1
|
Claesen J, Rockwood A, Gorshkov M, Valkenborg D. The isotope distribution: A rose with thorns. MASS SPECTROMETRY REVIEWS 2025; 44:22-42. [PMID: 36744702 PMCID: PMC11624904 DOI: 10.1002/mas.21820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 06/18/2023]
Abstract
The isotope distribution, which reflects the number and probabilities of occurrence of different isotopologues of a molecule, can be theoretically calculated. With the current generation of (ultra)-high-resolution mass spectrometers, the isotope distribution of molecules can be measured with high sensitivity, resolution, and mass accuracy. However, the observed isotope distribution can differ substantially from the expected isotope distribution. Although differences between the observed and expected isotope distribution can complicate the analysis and interpretation of mass spectral data, they can be helpful in a number of specific applications. These applications include, yet are not limited to, the identification of peptides in proteomics, elucidation of the elemental composition of small organic molecules and metabolites, as well as wading through peaks in mass spectra of complex bioorganic mixtures such as petroleum and humus. In this review, we give a nonexhaustive overview of factors that have an impact on the observed isotope distribution, such as elemental isotope deviations, ion sampling, ion interactions, electronic noise and dephasing, centroiding, and apodization. These factors occur at different stages of obtaining the isotope distribution: during the collection of the sample, during the ionization and intake of a molecule in a mass spectrometer, during the mass separation and detection of ionized molecules, and during signal processing.
Collapse
Affiliation(s)
- Jürgen Claesen
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit AmsterdamEpidemiology and Data ScienceAmsterdamThe Netherlands
- I‐Biostat, Data Science InstituteHasselt UniversityHasseltBelgium
| | - Alan Rockwood
- Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Mikhail Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical PhysicsRussian Academy of SciencesMoscowRussia
| | - Dirk Valkenborg
- I‐Biostat, Data Science InstituteHasselt UniversityHasseltBelgium
| |
Collapse
|
2
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
3
|
Ivanov DG, Cheung K, Kaltashov IA. Probing the Architecture of Multisubunit Protein Complexes with In-line Disulfide Reduction and Native MS Analysis. Anal Chem 2024; 96:8243-8248. [PMID: 38733603 DOI: 10.1021/acs.analchem.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Native mass spectrometry (MS) continues to enjoy growing popularity as a means of providing a wealth of information on noncovalent biopolymer assemblies ranging from composition and binding stoichiometry to characterization of the topology of these assemblies. The latter frequently relies on supplementing MS measurements with limited fragmentation of the noncovalent complexes in the gas phase to identify the pairs of neighboring subunits. While this approach has met with much success in the past two decades, its implementation remains difficult (and the success record relatively modest) within one class of noncovalent assemblies: protein complexes in which at least one binding partner has multiple subunits cross-linked by disulfide bonds. We approach this problem by inducing chemical reduction of disulfide bonds under nondenaturing conditions in solution followed by native MS analysis with online buffer exchange to remove unconsumed reagents that are incompatible with the electrospray ionization process. While this approach works well with systems comprised of thiol-linked subunits that remain stable upon reduction of the disulfide bridges (such as immunoglobulins), chemical reduction frequently gives rise to species that are unstable (prone to aggregation). This problem is circumvented by taking advantage of the recently introduced cross-path reactive chromatography platform (XPRC), which allows the disulfide reduction to be carried out in-line, thereby minimizing the loss of metastable protein subunits and their noncovalent complexes with the binding partners prior to MS analysis. The feasibility of this approach is demonstrated using hemoglobin complexes with haptoglobin 1-1, a glycoprotein consisting of four polypeptide chains cross-linked by disulfide bonds.
Collapse
Affiliation(s)
- Daniil G Ivanov
- Department of Chemistry, University of Massachusetts─Amherst, Amherst, Massachusetts 01002, United States
| | - Kevin Cheung
- Department of Chemistry, University of Massachusetts─Amherst, Amherst, Massachusetts 01002, United States
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts─Amherst, Amherst, Massachusetts 01002, United States
| |
Collapse
|
4
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Chapman EA, Li BH, Krichel B, Chan HJ, Buck KM, Roberts DS, Ge Y. Native Top-Down Mass Spectrometry for Characterizing Sarcomeric Proteins Directly from Cardiac Tissue Lysate. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:738-745. [PMID: 38422011 PMCID: PMC11098619 DOI: 10.1021/jasms.3c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Native top-down mass spectrometry (nTDMS) has emerged as a powerful structural biology tool that can localize post-translational modifications (PTMs), explore ligand-binding interactions, and elucidate the three-dimensional structure of proteins and protein complexes in the gas-phase. Fourier-transform ion cyclotron resonance (FTICR) MS offers distinct capabilities for nTDMS, owing to its ultrahigh resolving power, mass accuracy, and robust fragmentation techniques. Previous nTDMS studies using FTICR have mainly been applied to overexpressed recombinant proteins and protein complexes. Here, we report the first nTDMS study that directly analyzes human heart tissue lysate by direct infusion FTICR MS without prior chromatographic separation strategies. We have achieved comprehensive nTDMS characterization of cardiac contractile proteins that play critical roles in heart contraction and relaxation. Specifically, our results reveal structural insights into ventricular myosin light chain 2 (MLC-2v), ventricular myosin light chain 1 (MLC-1v), and alpha-tropomyosin (α-Tpm) in the sarcomere, the basic contractile unit of cardiac muscle. Furthermore, we verified the calcium (Ca2+) binding domain in MLC-2v. In summary, our nTDMS platform extends the application of FTICR MS to directly characterize the structure, PTMs, and metal-binding of endogenous proteins from heart tissue lysate without prior separation methods.
Collapse
Affiliation(s)
- Emily A. Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Brad H. Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Boris Krichel
- School of Life Sciences, University of Siegen, 57076, Germany
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kevin M. Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
6
|
Campuzano IDG. A Research Journey: Over a Decade of Denaturing and Native-MS Analyses of Hydrophobic and Membrane Proteins in Amgen Therapeutic Discovery. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2413-2431. [PMID: 37643331 DOI: 10.1021/jasms.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Membrane proteins and associated complexes currently comprise the majority of therapeutic targets and remain among the most challenging classes of proteins for analytical characterization. Through long-term strategic collaborations forged between industrial and academic research groups, there has been tremendous progress in advancing membrane protein mass spectrometry (MS) analytical methods and their concomitant application to Amgen therapeutic project progression. Herein, I will describe a detailed and personal account of how electrospray ionization (ESI) native mass spectrometry (nMS), ion mobility-MS (IM-MS), reversed phase liquid chromatographic mass spectrometry (RPLC-MS), high-throughput solid phase extraction mass spectrometry, and matrix-assisted laser desorption ionization mass spectrometry methods were developed, optimized, and validated within Amgen Research, and importantly, how these analytical methods were applied for membrane and hydrophobic protein analyses and ultimately therapeutic project support and progression. Additionally, I will discuss all the highly important and productive collaborative efforts, both internal Amgen and external academic, which were key in generating the samples, methods, and associated data described herein. I will also describe some early and previously unpublished nano-ESI (nESI) native-MS data from Amgen Research and the highly productive University of California Los Angeles (UCLA) collaboration. I will also present previously unpublished examples of real-life Amgen biotherapeutic membrane protein projects that were supported by all the MS (and IM) analytical techniques described herein. I will start by describing the initial nESI nMS experiments performed at Amgen in 2011 on empty nanodisc molecules, using a quadrupole time-of-flight MS, and how these experiments progressed on to the 15 Tesla Fourier transform ion cyclotron resonance MS at UCLA. Then described are monomeric and multimeric membrane protein data acquired in both nESI nMS and tandem-MS modes, using multiple methods of ion activation, resulting in dramatic spectral simplification. Also described is how we investigated the far less established and less published subject, that is denaturing RPLC-MS analysis of membrane proteins, and how we developed a highly robust and reproducible RPLC-MS method capable of effective separation of membrane proteins differing in only the presence or absence of an N-terminal post translational modification. Also described is the evolution of the aforementioned RPLC-MS method into a high-throughput solid phase extraction MS method. Finally, I will give my opinion on key developments and how the area of nMS of membrane proteins needs to evolve to a state where it can be applied within the biopharmaceutical research environment for routine therapeutic project support.
Collapse
Affiliation(s)
- Iain D G Campuzano
- Amgen Research, Center for Research Acceleration by Digital Innovation, Molecular Analytics, Thousand Oaks, California 91320, United States
| |
Collapse
|
7
|
Brandner S, Habeck T, Lermyte F. New Insights into the Intrinsic Electron-Based Dissociation Behavior of Cytochrome c Oligomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1908-1916. [PMID: 37227392 DOI: 10.1021/jasms.3c00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Between 2003 and 2017, four reports were published that demonstrated the intrinsic ability of the native iron-containing proteins cytochrome c and ferritin to undergo radical-based backbone fragmentation in the gas phase without the introduction of exogenous electrons. For cytochrome c in particular, this effect has so far only been reported to occur in the ion source, preventing the in-depth study of reactions occurring after gas-phase isolation of specific precursors. Here, we report the first observation of this intrinsic native electron capture dissociation behavior after quadrupole isolation of specific charge states of the cytochrome c dimer and trimer, providing direct experimental support for key aspects of the mechanism proposed 20 years ago. Furthermore, we provide evidence that, in contrast to some earlier proposals, these oligomeric states are formed in bulk solution rather than during the electrospray ionization process and that the observed fragmentation site preferences can be rationalized through the structure and interactions within these native oligomers rather than the monomer. We also show that the observed fragmentation pattern─and indeed, whether or not fragmentation occurs─is highly sensitive to the provenance and history of the protein samples, to the extent that samples can show distinct fragmentation behavior despite behaving identically in ion mobility experiments. This rather underexplored method therefore represents an exquisitely sensitive conformational probe and will hopefully receive more attention from the biomolecular mass spectrometry community in the future.
Collapse
Affiliation(s)
- Sarah Brandner
- Department of Chemistry, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Tanja Habeck
- Department of Chemistry, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Frederik Lermyte
- Department of Chemistry, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| |
Collapse
|
8
|
Gadkari VV, Juliano BR, Mallis CS, May JC, Kurulugama RT, Fjeldsted JC, McLean JA, Russell DH, Ruotolo BT. Performance evaluation of in-source ion activation hardware for collision-induced unfolding of proteins and protein complexes on a drift tube ion mobility-mass spectrometer. Analyst 2023; 148:391-401. [PMID: 36537590 PMCID: PMC10103148 DOI: 10.1039/d2an01452a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) has emerged as an information-rich technique for gas phase protein structure characterization; however, IM resolution is currently insufficient for the detection of subtle structural differences in large biomolecules. This challenge has spurred the development of collision-induced unfolding (CIU) which utilizes incremental gas phase activation to unfold a protein in order to expand the number of measurable descriptors available for native protein ions. Although CIU is now routinely used in native mass spectrometry studies, the interlaboratory reproducibility of CIU has not been established. Here we evaluate the reproducibility of the CIU data produced across three laboratories (University of Michigan, Texas A&M University, and Vanderbilt University). CIU data were collected for a variety of protein ions ranging from 8.6-66 kDa. Within the same laboratory, the CIU fingerprints were found to be repeatable with root mean square deviation (RMSD) values of less than 5%. Collision cross section (CCS) values of the CIU intermediates were consistent across the laboratories, with most features exhibiting an interlaboratory reproducibility of better than 1%. In contrast, the activation potentials required to induce protein CIU transitions varied between the three laboratories. To address these differences, three source assemblies were constructed with an updated ion activation hardware design utilizing higher mechanical tolerance specifications. The production-grade assemblies were found to produce highly consistent CIU data for intact antibodies, exhibiting high precision ion CCS and CIU transition values, thus opening the door to establishing databases of CIU fingerprints to support future biomolecular classification efforts.
Collapse
Affiliation(s)
- Varun V Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Christopher S Mallis
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
9
|
Takemori A, Takemori N. Sample preparation for structural mass spectrometry via polyacrylamide gel electrophoresis. Methods Enzymol 2023; 682:187-210. [PMID: 36948702 DOI: 10.1016/bs.mie.2022.08.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry is an analytical technique that can detect protein molecules with high sensitivity. Its use is not limited to the mere identification of protein components in biological samples, but is recently being utilized for large-scale analysis of protein structures in vivo as well. Top-down mass spectrometry with an ultra-high resolution mass spectrometer, for example, ionizes proteins in their intact state and allows rapid analysis of their chemical structure, which is used to determine proteoform profiles. Furthermore, cross-linking mass spectrometry, which analyzes enzyme-digested fragments of chemically cross-linked protein complexes, allows acquisition of conformational information on protein complexes in multimolecular crowding environments. In the analysis workflow of structural mass spectrometry, prior fractionation of crude biological samples is an effective way to obtain more detailed structural information. Polyacrylamide gel electrophoresis (PAGE), known as a simple and reproducible means of protein separation in biochemistry, is one example of an excellent high-resolution sample prefractionation tool for structural mass spectrometry. This chapter describes elemental technologies for PAGE-based sample prefractionation including Passively Eluting Proteins from Polyacrylamide gels as Intact species for Mass Spectrometry (PEPPI-MS), a highly efficient method for intact in-gel protein recovery, and Anion-Exchange disk-assisted Sequential sample Preparation (AnExSP), a rapid enzymatic digestion method using a solid-phase extraction microspin column for gel-recovered proteins, in addition to presenting detailed experimental protocols and examples of their use for structural mass spectrometry.
Collapse
Affiliation(s)
- Ayako Takemori
- Advanced Research Support Center, Institute for Promotion of Science and Technology, Ehime University, Toon, Japan
| | - Nobuaki Takemori
- Advanced Research Support Center, Institute for Promotion of Science and Technology, Ehime University, Toon, Japan.
| |
Collapse
|
10
|
Lantz C, Wei B, Zhao B, Jung W, Goring AK, Le J, Miller J, Loo RRO, Loo JA. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc 2022; 144:21826-21830. [PMID: 36441927 PMCID: PMC10017227 DOI: 10.1021/jacs.2c06726] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Native mass spectrometry (MS) of proteins and protein assemblies reveals size and binding stoichiometry, but elucidating structures to understand their function is more challenging. Native top-down MS (nTDMS), i.e., fragmentation of the gas-phase protein, is conventionally used to derive sequence information, locate post-translational modifications (PTMs), and pinpoint ligand binding sites. nTDMS also endeavors to dissociate covalent bonds in a conformation-sensitive manner, such that information about higher-order structure can be inferred from the fragmentation pattern. However, the activation/dissociation method used can greatly affect the resulting information on protein higher-order structure. Methods such as electron capture/transfer dissociation (ECD and ETD, or ExD) and ultraviolet photodissociation (UVPD) can produce product ions that are sensitive to structural features of protein complexes. For multi-subunit complexes, a long-held belief is that collisionally activated dissociation (CAD) induces unfolding and release of a subunit, and thus is not useful for higher-order structure characterization. Here we show not only that sequence information can be obtained directly from CAD of native protein complexes but that the fragmentation pattern can deliver higher-order structural information about their gas- and solution-phase structures. Moreover, CAD-generated internal fragments (i.e., fragments containing neither N-/C-termini) reveal structural aspects of protein complexes.
Collapse
Affiliation(s)
- Carter Lantz
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Boyu Zhao
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Wonhyeuk Jung
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Andrew K Goring
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Jessie Le
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Justin Miller
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, California 90095, United States.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, California 90095, United States.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Sharif D, Foroushani SH, Attanayake K, Dewasurendra VK, DeBastiani A, DeVor A, Johnson MB, Li P, Valentine SJ. Capillary Vibrating Sharp-Edge Spray Ionization Augments Field-Free Ionization Techniques to Promote Conformer Preservation in the Gas-Phase for Intractable Biomolecular Ions. J Phys Chem B 2022; 126:8970-8984. [PMID: 36318704 PMCID: PMC10278089 DOI: 10.1021/acs.jpcb.2c04960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Field-free capillary vibrating sharp-edge spray ionization (cVSSI) is evaluated for its ability to conduct native mass spectrometry (MS) experiments. The charge state distributions for nine globular proteins are compared using field-free cVSSI, field-enabled cVSSI, and electrospray ionization (ESI). In general, for both positive and negative ion mode, the average charge state (qavg) increases for field-free cVSSI with increasing molecular weight similar to ESI. A clear difference is that the qavg is significantly lower for field-free conditions in both analyses. Two proteins, leptin and thioredoxin, exhibit bimodal charge state distributions (CSDs) upon the application of voltage in positive ion mode; only a monomodal distribution is observed for field-free conditions. In negative ion mode, thioredoxin exhibits a multimodal CSD upon the addition of voltage to cVSSI. Extensive molecular dynamics (MD) simulations of myoglobin and leptin in nanodroplets suggest that the multimodal CSD for leptin may originate from increased conformational "breathing" (decreased packing) and association with the droplet surface. These properties along with increased droplet charge appear to play critical roles in shifting ionization processes for some proteins. Further exploration and development of field-free cVSSI as a new ionization source for native MS especially as applied to more flexible biomolecular species is warranted.
Collapse
Affiliation(s)
- Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Samira Hajian Foroushani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Vikum K Dewasurendra
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia26506, United States
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Matthew B Johnson
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia26506, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| |
Collapse
|
12
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
14
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
15
|
Tucholski T, Ge Y. Fourier-transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. MASS SPECTROMETRY REVIEWS 2022; 41:158-177. [PMID: 32894796 PMCID: PMC7936991 DOI: 10.1002/mas.21653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Proteoforms contribute functional diversity to the proteome and aberrant proteoforms levels have been implicated in biological dysfunction and disease. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with its ultrahigh mass-resolving power, mass accuracy, and versatile tandem MS capabilities, has empowered top-down, middle-down, and native MS-based approaches for characterizing proteoforms and their complexes in biological systems. Herein, we review the features which make FT-ICR MS uniquely suited for measuring proteoform mass with ultrahigh resolution and mass accuracy; obtaining in-depth proteoform sequence coverage with expansive tandem MS capabilities; and unambiguously identifying and localizing post-translational and noncovalent modifications. We highlight examples from our body of work in which we have quantified and comprehensively characterized proteoforms from cardiac and skeletal muscle to better understand conditions such as chronic heart failure, acute myocardial infarction, and sarcopenia. Structural characterization of monoclonal antibodies and their proteoforms by FT-ICR MS and emerging applications, such as native top-down FT-ICR MS and high-throughput top-down FT-ICR MS-based proteomics at 21 T, are also covered. Historically, the information gleaned from FT-ICR MS analyses have helped provide biological insights. We predict FT-ICR MS will continue to enable the study of proteoforms of increasing size from increasingly complex endogenous mixtures and facilitate the benchmarking of sensitive and specific assays for clinical diagnostics. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705
| |
Collapse
|
16
|
Towards understanding the formation of internal fragments generated by collisionally activated dissociation for top-down mass spectrometry. Anal Chim Acta 2022; 1194:339400. [PMID: 35063165 PMCID: PMC9088748 DOI: 10.1016/j.aca.2021.339400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022]
Abstract
Top-down mass spectrometry (TD-MS) generates fragment ions that returns information on the polypeptide amino acid sequence. In addition to terminal fragments, internal fragments that result from multiple cleavage events can also be formed. Traditionally, internal fragments are largely ignored due to a lack of available software to reliably assign them, mainly caused by a poor understanding of their formation mechanism. To accurately assign internal fragments, their formation process needs to be better understood. Here, we applied a statistical method to compare fragmentation patterns of internal and terminal fragments of peptides and proteins generated by collisionally activated dissociation (CAD). Internal fragments share similar fragmentation propensities with terminal fragments (e.g., enhanced cleavages N-terminal to proline and C-terminal to acidic residues), suggesting that their formation follows conventional CAD pathways. Internal fragments should be generated by subsequent cleavages of terminal fragments and their formation can be explained by the well-known mobile proton model. In addition, internal fragments can be coupled with terminal fragments to form complementary product ions that span the entire protein sequence. These enhance our understanding of internal fragment formation and can help improve sequencing algorithms to accurately assign internal fragments, which will ultimately lead to more efficient and comprehensive TD-MS analysis of proteins and proteoforms.
Collapse
|
17
|
Greisch JF, den Boer MA, Lai SH, Gallagher K, Bondt A, Commandeur J, Heck AJR. Extending Native Top-Down Electron Capture Dissociation to MDa Immunoglobulin Complexes Provides Useful Sequence Tags Covering Their Critical Variable Complementarity-Determining Regions. Anal Chem 2021; 93:16068-16075. [PMID: 34813704 PMCID: PMC8655740 DOI: 10.1021/acs.analchem.1c03740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Native top-down mass
spectrometry (MS) is gaining traction for
the analysis and sequencing of intact proteins and protein assemblies,
giving access to their mass and composition, as well as sequence information
useful for identification. Herein, we extend and apply native top-down
MS, using electron capture dissociation, to two submillion Da IgM-
and IgG-based oligomeric immunoglobulins. Despite structural similarities,
these two systems are quite different. The ∼895 kDa noncovalent
IgG hexamer consists of six IgG subunits hexamerizing in solution
due to three specifically engineered mutations in the Fc region, whereas
the ∼935 kDa IgM oligomer results from the covalent assembly
of one joining (J) chain and 5 IgM subunits into an asymmetric “pentamer”
stabilized by interchain disulfide bridges. Notwithstanding their
size, structural differences, and complexity, we observe that their
top-down electron capture dissociation spectra are quite similar and
straightforward to interpret, specifically providing informative sequence
tags covering the highly variable CDR3s and FR4s of the Ig subunits
they contain. Moreover, we show that the electron capture dissociation
fragmentation spectra of immunoglobulin oligomers are essentially
identical to those obtained for their respective monomers. Demonstrated
for recombinantly produced systems, the approach described here opens
up new prospects for the characterization and identification of IgMs
circulating in plasma, which is important since IgMs play a critical
role in the early immune response to pathogens such as viruses and
bacteria.
Collapse
Affiliation(s)
- Jean-Francois Greisch
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Szu-Hsueh Lai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kelly Gallagher
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan Commandeur
- MSVision, Televisieweg 40, 1322 AM Almere, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
18
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
19
|
Yang W, Tu Z, McClements DJ, Kaltashov IA. A systematic assessment of structural heterogeneity and IgG/IgE-binding of ovalbumin. Food Funct 2021; 12:8130-8140. [PMID: 34287434 DOI: 10.1039/d0fo02980g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ovalbumin (OVA), one of the major allergens in hen egg, exhibits extensive structural heterogeneity due to a range of post-translational modifications (PTMs). However, analyzing the structural heterogeneity of native OVA is challenging, and the relationship between heterogeneity and IgG/IgE-binding of OVA remains unclear. In this work, ion exchange chromatography (IXC) with salt gradient elution and on-line detection by native electrospray ionization mass spectrometry (ESI MS) was used to assess the structural heterogeneity of OVA, while inhibition-ELISA was used to assess the IgG/IgE binding characteristics of OVA. Over 130 different OVA proteoforms (including glycan-free species and 32 pairs of isobaric species) were identified. Proteoforms with acetylation, phosphorylation, oxidation and succinimide modifications had reduced IgG/IgE binding capacities, whereas those with few structural modifications had higher IgG/IgE binding capacities. OVA isoforms with a sialic acid-containing glycan modification had the highest IgG/IgE binding capacity. Our results demonstrate that on-line native IXC/MS with salt gradient elution can be used for rapid assessment of the structural heterogeneity of proteins. An improved understanding of the relationship between IgG/IgE binding capacity and OVA structure provides a basis for developing biotechnology or food processing methods for reducing protein allergenicity reduction.
Collapse
Affiliation(s)
- Wenhua Yang
- College of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, People's Republic of China.
| | | | | | | |
Collapse
|
20
|
Corbett JR, Robinson DE, Patrie SM. Robustness and Ruggedness of Isoelectric Focusing and Superficially Porous Liquid Chromatography with Fourier Transform Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:346-354. [PMID: 33274937 PMCID: PMC10476448 DOI: 10.1021/jasms.0c00355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An investigation of a multidimensional proteomics workflow composed of off-gel isoelectric focusing (IEF) and superficially porous liquid chromatography (SPLC) with Fourier transform mass spectrometry (FTMS) was completed in order to assess various figures of merit associated with intact protein measurements. Triplicate analysis performed at both high and low FTMS resolutions on the E. coli proteome resulted in ∼900 redundant proteoforms from 3 to 95 kDa. Normalization of the chromatographic axis to identified proteoforms enabled reproducible physicochemical property measurements between proteome replicates with inter-replicate variances of ±3 ppm mass error for proteoforms <30 kDa, ±1.1 Da for proteins >30 kDa, ±12 s retention time error, and ±0.21 pI units. The results for E. coli and standard proteins revealed a correlation between pI precision and proteoform abundance with species detected in multiple IEF fractions exhibiting pI precisions less than the theoretical resolution of the off-gel system (±0.05 vs ±0.17, respectively). Evaluation of differentially modified proteoforms of standard proteins revealed that high sample loads (100s μgrams) change the IEF pH gradient profile, leading to sample broadening that facilitates resolution of charged post-translational modifications (e.g., phosphorylation, sialylation). Despite the impact of sample load on IEF resolution, results on standard proteins measured directly or after being spiked into E. coli demonstrated that the reproducibility of the workflow permitted recombination of the MS signal across IEF fractions in a manner supporting the evaluation of three label-free quantitation metrics for intact protein studies (proteoforms, proteoform ratios, and protein) over 102-103 sample amount with low femtomole detection limits.
Collapse
Affiliation(s)
- John R Corbett
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
- Department of Bioengineering, UT Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Dana E Robinson
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Steven M Patrie
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|
21
|
McGee JP, Melani RD, Yip PF, Senko MW, Compton PD, Kafader JO, Kelleher NL. Isotopic Resolution of Protein Complexes up to 466 kDa Using Individual Ion Mass Spectrometry. Anal Chem 2020; 93:2723-2727. [PMID: 33322893 DOI: 10.1021/acs.analchem.0c03282] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Native mass spectrometry involves transferring large biomolecular complexes into the gas phase, enabling the characterization of their composition and stoichiometry. However, the overlap in distributions created by residual solvation, ionic adducts, and post-translational modifications creates a high degree of complexity that typically goes unresolved at masses above ∼150 kDa. Therefore, native mass spectrometry would greatly benefit from higher resolution approaches for intact proteins and their complexes. By recording mass spectra of individual ions via charge detection mass spectrometry, we report isotopic resolution for pyruvate kinase (232 kDa) and β-galactosidase (466 kDa), extending the limits of isotopic resolution for high mass and high m/z by >2.5-fold and >1.6-fold, respectively.
Collapse
Affiliation(s)
- John P McGee
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Ping F Yip
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Michael W Senko
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Philip D Compton
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Jared O Kafader
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Mehaffey MR, Xia Q, Brodbelt JS. Uniting Native Capillary Electrophoresis and Multistage Ultraviolet Photodissociation Mass Spectrometry for Online Separation and Characterization of Escherichia coli Ribosomal Proteins and Protein Complexes. Anal Chem 2020; 92:15202-15211. [PMID: 33156608 PMCID: PMC7788560 DOI: 10.1021/acs.analchem.0c03784] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With an overarching goal of characterizing the structure of every protein within a cell, identifying its interacting partners, and quantifying the dynamics of the states in which it exists, key developments are still necessary to achieve comprehensive native proteomics by mass spectrometry (MS). In practice, much work remains to optimize reliable online separation methods that are compatible with native MS and improve tandem MS (MS/MS) approaches with respect to when and how energy is deposited into proteins of interest. Herein, we utilize native capillary zone electrophoresis coupled with MS to characterize the proteoforms in the Escherichia coli 70S ribosome. The capabilities of 193 nm ultraviolet photodissociation (UVPD) to yield informative backbone sequence ions are compared to those of higher-energy collisional dissociation (HCD). To further improve sequence coverage values, a multistage MS/MS approach is implemented involving front-end collisional activation to disassemble protein complexes into constituent subunits that are subsequently individually isolated and activated by HCD or UVPD. In total, 48 of the 55 known E. coli ribosomal proteins are identified as 84 unique proteoforms, including 22 protein-metal complexes and 10 protein-protein complexes. Additionally, mapping metal-bound holo fragment ions resulting from UVPD of protein-metal complexes offers insight into the metal-binding sites.
Collapse
Affiliation(s)
- M Rachel Mehaffey
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Qiangwei Xia
- CMP Scientific Corporation, Brooklyn, New York, New York 11226, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Schneeberger EM, Halper M, Palasser M, Heel SV, Vušurović J, Plangger R, Juen M, Kreutz C, Breuker K. Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. Nat Commun 2020; 11:5750. [PMID: 33188169 PMCID: PMC7666190 DOI: 10.1038/s41467-020-19144-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
Nuclear export complexes composed of rev response element (RRE) ribonucleic acid (RNA) and multiple molecules of rev protein are promising targets for the development of therapeutic strategies against human immunodeficiency virus type 1 (HIV-1), but their assembly remains poorly understood. Using native mass spectrometry, we show here that rev initially binds to the upper stem of RRE IIB, from where it is relayed to binding sites that allow for rev dimerization. The newly discovered binding region implies initial rev recognition by nucleotides that are not part of the internal loop of RRE stem IIB RNA, which was previously identified as the preferred binding region. Our study highlights the unique capability of native mass spectrometry to separately study the binding interfaces of RNA/protein complexes of different stoichiometry, and provides a detailed understanding of the mechanism of RRE/rev association with implications for the rational design of potential drugs against HIV-1 infection.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Halper
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael Palasser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jovana Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Roche Diagnostics GmbH, 82377, Penzberg, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
24
|
Lodge JM, Schauer KL, Brademan DR, Riley NM, Shishkova E, Westphall MS, Coon JJ. Top-Down Characterization of an Intact Monoclonal Antibody Using Activated Ion Electron Transfer Dissociation. Anal Chem 2020; 92:10246-10251. [PMID: 32608969 DOI: 10.1021/acs.analchem.0c00705] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies (mAbs) are important therapeutic glycoproteins, but their large size and structural complexity make them difficult to rapidly characterize. Top-down mass spectrometry (MS) has the potential to overcome challenges of other common approaches by minimizing sample preparation and preserving endogenous modifications. However, comprehensive mAb characterization requires generation of many, well-resolved fragments and remains challenging. While ETD retains modifications and cleaves disulfide bonds-making it attractive for mAb characterization-it can be less effective for precursors having high m/z values. Activated ion electron transfer dissociation (AI-ETD) uses concurrent infrared photoactivation to promote product ion generation and has proven effective in increasing sequence coverage of intact proteins. Here, we present the first application of AI-ETD to mAb sequencing. For the standard NIST mAb, we observe a high degree of complementarity between fragments generated using standard ETD with a short reaction time and AI-ETD with a long reaction time. Most importantly, AI-ETD reveals disulfide-bound regions that have been intractable, thus far, for sequencing with top-down MS. We conclude AI-ETD has the potential to rapidly and comprehensively analyze intact mAbs.
Collapse
|
25
|
Cleary SP, Prell JS. Distinct classes of multi-subunit heterogeneity: analysis using Fourier Transform methods and native mass spectrometry. Analyst 2020; 145:4688-4697. [PMID: 32459233 PMCID: PMC8483610 DOI: 10.1039/d0an00726a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Native electrospray mass spectrometry is a powerful method for determining the native stoichiometry of many polydisperse multi-subunit biological complexes, including multi-subunit protein complexes and lipid-bound transmembrane proteins. However, when polydispersity results from incorporation of multiple copies of two or more different subunits, it can be difficult to analyze subunit stoichiometry using conventional mass spectrometry analysis methods, especially when m/z distributions for different charge states overlap in the mass spectrum. It was recently demonstrated by Marty and co-workers (K. K. Hoi, et al., Anal. Chem., 2016, 88, 6199-6204) that Fourier Transform (FT)-based methods can determine the bulk average lipid composition of protein-lipid Nanodiscs assembled with two different lipids, but a detailed statistical description of the composition of more general polydisperse two-subunit populations is still difficult to achieve. This results from the vast number of ways in which the two types of subunit can be distributed within the analyte ensemble. Here, we present a theoretical description of three common classes of heterogeneity for mixed-subunit analytes and demonstrate how to differentiate and analyze them using mass spectrometry and FT methods. First, we first describe FT-based analysis of mass spectra corresponding to simple superpositions, convolutions, and multinomial distributions for two or more different subunit types using model data sets. We then apply these principles with real samples, including mixtures of single-lipid Nanodiscs in the same solution (superposition), mixed-lipid Nanodiscs and copolymers (convolutions), and isotope distribution for ubiquitin (multinomial distribution). This classification scheme and the FT method used to study these analyte classes should be broadly useful in mass spectrometry as well as other techniques where overlapping, periodic signals arising from analyte mixtures are common.
Collapse
Affiliation(s)
- Sean P Cleary
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA.
| | | |
Collapse
|
26
|
Zhang Y, Tang Y, Tan C, Xu W. Toward Nanopore Electrospray Mass Spectrometry: Nanopore Effects in the Analysis of Bacteria. ACS CENTRAL SCIENCE 2020; 6:1001-1008. [PMID: 32607447 PMCID: PMC7318062 DOI: 10.1021/acscentsci.0c00622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 05/13/2023]
Abstract
The shape and structure analyses capability of nanopore is powerful and complementary to mass spectrometry analysis. It is extremely attractive but challenging to integrate these two techniques. The feasibility of combining nanopore electrospray with mass spectrometry was explored in this study. A nanopore effect was observed during the nano-electrospray of single bacterium, through which the shape and dimension of a single bacterium could be obtained. Molecular information on these bacteria was then acquired by analyzing these bacteria deposited on the counter electrode through laser spray ionization mass spectrometry experiments. Proof-of-concept experiments were carried out for four types of bacteria. Results show that the combination of nanopore results with mass spectrum data could effectively improve the identification accuracy of these bacteria from 72.5% to 100%. Although initial experiments were demonstrated in this work, results showed that it is feasible and promising to integrate nanopore technology with mass spectrometry for large biomolecule studies in the near future.
Collapse
Affiliation(s)
| | | | | | - Wei Xu
- . Web: http://www.escience.cn/people/weixu
| |
Collapse
|
27
|
Crittenden CM, Novelli ET, Mehaffey MR, Xu GN, Giles DH, Fies WA, Dalby KN, Webb LJ, Brodbelt JS. Structural Evaluation of Protein/Metal Complexes via Native Electrospray Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1140-1150. [PMID: 32275426 PMCID: PMC7386362 DOI: 10.1021/jasms.0c00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultraviolet photodissociation (UVPD) has emerged as a promising tool to characterize proteins with regard to not only their primary sequences and post-translational modifications, but also their tertiary structures. In this study, three metal-binding proteins, Staphylococcal nuclease, azurin, and calmodulin, are used to demonstrate the use of UVPD to elucidate metal-binding regions via comparisons between the fragmentation patterns of apo (metal-free) and holo (metal-bound) proteins. The binding of staphylococcal nuclease to calcium was evaluated, in addition to a series of lanthanide(III) ions which are expected to bind in a similar manner as calcium. On the basis of comparative analysis of the UVPD spectra, the binding region for calcium and the lanthanide ions was determined to extend from residues 40-50, aligning with the known crystal structure. Similar analysis was performed for both azurin (interrogating copper and silver binding) and calmodulin (four calcium binding sites). This work demonstrates the utility of UVPD methods for determining and analyzing the metal binding sites of a variety of classes of proteins.
Collapse
Affiliation(s)
| | - Elisa T Novelli
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Gulan N Xu
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - David H Giles
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Whitney A Fies
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712, United States
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | - Lauren J Webb
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
- Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
28
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
29
|
Chiu CKC, Lam YPY, Wootton CA, Barrow MP, Sadler PJ, O'Connor PB. Metallocomplex-Peptide Interactions Studied by Ultrahigh Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:594-601. [PMID: 31967804 DOI: 10.1021/jasms.9b00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The OsII arene anticancer complex [(η6-bip)Os(en)Cl]+ (Os1-Cl; where bip = biphenyl and en = ethylenediamine) binds strongly to DNA1 and biomolecules. Here we investigate the interaction between Os1-Cl and the model protein, BSA, using ultrahigh resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). The specific binding location of Os1 on BSA was investigated with the use of collisionally activated dissociation (CAD) and electron capture dissociation (ECD). CAD MS/MS was found to dissociate the osmium complex from the metallo-peptide complex readily producing unmodified fragments and losing location information. ECD MS/MS, however, successfully retains the osmium modification on the peptides upon fragmentation allowing localization of metallocomplex binding. This study reveals that lysine is a possible binding location for Os1-Cl, apart from the expected binding sites at methionine, histidine, and cysteine. Using a nano liquid chromatography (nLC)-FT-ICR ECD MS/MS study, multiple binding locations, including the N-terminus and C-terminus of digested peptides, glutamic acid, and lysine were also revealed. These results show the multitargeting binding ability of the organo-osmium compound and can be used as a standard workflow for more complex systems, e.g., metallocomplex-cell MS analysis, to evaluate their behavior toward commonly encountered biomolecules.
Collapse
Affiliation(s)
- Cookson K C Chiu
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yuko P Y Lam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Christopher A Wootton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
30
|
Han JY, Choi TS, Heo CE, Son MK, Kim HI. Gas-phase conformations of intrinsically disordered proteins and their complexes with ligands: Kinetically trapped states during transfer from solution to the gas phase. MASS SPECTROMETRY REVIEWS 2019; 38:483-500. [PMID: 31021441 DOI: 10.1002/mas.21596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Flexible structures of intrinsically disordered proteins (IDPs) are crucial for versatile functions in living organisms, which involve interaction with diverse partners. Electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) has been widely applied for structural characterization of apo-state and ligand-associated IDPs via two-dimensional separation in the gas phase. Gas-phase IDP structures have been regarded as kinetically trapped states originated from conformational features in solution. However, an implication of the states remains elusive in the structural characterization of IDPs, because it is unclear what structural property of IDPs is preserved. Recent studies have indicated that the conformational features of IDPs in solution are not fully reproduced in the gas phase. Nevertheless, the molecular interactions captured in the gas phase amplify the structural differences between IDP conformers. Therefore, an IDP conformational change that is not observed in solution is observable in the gas-phase structures obtained by ESI-IM-MS. Herein, we have presented up-to-date researches on the key implications of kinetically trapped states in the gas phase with a brief summary of the structural dynamics of IDPs in ESI-IM-MS.
Collapse
Affiliation(s)
- Jong Yoon Han
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Su Choi
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093
| | - Chae Eun Heo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
31
|
LI WF, YAN DW, JIN Y, LI HY, MA M, WU ZZ. Application of Mass Spectrometry in Analysis of Non-Enzymatic Glycation Proteins in Diabetic Blood. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Iacobucci C, Suder P, Bodzon‐Kulakowska A, Antolak A, Silberring J, Smoluch M, Mielczarek P, Grasso G, Pawlaczyk A, Szynkowska MI, Tuccitto N, Stefanowicz P, Szewczuk Z, Natale G. Instrumentation. Mass Spectrom (Tokyo) 2019. [DOI: 10.1002/9781119377368.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
33
|
Schachner LF, Ives AN, McGee JP, Melani RD, Kafader JO, Compton PD, Patrie SM, Kelleher NL. Standard Proteoforms and Their Complexes for Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1190-1198. [PMID: 30963455 PMCID: PMC6592724 DOI: 10.1007/s13361-019-02191-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 05/09/2023]
Abstract
Native mass spectrometry (nMS) is a technique growing at the interface of analytical chemistry, structural biology, and proteomics that enables the detection and partial characterization of non-covalent protein assemblies. Currently, the standardization and dissemination of nMS is hampered by technical challenges associated with instrument operation, benchmarking, and optimization over time. Here, we provide a standard operating procedure for acquiring high-quality native mass spectra of 30-300 kDa proteins using an Orbitrap mass spectrometer. By describing reproducible sample preparation, loading, ionization, and nMS analysis, we forward two proteoforms and three complexes as possible standards to advance training and longitudinal assessment of instrument performance. Spectral data for five standards can guide assessment of instrument parameters, data production, and data analysis. By introducing this set of standards and protocols, we aim to help normalize native mass spectrometry practices across labs and provide benchmarks for reproducibility and high-quality data production in the years ahead. Graphical abstract.
Collapse
Affiliation(s)
- Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Ashley N Ives
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - John P McGee
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Steven M Patrie
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, Evanston, IL, 60208, USA.
| |
Collapse
|
34
|
Lermyte F, Tsybin YO, O'Connor PB, Loo JA. Top or Middle? Up or Down? Toward a Standard Lexicon for Protein Top-Down and Allied Mass Spectrometry Approaches. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1149-1157. [PMID: 31073892 PMCID: PMC6591204 DOI: 10.1007/s13361-019-02201-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
In recent years, there has been increasing interest in top-down mass spectrometry (TDMS) approaches for protein analysis, driven both by technological advancements and efforts such as those by the multinational Consortium for Top-Down Proteomics (CTDP). Today, diverse sample preparation and ionization methods are employed to facilitate TDMS analysis of denatured and native proteins and their complexes. The goals of these studies vary, ranging from protein and proteoform identification, to determination of the binding site of a (non)covalently-bound ligand, and in some cases even with the aim to study the higher order structure of proteins and complexes. Currently, however, no widely accepted terminology exists to precisely and unambiguously distinguish between the different types of TDMS experiments that can be performed. Instead, ad hoc developed terminology is often used, which potentially complicates communication of top-down and allied methods and their results. In this communication, we consider the different types of top-down (or top-down-related) MS experiments that have been performed and reported, and define distinct categories based on the protocol used and type(s) of information that can be obtained. We also consider the different possible conventions for distinguishing between middle- and top-down MS, based on both sample preparation and precursor ion mass. We believe that the proposed framework presented here will prove helpful for researchers to communicate about TDMS and will be an important step toward harmonizing and standardizing this growing field. Graphical Abstract.
Collapse
Affiliation(s)
- Frederik Lermyte
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, David Geffen School of Medicine, and UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Griffiths RL, Konijnenberg A, Viner R, Cooper HJ. Direct Mass Spectrometry Analysis of Protein Complexes and Intact Proteins up to >70 kDa from Tissue. Anal Chem 2019; 91:6962-6966. [PMID: 31062957 PMCID: PMC7006965 DOI: 10.1021/acs.analchem.9b00971] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Native liquid extraction surface analysis (LESA) mass spectrometry allows direct analysis of folded proteins and protein complexes from biological substrates, such as dried blood spots and thin tissue sections, by use of native-like extraction/ionization solvents. Previously, we have demonstrated native LESA mass spectrometry of folded proteins up to 16 kDa as well as the 64 kDa hemoglobin tetramer, from mouse tissues. With denaturing LESA solvents, the highest mass protein detected in tissue to date is ∼37 kDa. Here, we demonstrate native LESA mass spectrometry by use of a Q Exactive UHMR Hybrid Quadrupole-Orbitrap (QE-UHMR) mass spectrometer, pushing the upper mass limit of proteins detected in tissue to >70 kDa. Moreover, a protein trimer of 42 kDa was detected and its stoichiometry confirmed by higher energy collision dissociation (HCD). The benefits of inclusion of detergents in the LESA sampling solvent are also demonstrated.
Collapse
Affiliation(s)
- Rian L Griffiths
- School of Biosciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - Albert Konijnenberg
- Thermo Fisher Scientific , Achtseweg Noord 5 , 5651 GG Eindhoven , The Netherlands
| | - Rosa Viner
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Helen J Cooper
- School of Biosciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| |
Collapse
|
36
|
Wang H, Eschweiler J, Cui W, Zhang H, Frieden C, Ruotolo BT, Gross ML. Native Mass Spectrometry, Ion Mobility, Electron-Capture Dissociation, and Modeling Provide Structural Information for Gas-Phase Apolipoprotein E Oligomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:876-885. [PMID: 30887458 PMCID: PMC6504607 DOI: 10.1007/s13361-019-02148-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 05/09/2023]
Abstract
Apolipoprotein E (apoE) is an essential protein in lipid and cholesterol metabolism. Although the three common isoforms in humans differ only at two sites, their consequences in Alzheimer's disease (AD) are dramatically different: only the ε4 allele is a major genetic risk factor for late-onset Alzheimer's disease. The isoforms exist as a mixture of oligomers, primarily tetramer, at low μM concentrations in a lipid-free environment. This self-association is involved in equilibrium with the lipid-free state, and the oligomerization interface overlaps with the lipid-binding region. Elucidation of apoE wild-type (WT) structures at an oligomeric state, however, has not yet been achieved. To address this need, we used native electrospray ionization and mass spectrometry (native MS) coupled with ion mobility (IM) to examine the monomer and tetramer of the three WT isoforms. Although collision-induced unfolding (CIU) cannot distinguish the WT isoforms, the monomeric mutant (MM) of apoE3 shows higher stability when submitted to CIU than the WT monomer. From ion-mobility measurements, we obtained the collision cross section and built a coarse-grained model for the tetramer. Application of electron-capture dissociation (ECD) to the tetramer causes unfolding starting from the C-terminal domain, in good agreement with solution denaturation data, and provides additional support for the C4 symmetry structure of the tetramer.
Collapse
Affiliation(s)
- Hanliu Wang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
- Analytical Research and Development, Pfizer Inc., Chesterfield, MO, 63017, USA
| | - Joseph Eschweiler
- Drug Product Development, Abbvie Inc., North Chicago, IL, 60064, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weidong Cui
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
- Pivotal Attribute Sciences, Amgen Inc., Cambridge, MA, 02142, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
- Pivotal Attribute Sciences, Amgen Inc., Cambridge, MA, 02142, USA
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
37
|
VanAernum ZL, Gilbert JD, Belov ME, Makarov AA, Horning SR, Wysocki VH. Surface-Induced Dissociation of Noncovalent Protein Complexes in an Extended Mass Range Orbitrap Mass Spectrometer. Anal Chem 2019; 91:3611-3618. [PMID: 30688442 PMCID: PMC6516482 DOI: 10.1021/acs.analchem.8b05605] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Native mass spectrometry continues to develop as a significant complement to traditional structural biology techniques. Within native mass spectrometry (MS), surface-induced dissociation (SID) has been shown to be a powerful activation method for the study of noncovalent complexes of biological significance. High-resolution mass spectrometers have become increasingly adapted to the analysis of high-mass ions and have demonstrated their importance in understanding how small mass changes can affect the overall structure of large biomolecular complexes. Herein we demonstrate the first adaptation of surface-induced dissociation in a modified high-mass-range, high-resolution Orbitrap mass spectrometer. The SID device was designed to be installed in the Q Exactive series of Orbitrap mass spectrometers with minimal disruption of standard functions. The performance of the SID-Orbitrap instrument has been demonstrated with several protein complex and ligand-bound protein complex systems ranging from 53 to 336 kDa. We also address the effect of ion source temperature on native protein-ligand complex ions as assessed by SID. Results are consistent with previous findings on quadrupole time-of-flight instruments and suggest that SID coupled to high-resolution MS is well-suited to provide information on the interface interactions within protein complexes and ligand-bound protein complexes.
Collapse
|
38
|
Nolting D, Malek R, Makarov A. Ion traps in modern mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:150-168. [PMID: 29084367 DOI: 10.1002/mas.21549] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
This review is devoted to trapping mass spectrometry wherein ions are confined by electromagnetic fields for prolonged periods of time within limited volume, with mass measurement taking place within the same volume. Three major types of trapping mass spectrometers are discussed, specifically radiofrequency ion trap, Fourier transform ion cyclotron resonance and Orbitrap. While these three branches are intricately interwoven with each other over their recent history, they also differ greatly in their fundamentals, roots and historical origin. This diversity is reflected also in the difference of viewpoints from which each of these directions is addressed in this review. Following the theme of the issue, we focus on developments mainly associated with the country of Germany but, at the same time, we use this review as an illustration of the rapidly increasing globalization of science and expanding multi-national collaborations.
Collapse
|
39
|
Cleary SP, Prell JS. Liberating Native Mass Spectrometry from Dependence on Volatile Salt Buffers by Use of Gábor Transform. Chemphyschem 2019; 20:519-523. [DOI: 10.1002/cphc.201900022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Sean P. Cleary
- Department of Chemistry and Biochemistry 1253 University of Oregon Eugene OR 97403-1253 USA
| | - James S. Prell
- Department of Chemistry and Biochemistry 1253 University of Oregon Eugene OR 97403-1253 USA
- Materials Science Institute 1252 University of Oregon Eugene OR 97403-1252 USA
| |
Collapse
|
40
|
Structural mass spectrometry comes of age: new insight into protein structure, function and interactions. Biochem Soc Trans 2019; 47:317-327. [DOI: 10.1042/bst20180356] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Abstract
Mass spectrometry (MS) provides an impressive array of information about the structure, function and interactions of proteins. In recent years, many new developments have been in the field of native MS and these exemplify a new coming of age of this field. In this mini review, we connect the latest methodological and instrumental developments in native MS to the new insights these have enabled. We highlight the prominence of an increasingly common strategy of using hybrid approaches, where multiple MS-based techniques are used in combination, and integrative approaches, where MS is used alongside other techniques such as ion-mobility spectrometry. We also review how the emergence of a native top-down approach, which combines native MS with top-down proteomics into a single experiment, is the pièce de résistance of structural mass spectrometry's coming of age. Finally, we outline key developments that have enabled membrane protein native MS to shift from being extremely challenging to routine, and how this technique is uncovering inaccessible details of membrane protein–lipid interactions.
Collapse
|
41
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
42
|
Busch F, Van Aernum ZL, Ju Y, Yan J, Gilbert JD, Quintyn RS, Bern M, Wysocki VH. Localization of Protein Complex Bound Ligands by Surface-Induced Dissociation High-Resolution Mass Spectrometry. Anal Chem 2018; 90:12796-12801. [PMID: 30299922 PMCID: PMC7307135 DOI: 10.1021/acs.analchem.8b03263] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-induced dissociation (SID) is a powerful means of deciphering protein complex quaternary structures due to its capability of yielding dissociation products that reflect the native structures of protein complexes in solution. Here we explore the suitability of SID to locate the ligand binding sites in protein complexes. We studied C-reactive protein (CRP) pentamer, which contains a ligand binding site within each subunit, and cholera toxin B (CTB) pentamer, which contains a ligand binding site between each adjacent subunit. SID dissects ligand-bound CRP into subcomplexes with each subunit carrying predominantly one ligand. In contrast, SID of ligand-bound CTB results in the generation of subcomplexes with a ligand distribution reflective of two subunits contributing to each ligand binding site. SID thus has potential application in localizing sites of small ligand binding for multisubunit protein-ligand complexes.
Collapse
Affiliation(s)
- Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zachary L. Van Aernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yue Ju
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Joshua D. Gilbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Royston S. Quintyn
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Marshall Bern
- Protein Metrics Inc., 20863 Stevens Creek Blvd., Suite 450, Cupertino, California 95014, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
43
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
44
|
Cleary SP, Li H, Bagal D, Loo JA, Campuzano IDG, Prell JS. Extracting Charge and Mass Information from Highly Congested Mass Spectra Using Fourier-Domain Harmonics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2067-2080. [PMID: 30003534 PMCID: PMC6330157 DOI: 10.1007/s13361-018-2018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 05/20/2023]
Abstract
Native mass spectra of large, polydisperse biomolecules with repeated subunits, such as lipoprotein Nanodiscs, can often be challenging to analyze by conventional methods. The presence of tens of closely spaced, overlapping peaks in these mass spectra can make charge state, total mass, or subunit mass determinations difficult to measure by traditional methods. Recently, we introduced a Fourier Transform-based algorithm that can be used to deconvolve highly congested mass spectra for polydisperse ion populations with repeated subunits and facilitate identification of the charge states, subunit mass, charge-state-specific, and total mass distributions present in the ion population. Here, we extend this method by investigating the advantages of using overtone peaks in the Fourier spectrum, particularly for mass spectra with low signal-to-noise and poor resolution. This method is illustrated for lipoprotein Nanodisc mass spectra acquired on three common platforms, including the first reported native mass spectrum of empty "large" Nanodiscs assembled with MSP1E3D1 and over 300 noncovalently associated lipids. It is shown that overtone peaks contain nearly identical stoichiometry and charge state information to fundamental peaks but can be significantly better resolved, resulting in more reliable reconstruction of charge-state-specific mass spectra and peak width characterization. We further demonstrate how these parameters can be used to improve results from Bayesian spectral fitting algorithms, such as UniDec. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sean P Cleary
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, 97403-1253, USA
| | - Huilin Li
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California, UCLA/DOE Institute for Genomics and Proteomics, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dhanashri Bagal
- Amgen Discovery Research, Amgen, Inc., 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California, UCLA/DOE Institute for Genomics and Proteomics, Los Angeles, Los Angeles, CA, 90095, USA
| | - Iain D G Campuzano
- Molecular Structure and Characterization, Amgen, Inc., Thousand Oaks, CA, 91320, USA
| | - James S Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, 97403-1253, USA.
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, 97403-1252, USA.
| |
Collapse
|
45
|
Wongkongkathep P, Han JY, Choi TS, Yin S, Kim HI, Loo JA. Native Top-Down Mass Spectrometry and Ion Mobility MS for Characterizing the Cobalt and Manganese Metal Binding of α-Synuclein Protein. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1870-1880. [PMID: 29951842 PMCID: PMC6087494 DOI: 10.1007/s13361-018-2002-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 05/22/2023]
Abstract
Structural characterization of intrinsically disordered proteins (IDPs) has been a major challenge in the field of protein science due to limited capabilities to obtain full-length high-resolution structures. Native ESI-MS with top-down MS was utilized to obtain structural features of protein-ligand binding for the Parkinson's disease-related protein, α-synuclein (αSyn), which is natively unstructured. Binding of heavy metals has been implicated in the accelerated formation of αSyn aggregation. Using high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, native top-down MS with various fragmentation methods, including electron capture dissociation (ECD), collisional activated dissociation (CAD), and multistage tandem MS (MS3), deduced the binding sites of cobalt and manganese to the C-terminal region of the protein. Ion mobility MS (IM-MS) revealed a collapse toward compacted states of αSyn upon metal binding. The combination of native top-down MS and IM-MS provides structural information of protein-ligand interactions for intrinsically disordered proteins. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jong Yoon Han
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Tae Su Choi
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Sheng Yin
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, UCLA Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
46
|
Crittenden CM, Morrison LJ, Fitzpatrick MD, Myers AP, Novelli ET, Rosenberg J, Akin LD, Srinivasa S, Shear JB, Brodbelt JS. Towards mapping electrostatic interactions between Kdo 2-lipid A and cationic antimicrobial peptides via ultraviolet photodissociation mass spectrometry. Analyst 2018; 143:3607-3618. [PMID: 29968868 PMCID: PMC6056329 DOI: 10.1039/c8an00652k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cationic antimicrobial peptides (CAMPs) have been known to act as multi-modal weapons against Gram-negative bacteria. As a new approach to investigate the nature of the interactions between CAMPs and the surfaces of bacteria, native mass spectrometry and two MS/MS strategies (ultraviolet photodissociation (UVPD) and higher energy collisional activation (HCD)) are used to examine formation and disassembly of saccharolipid·peptide complexes. Kdo2-lipid A (KLA) is used as a model saccharolipid to evaluate complexation with a series of cationic peptides (melittin and three analogs). Collisional activation of the KLA·peptide complexes results in the disruption of electrostatic interactions, resulting in apo-sequence ions with shifts in the distribution of ions compared to the fragmentation patterns of the apo-peptides. UVPD of the KLA·peptide complexes results in both apo- and holo-sequence ions of the peptides, the latter in which the KLA remains bound to the truncated peptide fragment despite cleavage of a covalent bond of the peptide backbone. Mapping both the N- and C-terminal holo-product ions gives insight into the peptide motifs (specifically an electropositive KRKR segment and a proline residue) that are responsible for mediating the electrostatic interactions between the cationic peptides and saccharolipid.
Collapse
Affiliation(s)
| | - Lindsay J Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Mignon D Fitzpatrick
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Allison P Myers
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Elisa T Novelli
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jake Rosenberg
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Lucas D Akin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Sorin Srinivasa
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jason B Shear
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
47
|
Top-down LC–MS quantitation of intact denatured and native monoclonal antibodies in biological samples. Bioanalysis 2018; 10:1039-1054. [DOI: 10.4155/bio-2017-0282] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: The requirements for developing antibody biotherapeutics benefit from understanding the nature and relevant aspects of the entire molecule. The method presented herein employs on-line multidimensional LC–quadrupole time-of-flight (QTOF)-MS for the quantitative determination of an antibody isolated from biological samples while maintaining the intact native biologically active conformation of the antibody. Results: Following method optimization for a model antibody, an incurred biotherapeutic in cynomologus monkey was quantified in its intact top-down native conformation. A partial method validation demonstrated acceptable precision and accuracy although improved sensitivity requires further studies. Conclusion: An on-line multidimensional LC–MS approach presents a proof-of-principle example for quantifying an intact, native antibody isolated from an incurred biological sample via immunoaffinity techniques coupled with top-down QTOF LC–MS bioanalysis.
Collapse
|
48
|
Rathore D, Faustino A, Schiel J, Pang E, Boyne M, Rogstad S. The role of mass spectrometry in the characterization of biologic protein products. Expert Rev Proteomics 2018; 15:431-449. [DOI: 10.1080/14789450.2018.1469982] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Deepali Rathore
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anneliese Faustino
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - John Schiel
- Biomolecular Measurement Division, National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Eric Pang
- Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Boyne
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
- COUR Pharmaceuticals Development Company, Northbrook, IL, USA
| | - Sarah Rogstad
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
49
|
How can native mass spectrometry contribute to characterization of biomacromolecular higher-order structure and interactions? Methods 2018; 144:3-13. [PMID: 29704661 DOI: 10.1016/j.ymeth.2018.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 01/16/2023] Open
Abstract
Native mass spectrometry (MS) is an emerging approach for characterizing biomacromolecular structure and interactions under physiologically relevant conditions. In native MS measurement, intact macromolecules or macromolecular complexes are directly ionized from a non-denaturing solvent, and key noncovalent interactions that hold the complexes together can be preserved for MS analysis in the gas phase. This technique provides unique multi-level structural information such as conformational changes, stoichiometry, topology and dynamics, complementing conventional biophysical techniques. Despite the maturation of native MS and greatly expanded range of applications in recent decades, further dissemination is needed to make the community aware of such a technique. In this review, we attempt to provide an overview of the current body of knowledge regarding major aspects of native MS and explain how such technique contributes to the characterization of biomacromolecular higher-order structure and interactions.
Collapse
|
50
|
Zhou M, Yan J, Romano CA, Tebo BM, Wysocki VH, Paša-Tolić L. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:723-733. [PMID: 29388167 PMCID: PMC7305857 DOI: 10.1007/s13361-017-1882-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 05/11/2023]
Abstract
Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA.
| |
Collapse
|