for determining methylation signatures in rare cell populations with broad implications for research as well as clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01252-4.
Collapse
Affiliation(s)
- Tamara S Rodems
- University of Wisconsin Carbone Cancer Center, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Duane S Juang
- Department of Pathology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Charlotte N Stahlfeld
- University of Wisconsin Carbone Cancer Center, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Cole S Gilsdorf
- University of Wisconsin Carbone Cancer Center, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Tim E G Krueger
- University of Wisconsin Carbone Cancer Center, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Erika Heninger
- University of Wisconsin Carbone Cancer Center, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Jamie M Sperger
- University of Wisconsin Carbone Cancer Center, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - David J Beebe
- University of Wisconsin Carbone Cancer Center, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Pathology, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N., Seattle, WA, 98109, USA.,Department of Pathology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA.,Department of Pathology, Johns Hopkins School of Medicine, 600 N Wolfe St., Baltimore, MD, 21287, USA
| | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center, Madison, 1111 Highland Ave., Madison, WI, 53705, USA. .,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA. .,7151 WI Institutes for Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Sperger JM, Feng FY, Armstrong AJ, Zhao SG, Lang JM. Reply to M. K. Bos et al. J Clin Oncol 2021; 40:520-522. [PMID: 34878806 DOI: 10.1200/jco.21.02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jamie M Sperger
- Jamie M. Sperger, PhD, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI; Felix Y. Feng, MD, Helen Diller Family Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Medicine, UCSF, Department of Radiation Oncology, Department of Urology, University of California San Francisco, San Francisco, CA; Andrew J. Armstrong, MD, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC; Shuang G. Zhao, MD, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI, Department of Human Oncology, University of Wisconsin, Madison, WI, William S. Middleton Memorial Veterans Hospital, Madison, WI; and Joshua M. Lang, MD, MS, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI, Department of Medicine, University of Wisconsin, Madison, WI
| | - Felix Y Feng
- Jamie M. Sperger, PhD, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI; Felix Y. Feng, MD, Helen Diller Family Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Medicine, UCSF, Department of Radiation Oncology, Department of Urology, University of California San Francisco, San Francisco, CA; Andrew J. Armstrong, MD, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC; Shuang G. Zhao, MD, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI, Department of Human Oncology, University of Wisconsin, Madison, WI, William S. Middleton Memorial Veterans Hospital, Madison, WI; and Joshua M. Lang, MD, MS, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI, Department of Medicine, University of Wisconsin, Madison, WI
| | - Andrew J Armstrong
- Jamie M. Sperger, PhD, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI; Felix Y. Feng, MD, Helen Diller Family Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Medicine, UCSF, Department of Radiation Oncology, Department of Urology, University of California San Francisco, San Francisco, CA; Andrew J. Armstrong, MD, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC; Shuang G. Zhao, MD, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI, Department of Human Oncology, University of Wisconsin, Madison, WI, William S. Middleton Memorial Veterans Hospital, Madison, WI; and Joshua M. Lang, MD, MS, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI, Department of Medicine, University of Wisconsin, Madison, WI
| | - Shuang G Zhao
- Jamie M. Sperger, PhD, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI; Felix Y. Feng, MD, Helen Diller Family Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Medicine, UCSF, Department of Radiation Oncology, Department of Urology, University of California San Francisco, San Francisco, CA; Andrew J. Armstrong, MD, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC; Shuang G. Zhao, MD, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI, Department of Human Oncology, University of Wisconsin, Madison, WI, William S. Middleton Memorial Veterans Hospital, Madison, WI; and Joshua M. Lang, MD, MS, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI, Department of Medicine, University of Wisconsin, Madison, WI
| | - Joshua M Lang
- Jamie M. Sperger, PhD, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI; Felix Y. Feng, MD, Helen Diller Family Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Medicine, UCSF, Department of Radiation Oncology, Department of Urology, University of California San Francisco, San Francisco, CA; Andrew J. Armstrong, MD, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC; Shuang G. Zhao, MD, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI, Department of Human Oncology, University of Wisconsin, Madison, WI, William S. Middleton Memorial Veterans Hospital, Madison, WI; and Joshua M. Lang, MD, MS, Carbone Cancer Center and Department of Medicine, University of Wisconsin, Madison, WI, Department of Medicine, University of Wisconsin, Madison, WI
| |
Collapse
|
9
|
Rodriguez-Mateos P, Ngamsom B, Walter C, Dyer CE, Gitaka J, Iles A, Pamme N. A lab-on-a-chip platform for integrated extraction and detection of SARS-CoV-2 RNA in resource-limited settings. Anal Chim Acta 2021; 1177:338758. [PMID: 34482896 PMCID: PMC8202086 DOI: 10.1016/j.aca.2021.338758] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the unprecedented global pandemic of coronavirus disease-2019 (COVID-19). Efforts are needed to develop rapid and accurate diagnostic tools for extensive testing, allowing for effective containment of the infection via timely identification and isolation of SARS-CoV-2 carriers. Current gold standard nucleic acid tests require many separate steps that need trained personnel to operate specialist instrumentation in laboratory environments, hampering turnaround time and test accessibility, especially in low-resource settings. We devised an integrated on-chip platform coupling RNA extraction based on immiscible filtration assisted by surface tension (IFAST), with RNA amplification and detection via colorimetric reverse-transcription loop mediated isothermal amplification (RT-LAMP), using two sets of primers targeting open reading frame 1a (ORF1a) and nucleoprotein (N) genes of SARS-CoV-2. Results were identified visually, with a colour change from pink to yellow indicating positive amplification, and further confirmed by DNA gel electrophoresis. The specificity of the assay was tested against HCoV-OC43 and H1N1 RNAs. The assay based on use of gene N primers was 100% specific to SARS-CoV-2 with no cross-reactivity to HCoV-OC43 nor H1N1. Proof-of-concept studies on water and artificial sputum containing genomic SARS-CoV-2 RNA showed our IFAST RT-LAMP device to be capable of extracting and detecting 470 SARS-CoV-2 copies mL-1 within 1 h (from sample-in to answer-out). IFAST RT-LAMP is a simple-to-use, integrated, rapid and accurate COVID-19 diagnostic platform, which could provide an attractive means for extensive screening of SARS-CoV-2 infections at point-of-care, especially in resource-constrained settings.
Collapse
Affiliation(s)
| | - Bongkot Ngamsom
- Department of Chemistry and Biochemistry, University of Hull, UK
| | - Cheryl Walter
- Department of Biomedical Sciences, University of Hull, UK
| | | | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika, Republic of Kenya
| | - Alexander Iles
- Department of Chemistry and Biochemistry, University of Hull, UK
| | - Nicole Pamme
- Department of Chemistry and Biochemistry, University of Hull, UK,Corresponding author. Department of Chemistry, Faculty of Science and Engineering, University of Hull, Cottingham Road, Hull, East Riding of Yorkshire, HU6 7RX, UK
| |
Collapse
|
10
|
Sperger JM, Emamekhoo H, McKay RR, Stahlfeld CN, Singh A, Chen XE, Kwak L, Gilsdorf CS, Wolfe SK, Wei XX, Silver R, Zhang Z, Morris MJ, Bubley G, Feng FY, Scher HI, Rathkopf D, Dehm SM, Choueiri TK, Halabi S, Armstrong AJ, Wyatt AW, Taplin ME, Zhao SG, Lang JM. Prospective Evaluation of Clinical Outcomes Using a Multiplex Liquid Biopsy Targeting Diverse Resistance Mechanisms in Metastatic Prostate Cancer. J Clin Oncol 2021; 39:2926-2937. [PMID: 34197212 PMCID: PMC8425833 DOI: 10.1200/jco.21.00169] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nearly all men with prostate cancer treated with androgen receptor (AR) signaling inhibitors (ARSIs) develop resistance via diverse mechanisms including constitutive activation of the AR pathway, driven by AR genomic structural alterations, expression of AR splice variants (AR-Vs), or loss of AR dependence and lineage plasticity termed neuroendocrine prostate cancer. Understanding these de novo acquired ARSI resistance mechanisms is critical for optimizing therapy.
Collapse
Affiliation(s)
- Jamie M Sperger
- Department of Medicine, Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Hamid Emamekhoo
- Department of Medicine, Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Rana R McKay
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | | | - Anupama Singh
- Department of Medicine, Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Xinyi E Chen
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Lucia Kwak
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Cole S Gilsdorf
- Department of Medicine, Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Serena K Wolfe
- Department of Medicine, Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Xiao X Wei
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Rebecca Silver
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Zhenwei Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Michael J Morris
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Glenn Bubley
- Beth Israel Deaconess Medical Center, Boston, MA
| | - Felix Y Feng
- Division of Hematology and Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA.,Department of Radiation Oncology, University of California San Francisco, San Francisco, CA.,Department of Urology, University of California San Francisco, San Francisco, CA
| | - Howard I Scher
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Dana Rathkopf
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Scott M Dehm
- Departments of Laboratory Medicine and Pathology and Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Toni K Choueiri
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Susan Halabi
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC.,Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC
| | - Alexander W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Shuang G Zhao
- Department of Medicine, Carbone Cancer Center, University of Wisconsin, Madison, WI.,Department of Human Oncology, University of Wisconsin, Madison, WI.,William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Joshua M Lang
- Department of Medicine, Carbone Cancer Center, University of Wisconsin, Madison, WI.,Department of Medicine, University of Wisconsin, Madison, WI
| |
Collapse
|
11
|
McKay RR, Kwak L, Crowdis JP, Sperger JM, Zhao SG, Xie W, Werner L, Lis RT, Zhang Z, Wei XX, Lang JM, Van Allen EM, Bhatt RS, Yu EY, Nelson PS, Bubley GJ, Montgomery RB, Taplin ME. Phase II Multicenter Study of Enzalutamide in Metastatic Castration-Resistant Prostate Cancer to Identify Mechanisms Driving Resistance. Clin Cancer Res 2021; 27:3610-3619. [PMID: 33849963 PMCID: PMC8254786 DOI: 10.1158/1078-0432.ccr-20-4616] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Enzalutamide is a second-generation androgen receptor (AR) inhibitor that has improved overall survival (OS) in metastatic castration-resistant prostate cancer (CRPC). However, nearly all patients develop resistance. We designed a phase II multicenter study of enzalutamide in metastatic CRPC incorporating tissue and blood biomarkers to dissect mechanisms driving resistance. PATIENTS AND METHODS Eligible patients with metastatic CRPC underwent a baseline metastasis biopsy and then initiated enzalutamide 160 mg daily. A repeat metastasis biopsy was obtained at radiographic progression from the same site when possible. Blood for circulating tumor cell (CTC) analysis was collected at baseline and progression. The primary objective was to analyze mechanisms of resistance in serial biopsies. Whole-exome sequencing was performed on tissue biopsies. CTC samples underwent RNA sequencing. RESULTS A total of 65 patients initiated treatment, of whom 22 (33.8%) had received prior abiraterone. Baseline biopsies were enriched for alterations in AR (mutations, amplifications) and tumor suppression genes (PTEN, RB1, and TP53), which were observed in 73.1% and 92.3% of baseline biopsies, respectively. Progression biopsies revealed increased AR amplifications (64.7% at progression vs. 53.9% at baseline) and BRCA2 alterations (64.7% at progression vs. 38.5% at baseline). Genomic analysis of baseline and progression CTC samples demonstrated increased AR splice variants, AR-regulated genes, and neuroendocrine markers at progression. CONCLUSIONS Our results demonstrate that a large proportion of enzalutamide-treated patients have baseline and progression alterations in the AR pathway and tumor suppressor genes. We demonstrate an increased number of BRCA2 alterations post-enzalutamide, highlighting the importance of serial tumor sampling in CRPC.
Collapse
Affiliation(s)
- Rana R McKay
- University of California San Diego, San Diego, California
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lucia Kwak
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jamie M Sperger
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Shuang G Zhao
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wanling Xie
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Rosina T Lis
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Xiao X Wei
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joshua M Lang
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Rupal S Bhatt
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Evan Y Yu
- University of Washington, Seattle, Washington
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Peter S Nelson
- University of Washington, Seattle, Washington
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Glenn J Bubley
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - R Bruce Montgomery
- University of Washington, Seattle, Washington
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | |
Collapse
|
12
|
Chen Y, Liu Y, Shi Y, Ping J, Wu J, Chen H. Magnetic particles for integrated nucleic acid purification, amplification and detection without pipetting. Trends Analyt Chem 2020; 127:115912. [PMID: 32382202 PMCID: PMC7202819 DOI: 10.1016/j.trac.2020.115912] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid amplification based detection plays an important role in food safety, environmental monitoring and clinical diagnosis. However, traditional nucleic acid detection process involves transferring liquid from one tube to another by pipetting. It requires trained persons, equipped labs and consumes lots of time. The ideal nucleic acid detection is integrated, closed, simplified and automated. Magnetic particles actuated by magnetic fields can efficiently adsorb nucleic acids and promote integrated nucleic acid assays without pipetting driven by pumps and centrifuges. We will comprehensively review magnetic particles assisted integrated system for nucleic acid detection and hope it can inspire further related study.
Collapse
Key Words
- ATP, adenosine triphosphate
- DLS, dynamic light scattering
- FMR, ferromagnetic resonance
- GTC, guanidinium thiocyanate
- ICP-AES, inductively coupled plasma atomic emission spectroscopy
- IFAST, immiscible filtration assisted by surface tension
- Immiscible interface
- Integrated detection
- LAMP, loop-mediated isothermal amplification
- Magnetic particles
- Nucleic acid
- PCR, polymerase chain reaction
- PEG, polyethylene glycol
- POCT, point-of-care testing
- RPA, recombinase polymerase amplification
- SQUID, superconducting quantum interference device magnetometer
- TEM, transmission electron microscopy
- XRD, X-Ray diffraction
- qPCR, quantitative PCR
Collapse
Affiliation(s)
- Yanju Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yang Liu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Ya Shi
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, 310058, China
| | - Huan Chen
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| |
Collapse
|
13
|
Tokar JJ, Stahlfeld CN, Sperger JM, Niles DJ, Beebe DJ, Lang JM, Warrick JW. Pairing Microwell Arrays with an Affordable, Semiautomated Single-Cell Aspirator for the Interrogation of Circulating Tumor Cell Heterogeneity. SLAS Technol 2020; 25:162-176. [PMID: 31983266 PMCID: PMC8879417 DOI: 10.1177/2472630319898146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Comprehensive analysis of tumor heterogeneity requires robust methods for the isolation and analysis of single cells from patient samples. An ideal approach would be fully compatible with downstream analytic methods, such as advanced genomic testing. These endpoints necessitate the use of live cells at high purity. A multitude of microfluidic circulating tumor cell (CTC) enrichment technologies exist, but many of those perform bulk sample enrichment and are not, on their own, capable of single-cell interrogation. To address this, we developed an affordable semiautomated single-cell aspirator (SASCA) to further enrich rare-cell populations from a specialized microwell array, per their phenotypic markers. Immobilization of cells within microwells, integrated with a real-time image processing software, facilitates the detection and precise isolation of targeted cells that have been optimally seeded into the microwells. Here, we demonstrate the platform capabilities through the aspiration of target cells from an impure background population, where we obtain purity levels of 90%-100% and demonstrate the enrichment of the target population with high-quality RNA extraction. A range of low cell numbers were aspirated using SASCA before undergoing whole transcriptome and genome analysis, exhibiting the ability to obtain endpoints from low-template inputs. Lastly, CTCs from patients with castration-resistant prostate cancer were isolated with this platform and the utility of this method was confirmed for rare-cell isolation. SASCA satisfies a need for an affordable option to isolate single cells or highly purified subpopulations of cells to probe complex mechanisms driving disease progression and resistance in patients with cancer.
Collapse
Affiliation(s)
- Jacob J Tokar
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| | | | - Jamie M Sperger
- Dept. of Medicine – Univ. of Wisconsin, Madison - Madison, USA
| | - David J Niles
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| | - David J Beebe
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
- UW Carbone Cancer Center. – Univ. of Wisconsin, Madison - Madison, USA
| | - Joshua M Lang
- UW Carbone Cancer Center. – Univ. of Wisconsin, Madison - Madison, USA
- Dept. of Medicine – Univ. of Wisconsin, Madison - Madison, USA
| | - Jay W Warrick
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| |
Collapse
|
14
|
Li C, Yu J, Schehr J, Berry SM, Leal TA, Lang JM, Beebe DJ. Exclusive Liquid Repellency: An Open Multi-Liquid-Phase Technology for Rare Cell Culture and Single-Cell Processing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17065-17070. [PMID: 29738227 PMCID: PMC9703972 DOI: 10.1021/acsami.8b03627] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The concept of high liquid repellency in multi-liquid-phase systems (e.g., aqueous droplets in an oil background) has been applied to areas of biomedical research to realize intrinsic advantages not available in single-liquid-phase systems. Such advantages have included minimizing analyte loss, facile manipulation of single-cell samples, elimination of biofouling, and ease of use regarding loading and retrieving of the sample. In this paper, we present generalized design rules for predicting the wettability of solid-liquid-liquid systems (especially for discrimination between exclusive liquid repellency (ELR) and finite liquid repellency) to extend the applications of ELR. We then apply ELR to two model systems with open microfluidic design in cell biology: (1) in situ underoil culture and combinatorial coculture of mammalian cells in order to demonstrate directed single-cell multiencapsulation with minimal waste of samples as compared to stochastic cell seeding and (2) isolation of a pure population of circulating tumor cells, which is required for certain downstream analyses including sequencing and gene expression profiling.
Collapse
Affiliation(s)
- Chao Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin, WI 53705 (United States)
| | - Jiaquan Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin, WI 53705 (United States)
| | - Jennifer Schehr
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 (United States)
| | - Scott M. Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin, WI 53705 (United States)
| | - Ticiana A. Leal
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 (United States)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792 (United States)
| | - Joshua M. Lang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin, WI 53705 (United States)
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 (United States)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792 (United States)
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin, WI 53705 (United States)
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 (United States)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792 (United States)
- Corresponding Author:
| |
Collapse
|
15
|
Heninger E, Krueger TEG, Thiede SM, Sperger JM, Byers BL, Kircher MR, Kosoff D, Yang B, Jarrard DF, McNeel DG, Lang JM. Inducible expression of cancer-testis antigens in human prostate cancer. Oncotarget 2018; 7:84359-84374. [PMID: 27769045 PMCID: PMC5341296 DOI: 10.18632/oncotarget.12711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
Immune tolerance to self-antigens can limit robust anti-tumor immune responses in the use of tumor vaccines. Expression of novel tumor associated antigens can improve immune recognition and lysis of tumor cells. The cancer-testis antigen (CTA) family of proteins has been hypothesized to be an ideal class of antigens due to tumor-restricted expression, a subset of which have been found to induce antibody responses in patients with prostate disease. We demonstrate that CTA expression is highly inducible in five different Prostate Cancer (PC) cell lines using a hypomethylating agent 5-Aza-2′-deoxycytidine (5AZA) and/or a histone deacetylase inhibitor LBH589. These CTAs include NY-ESO1, multiple members of the MAGE and SSX families and NY-SAR35. A subset of CTAs is synergistically induced by the combination of 5AZA and LBH589. We developed an ex vivo organ culture using human PC biopsies for ex vivo drug treatments to evaluate these agents in clinical samples. These assays found significant induction of SSX2 in 9/9 distinct patient samples and NY-SAR35 in 7/9 samples. Further, we identify expression of SSX2 in circulating tumor cells (CTC) from patients with advanced PC. These results indicate that epigenetic modifying agents can induce expression of a broad range of neoantigens in human PC and may serve as a useful adjunctive therapy with novel tumor vaccines and checkpoint inhibitors.
Collapse
Affiliation(s)
- Erika Heninger
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Timothy E G Krueger
- University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Stephanie M Thiede
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Jamie M Sperger
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Brianna L Byers
- University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Madison R Kircher
- University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Bing Yang
- Department of Urology, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - David F Jarrard
- Department of Urology, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Chan K, Wong PY, Parikh C, Wong S. Moving toward rapid and low-cost point-of-care molecular diagnostics with a repurposed 3D printer and RPA. Anal Biochem 2018; 545:4-12. [PMID: 29339059 DOI: 10.1016/j.ab.2018.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Traditionally, the majority of nucleic acid amplification-based molecular diagnostic tests are done in centralized settings. In recent years, point-of-care tests have been developed for use in low-resource settings away from central laboratories. While most experts agree that point-of-care molecular tests are greatly needed, their availability as cost-effective and easy-to-operate tests remains an unmet goal. In this article, we discuss our efforts to develop a recombinase polymerase amplification reaction-based test that will meet these criteria. First, we describe our efforts in repurposing a low-cost 3D printer as a platform that can carry out medium-throughput, rapid, and high-performing nucleic acid extraction. Next, we address how these purified templates can be rapidly amplified and analyzed using the 3D printer's heated bed or the deconstructed, low-cost thermal cycler we have developed. In both approaches, real-time isothermal amplification and detection of template DNA or RNA can be accomplished using a low-cost portable detector or smartphone camera. Last, we demonstrate the capability of our technologies using foodborne pathogens and the Zika virus. Our low-cost approach does not employ complicated and high-cost components, making it suitable for resource-limited settings. When integrated and commercialized, it will offer simple sample-to-answer molecular diagnostics.
Collapse
Affiliation(s)
- Kamfai Chan
- AI Biosciences, Inc., College Station, TX 77845, USA
| | - Pui-Yan Wong
- AI Biosciences, Inc., College Station, TX 77845, USA
| | | | - Season Wong
- AI Biosciences, Inc., College Station, TX 77845, USA.
| |
Collapse
|
17
|
Zhou Z, Chen D, Wang X, Jiang J. Milling Positive Master for Polydimethylsiloxane Microfluidic Devices: The Microfabrication and Roughness Issues. MICROMACHINES 2017; 8:E287. [PMID: 30400477 PMCID: PMC6190291 DOI: 10.3390/mi8100287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022]
Abstract
We provide a facile and low-cost method (F-L) to fabricate a two-dimensional positive master using a milling technique for polydimethylsiloxane (PDMS)-based microchannel molding. This method comprises the following steps: (1) a positive microscale master of the geometry is milled on to an acrylic block; (2) pre-cured PDMS is used to mold the microscale positive master; (3) the PDMS plate is peeled off from the master and punctured with a blunt needle; and (4) the PDMS plate is O₂ plasma bonded to a glass slide. Using this technique, we can fabricate microchannels with very simple protocols quickly and inexpensively. This method also avoids breakage of the end mill (ϕ = 0.4 mm) of the computerized numerical control (CNC) system when fabricating the narrow channels (width < 50 µm). The prominent surface roughness of the milled bottom-layer could be overcomed by pre-cured PDMS with size trade-off in design. Finally, emulsion formation successfully demonstrates the validity of the proposed fabrication protocol. This work represents an important step toward the use of a milling technique for PDMS-based microfabrication.
Collapse
Affiliation(s)
- Zhizhi Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Dong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Jiahuan Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, China.
| |
Collapse
|
18
|
Scherr TF, Markwalter CF, Bauer WS, Gasperino D, Wright DW, Haselton FR. Application of mass transfer theory to biomarker capture by surface functionalized magnetic beads in microcentrifuge tubes. Adv Colloid Interface Sci 2017; 246:275-288. [PMID: 28595937 DOI: 10.1016/j.cis.2017.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Abstract
In many diagnostic assays, specific biomarker extraction and purification from a patient sample is performed in microcentrifuge tubes using surface-functionalized magnetic beads. Although assay binding times are known to be highly dependent on sample viscosity, sample volume, capture reagent, and fluid mixing, the theoretical mass transport framework that has been developed and validated in engineering has yet to be applied in this context. In this work, we adapt this existing framework for simultaneous mass transfer and surface reaction and apply it to the binding of biomarkers in clinical samples to surface-functionalized magnetic beads. We discuss the fundamental fluid dynamics of vortex mixing within microcentrifuge tubes as well as describe how particles and biomolecules interact with the fluid. The model is solved over a wide range of parameters, and we present scenarios when a simplified analytical expression would be most accurate. Next, we review of some relevant techniques for model parameter estimation. Finally, we apply the mass transfer theory to practical use-case scenarios of immediate use to clinicians and assay developers. Throughout, we highlight where further characterization is necessary to bridge the gap between theory and practical application.
Collapse
|
19
|
Tokar JJ, Warrick JW, Guckenberger DJ, Sperger JM, Lang JM, Ferguson JS, Beebe DJ. Interrogating Bronchoalveolar Lavage Samples via Exclusion-Based Analyte Extraction. SLAS Technol 2017; 22:348-357. [PMID: 28298147 DOI: 10.1177/2472630317696780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although average survival rates for lung cancer have improved, earlier and better diagnosis remains a priority. One promising approach to assisting earlier and safer diagnosis of lung lesions is bronchoalveolar lavage (BAL), which provides a sample of lung tissue as well as proteins and immune cells from the vicinity of the lesion, yet diagnostic sensitivity remains a challenge. Reproducible isolation of lung epithelia and multianalyte extraction have the potential to improve diagnostic sensitivity and provide new information for developing personalized therapeutic approaches. We present the use of a recently developed exclusion-based, solid-phase-extraction technique called SLIDE (Sliding Lid for Immobilized Droplet Extraction) to facilitate analysis of BAL samples. We developed a SLIDE protocol for lung epithelial cell extraction and biomarker staining of patient BALs, testing both EpCAM and Trop2 as capture antigens. We characterized captured cells using TTF1 and p40 as immunostaining biomarkers of adenocarcinoma and squamous cell carcinoma, respectively. We achieved up to 90% (EpCAM) and 84% (Trop2) extraction efficiency of representative tumor cell lines. We then used the platform to process two patient BAL samples in parallel within the same sample plate to demonstrate feasibility and observed that Trop2-based extraction potentially extracts more target cells than EpCAM-based extraction.
Collapse
Affiliation(s)
- Jacob J Tokar
- 1 University of Wisconsin Madison, Madison, WI, USA.,2 UW Carbone Cancer Center, Madison, WI, USA
| | - Jay W Warrick
- 1 University of Wisconsin Madison, Madison, WI, USA.,2 UW Carbone Cancer Center, Madison, WI, USA
| | - David J Guckenberger
- 1 University of Wisconsin Madison, Madison, WI, USA.,2 UW Carbone Cancer Center, Madison, WI, USA
| | - Jamie M Sperger
- 1 University of Wisconsin Madison, Madison, WI, USA.,2 UW Carbone Cancer Center, Madison, WI, USA
| | - Joshua M Lang
- 1 University of Wisconsin Madison, Madison, WI, USA.,2 UW Carbone Cancer Center, Madison, WI, USA
| | - J Scott Ferguson
- 1 University of Wisconsin Madison, Madison, WI, USA.,2 UW Carbone Cancer Center, Madison, WI, USA
| | - David J Beebe
- 1 University of Wisconsin Madison, Madison, WI, USA.,2 UW Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
20
|
Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform. Appl Environ Microbiol 2017; 83:AEM.02449-16. [PMID: 27986722 PMCID: PMC5288812 DOI: 10.1128/aem.02449-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/19/2016] [Indexed: 01/29/2023] Open
Abstract
An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. IMPORTANCE This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing.
Collapse
|
21
|
Sperger JM, Strotman LN, Welsh A, Casavant BP, Chalmers Z, Horn S, Heninger E, Thiede SM, Tokar J, Gibbs BK, Guckenberger DJ, Carmichael L, Dehm SM, Stephens PJ, Beebe DJ, Berry SM, Lang JM. Integrated Analysis of Multiple Biomarkers from Circulating Tumor Cells Enabled by Exclusion-Based Analyte Isolation. Clin Cancer Res 2016; 23:746-756. [PMID: 27401243 DOI: 10.1158/1078-0432.ccr-16-1021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/26/2016] [Accepted: 06/25/2016] [Indexed: 12/28/2022]
Abstract
PURPOSE There is a critical clinical need for new predictive and pharmacodynamic biomarkers that evaluate pathway activity in patients treated with targeted therapies. A microscale platform known as VERSA (versatile exclusion-based rare sample analysis) was developed to integrate readouts across protein, mRNA, and DNA in circulating tumor cells (CTC) for a comprehensive analysis of the androgen receptor (AR) signaling pathway. EXPERIMENTAL DESIGN Utilizing exclusion-based sample preparation principles, a handheld chip was developed to perform CTC capture, enumeration, quantification, and subcellular localization of proteins and extraction of mRNA and DNA. This technology was validated across integrated endpoints in cell lines and a cohort of patients with castrate-resistant prostate cancer (CRPC) treated with AR-targeted therapies and chemotherapies. RESULTS The VERSA was validated in cell lines to analyze AR protein expression, nuclear localization, and gene expression targets. When applied to a cohort of patients, radiographic progression was predicted by the presence of multiple AR splice variants and activity in the canonical AR signaling pathway. AR protein expression and nuclear localization identified phenotypic heterogeneity. Next-generation sequencing with the FoundationOne panel detected copy number changes and point mutations. Longitudinal analysis of CTCs identified acquisition of multiple AR variants during targeted treatments and chemotherapy. CONCLUSIONS Complex mechanisms of resistance to AR-targeted therapies, across RNA, DNA, and protein endpoints, exist in patients with CRPC and can be quantified in CTCs. Interrogation of the AR signaling pathway revealed distinct patterns relevant to tumor progression and can serve as pharmacodynamic biomarkers for targeted therapies. Clin Cancer Res; 1-11. ©2016 AACR.
Collapse
Affiliation(s)
- Jamie M Sperger
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lindsay N Strotman
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Benjamin P Casavant
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Sacha Horn
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Erika Heninger
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephanie M Thiede
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jacob Tokar
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Benjamin K Gibbs
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - David J Guckenberger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lakeesha Carmichael
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Scott M Dehm
- Masonic Cancer Center and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | | | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Scott M Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
22
|
Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection. PLoS One 2016; 11:e0158502. [PMID: 27362424 PMCID: PMC4928953 DOI: 10.1371/journal.pone.0158502] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/16/2016] [Indexed: 12/29/2022] Open
Abstract
Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers.
Collapse
|
23
|
Berry SM, Pezzi HM, LaVanway AJ, Guckenberger D, Anderson M, Beebe DJ. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15040-5. [PMID: 27249333 PMCID: PMC5058634 DOI: 10.1021/acsami.6b02555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently "exclude" unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of "exclusion-based" sample preparation, which we term "AirJump". Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by "jumping" analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility.
Collapse
|
24
|
Mosley O, Melling L, Tarn MD, Kemp C, Esfahani MMN, Pamme N, Shaw KJ. Sample introduction interface for on-chip nucleic acid-based analysis of Helicobacter pylori from stool samples. LAB ON A CHIP 2016; 16:2108-15. [PMID: 27164181 DOI: 10.1039/c6lc00228e] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite recent advances in microfluidic-based integrated diagnostic systems, the sample introduction interface, especially with regards to large volume samples, has often been neglected. We present a sample introduction interface that allows direct on-chip processing of crude stool samples for the detection of Helicobacter pylori (H. pylori). The principle of IFAST (immiscible filtration assisted by surface tension) was adapted to include a large volume sample chamber with a septum-based interface for stool sample introduction. Solid chaotropic salt and dry superparamagnetic particles (PMPs) could be stored on-chip and reconstituted upon sample addition, simplifying the process of release of DNA from H. pylori cells and its binding to the PMPs. Finally, the PMPs were pulled via a magnet through a washing chamber containing an immiscible oil solution and into an elution chamber where the DNA was released into aqueous media for subsequent analysis. The entire process required only 7 min while enabling a 40-fold reduction in working volume from crude biological samples. The combination of a real-world interface and rapid DNA extraction offers the potential for the methodology to be used in point-of-care (POC) devices.
Collapse
Affiliation(s)
- O Mosley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - L Melling
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - M D Tarn
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - C Kemp
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - M M N Esfahani
- School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - N Pamme
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - K J Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
25
|
DNA recovery from a single bacterial cell using charge-reversible magnetic nanoparticles. Colloids Surf B Biointerfaces 2016; 139:117-22. [DOI: 10.1016/j.colsurfb.2015.11.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 11/18/2022]
|
26
|
Scherr TF, Ryskoski HB, Doyle AB, Haselton FR. A two-magnet strategy for improved mixing and capture from biofluids. BIOMICROFLUIDICS 2016; 10:024118. [PMID: 27158286 PMCID: PMC4833749 DOI: 10.1063/1.4946014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/30/2016] [Indexed: 05/25/2023]
Abstract
Magnetic beads are a popular method for concentrating biomolecules from solution and have been more recently used in multistep pre-arrayed microfluidic cartridges. Typical processing strategies rely on a single magnet, resulting in a tight cluster of beads and requiring long incubation times to achieve high capture efficiencies, especially in highly viscous patient samples. This report describes a two-magnet strategy to improve the interaction of the bead surface with the surrounding fluid inside of a pre-arrayed, self-contained assay-in-a-tube. In the two-magnet system, target biomarker capture occurs at a rate three times faster than the single-magnet system. In clinically relevant biomatrices, we find a 2.5-fold improvement in biomarker capture at lower sample viscosities with the two-magnet system. In addition, we observe a 20% increase in the amount of protein captured at high viscosity for the two-magnet configuration relative to the single magnet approach. The two-magnet approach offers a means to achieve higher biomolecule extraction yields and shorter assay times in magnetic capture assays and in self-contained processor designs.
Collapse
Affiliation(s)
- Thomas F Scherr
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| | - Hayley B Ryskoski
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| | - Andrew B Doyle
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| | - Frederick R Haselton
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| |
Collapse
|
27
|
Affiliation(s)
- Sheng Tang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hong Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hian Kee Lee
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering
Drive 1, Singapore 117411, Singapore
- Tropical
Marine Science Institute, National University of Singapore, S2S, 18
Kent Ridge Road, Singapore 119227, Singapore
| |
Collapse
|
28
|
Maeda Y, Toyoda T, Tanaka M, Mogi T, Taguchi T, Tanaami T, Matsunaga T, Tanaka T. Reprint of: DNA recovery from a single bacterial cell based on electrostatic interaction using amine dendron-modified magnetic nanoparticles. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. LAB ON A CHIP 2015; 15:2364-78. [PMID: 25906246 PMCID: PMC4439323 DOI: 10.1039/c5lc00234f] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This tutorial review offers protocols, tips, insight, and considerations for practitioners interested in using micromilling to create microfluidic devices. The objective is to provide a potential user with information to guide them on whether micromilling would fill a specific need within their overall fabrication strategy. Comparisons are made between micromilling and other common fabrication methods for plastics in terms of technical capabilities and cost. The main discussion focuses on "how-to" aspects of micromilling, to enable a user to select proper equipment and tools, and obtain usable microfluidic parts with minimal start-up time and effort. The supplementary information provides more extensive discussion on CNC mill setup, alignment, and programming. We aim to reach an audience with minimal prior experience in milling, but with strong interests in fabrication of microfluidic devices.
Collapse
Affiliation(s)
- David J Guckenberger
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
30
|
Maeda Y, Toyoda T, Tanaka M, Mogi T, Taguchi T, Tanaami T, Matsunaga T, Tanaka T. DNA recovery from a single bacterial cell based on electrostatic interaction using amine dendron-modified magnetic nanoparticles. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Recent advances and current issues in single-cell sequencing of tumors. Cancer Lett 2015; 365:1-10. [PMID: 26003306 DOI: 10.1016/j.canlet.2015.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/28/2022]
Abstract
Intratumoral heterogeneity is a recently recognized but important feature of cancer that underlies the various biocharacteristics of cancer tissues. The advent of next-generation sequencing technologies has facilitated large scale capture of genomic data, while the recent development of single-cell sequencing has allowed for more in-depth studies into the complex molecular mechanisms of intratumoral heterogeneity. In this review, the recent advances and current challenges in single-cell sequencing methodologies are discussed, highlighting the potential power of these data to provide insights into oncological processes, from tumorigenesis through progression to metastasis and therapy resistance.
Collapse
|
32
|
Berry SM, Singh C, Lang JD, Strotman LN, Alarid ET, Beebe DJ. Streamlining gene expression analysis: integration of co-culture and mRNA purification. Integr Biol (Camb) 2014; 6:224-31. [PMID: 24413730 DOI: 10.1039/c3ib40136g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Co-culture of multiple cell types within a single device enables the study of paracrine signaling events. However, extracting gene expression endpoints from co-culture experiments is laborious, due in part to pre-PCR processing of the sample (i.e., post-culture cell sorting and nucleic acid purification). Also, a significant loss of nucleic acid may occur during these steps, especially with microfluidic cell culture where lysate volumes are small and difficult to access. Here, we describe an integrated platform for performing microfluidic cell culture and extraction of mRNA for gene expression analysis. This platform was able to recover 30-fold more mRNA than a similar, non-integrated system. Additionally, using a breast cancer/bone marrow stroma co-culture, we recapitulated stromal-dependent, estrogen-independent growth of the breast cancer cells, coincident with transcriptional changes. We anticipate that this platform will be used for streamlined analysis of paracrine signaling events as well as for screening potential drugs and/or patient samples.
Collapse
Affiliation(s)
- Scott M Berry
- Departments of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Phurimsak C, Yildirim E, Tarn MD, Trietsch SJ, Hankemeier T, Pamme N, Vulto P. Phaseguide assisted liquid lamination for magnetic particle-based assays. LAB ON A CHIP 2014; 14:2334-2343. [PMID: 24832933 DOI: 10.1039/c4lc00139g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed a magnetic particle-based assay platform in which functionalised magnetic particles are transferred sequentially through laminated volumes of reagents and washing buffers. Lamination of aqueous liquids is achieved via the use of phaseguide technology; microstructures that control the advancing air-liquid interface of solutions as they enter a microfluidic chamber. This allows manual filling of the device, eliminating the need for external pumping systems, and preparation of the system requires only a few minutes. Here, we apply the platform to two on-chip strategies: (i) a one-step streptavidin-biotin binding assay, and (ii) a two-step C-reactive protein immunoassay. With these, we demonstrate how condensing multiple reaction and washing processes into a single step significantly reduces procedural times, with both assay procedures requiring less than 8 seconds.
Collapse
Affiliation(s)
- Chayakom Phurimsak
- Department of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Casavant B, Guckenberger DJ, Beebe DJ, Berry SM. Efficient sample preparation from complex biological samples using a sliding lid for immobilized droplet extractions. Anal Chem 2014; 86:6355-62. [PMID: 24927449 PMCID: PMC4079323 DOI: 10.1021/ac500574t] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/20/2014] [Indexed: 01/25/2023]
Abstract
Sample preparation is a major bottleneck in many biological processes. Paramagnetic particles (PMPs) are a ubiquitous method for isolating analytes of interest from biological samples and are used for their ability to thoroughly sample a solution and be easily collected with a magnet. There are three main methods by which PMPs are used for sample preparation: (1) removal of fluid from the analyte-bound PMPs, (2) removal of analyte-bound PMPs from the solution, and (3) removal of the substrate (with immobilized analyte-bound PMPs). In this paper, we explore the third and least studied method for PMP-based sample preparation using a platform termed Sliding Lid for Immobilized Droplet Extractions (SLIDE). SLIDE leverages principles of surface tension and patterned hydrophobicity to create a simple-to-operate platform for sample isolation (cells, DNA, RNA, protein) and preparation (cell staining) without the need for time-intensive wash steps, use of immiscible fluids, or precise pinning geometries. Compared to other standard isolation protocols using PMPs, SLIDE is able to perform rapid sample preparation with low (0.6%) carryover of contaminants from the original sample. The natural recirculation occurring within the pinned droplets of SLIDE make possible the performance of multistep cell staining protocols within the SLIDE by simply resting the lid over the various sample droplets. SLIDE demonstrates a simple easy to use platform for sample preparation on a range of complex biological samples.
Collapse
Affiliation(s)
| | | | - David J. Beebe
- Department of Biomedical
Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Scott M. Berry
- Department of Biomedical
Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
35
|
Single cell analysis of cancer genomes. Curr Opin Genet Dev 2014; 24:82-91. [PMID: 24531336 DOI: 10.1016/j.gde.2013.12.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022]
Abstract
Genomic studies have provided key insights into how cancers develop, evolve, metastasize and respond to treatment. Cancers result from an interplay between mutation, selection and clonal expansions. In solid tumours, this Darwinian competition between subclones is also influenced by topological factors. Recent advances have made it possible to study cancers at the single cell level. These methods represent important tools to dissect cancer evolution and provide the potential to considerably change both cancer research and clinical practice. Here we discuss state-of-the-art methods for the isolation of a single cell, whole-genome and whole-transcriptome amplification of the cell's nucleic acids, as well as microarray and massively parallel sequencing analysis of such amplification products. We discuss the strengths and the limitations of the techniques, and explore single-cell methodologies for future cancer research, as well as diagnosis and treatment of the disease.
Collapse
|
36
|
Berry SM, Chin EN, Jackson SS, Strotman LN, Goel M, Thompson NE, Alexander CM, Miyamoto S, Burgess RR, Beebe DJ. Weak protein-protein interactions revealed by immiscible filtration assisted by surface tension. Anal Biochem 2013; 447:133-40. [PMID: 24215910 DOI: 10.1016/j.ab.2013.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/25/2022]
Abstract
Biological mechanisms are often mediated by transient interactions between multiple proteins. The isolation of intact protein complexes is essential to understanding biochemical processes and an important prerequisite for identifying new drug targets and biomarkers. However, low-affinity interactions are often difficult to detect. Here, we use a newly described method called immiscible filtration assisted by surface tension (IFAST) to isolate proteins under defined binding conditions. This method, which gives a near-instantaneous isolation, enables significantly higher recovery of transient complexes compared to current wash-based protocols, which require reequilibration at each of several wash steps, resulting in protein loss. The method moves proteins, or protein complexes, captured on a solid phase through one or more immiscible-phase barriers that efficiently exclude the passage of nonspecific material in a single operation. We use a previously described polyol-responsive monoclonal antibody to investigate the potential of this new method to study protein binding. In addition, difficult-to-isolate complexes involving the biologically and clinically important Wnt signaling pathway were isolated. We anticipate that this simple, rapid method to isolate intact, transient complexes will enable the discoveries of new signaling pathways, biomarkers, and drug targets.
Collapse
Affiliation(s)
- Scott M Berry
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53705, USA.
| | - Emily N Chin
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Shawn S Jackson
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Lindsay N Strotman
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Mohit Goel
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nancy E Thompson
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Caroline M Alexander
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Shigeki Miyamoto
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Richard R Burgess
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53705, USA
| |
Collapse
|