1
|
Traiphothon D, Awang T, Kuntip N, Japrung D, Pongprayoon P. How a mixture of microRNA-29a (miR-29a) and microRNA-144 (miR-144) cancer biomarkers interacts with a graphene quantum dot. J Mol Graph Model 2025; 134:108881. [PMID: 39418887 DOI: 10.1016/j.jmgm.2024.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
MicroRNAs (miRNAs) which are small non-coding RNAs have been reported to be potential cancer biomarker. However, it is difficult to extract such short RNA from a sample matrix. New effective strategies are required. Recently, graphene quantum dots (GQDs) have been used to detect nucleotides in many biosensor platforms, but their applications for miRNA extraction remain limited. GQD was reported to be able to collect short miRNA, but its performance to collect miRNAs with different structure remains unknown. Thus, in this work, the capability of GQD to interact with two different miRNAs is investigated. A mixture of hairpin-like miR-29a and circular miR-144 molecules are used as a representative of two miRNA morphologies. Two systems (a miRNA mixture, comprising 4 of miR-29a and 4 of miR-144, with (miR_GQD) and without GQD (miR)) were studied in comparison. MiRNAs in a mixture (miR) can aggregate, but no permanent miRNA assembly is captured. In contrast, the presence of GQD can rapidly and spontaneously activate the permanent miRNA/GQD clustering. This finding highlights the ability of GQD to be a miRNA collector. Interestingly, all GQD-bound miRNAs do not unfold. This allows the easy accessibility for probes. Also, nano-sized GQD seems to prefer hairpin miR-29a. The free 5' terminus of miR-29a acts as the sticky end to adhere on GQD. This work highlights the importance of RNA secondary structure on GQD/miRNA aggregation capability. An insight obtained here will be useful for further design of miRNA isolation strategies.
Collapse
Affiliation(s)
- Darunee Traiphothon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Tadsanee Awang
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, 12120, Thailand.
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studied in Nanotechnology for Chemical, Food, and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900 Thailand.
| |
Collapse
|
2
|
Kedir WM, Li L, Tan YS, Bajalovic N, Loke DK. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. J Mater Chem B 2024; 12:12141-12173. [PMID: 39502031 DOI: 10.1039/d4tb01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review explores the potential of biomolecule-based nanomaterials, i.e., protein, peptide, nucleic acid, and polysaccharide-based nanomaterials, in cancer nanomedicine. It highlights the wide range of design possibilities for creating multifunctional nanomedicines using these biomolecule-based nanomaterials. This review also analyzes the primary obstacles in cancer nanomedicine that can be resolved through the usage of nanomaterials based on biomolecules. It also examines the unique in vivo characteristics, programmability, and biological functionalities of these biomolecule-based nanomaterials. This summary outlines the most recent advancements in the development of two-dimensional semiconductor-based nanomaterials for cancer theranostic purposes. It focuses on the latest developments in molecular simulations and modelling to provide a clear understanding of important uses, techniques, and concepts of nanomaterials in drug delivery and synthesis processes. Finally, the review addresses the challenges in molecular simulations, and generating, analyzing, and developing biomolecule-based and two-dimensional semiconductor-based nanomaterials, and highlights the barriers that must be overcome to facilitate their application in clinical settings.
Collapse
Affiliation(s)
- Welela M Kedir
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
3
|
You LX, Zhong HL, Chen SR, Sun YN, Wu GK, Zhao MX, Hu SS, Alwathnani H, Herzberg M, Qin SF, Rensing C. Biosynthesis of silver nanoparticles using Burkholderia contaminans ZCC and mechanistic analysis at the proteome level. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116425. [PMID: 38723385 DOI: 10.1016/j.ecoenv.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag+ to AgNPs with a diameter of (10±5) nm inside the cell. Exposure of B. contaminans ZCC to Ag+ ions led to significant changes in the functional groups of cellular proteins, with approximately 5.72% of the (C-OH) bonds being converted to (C-C/C-H) (3.61%) and CO (2.11%) bonds, and 4.52% of the CO (carbonyl) bonds being converted to (C-OH) bonds. Furthermore, the presence of Ag+ and AgNPs induced the ability of extracellular electron transfer for ZCC cells via specific membrane proteins, but this did not occur in the absence of Ag+ ions. Proteomic analysis of the proteins and enzymes involved in heavy metal efflux systems, protein secretion system, oxidative phosphorylation, intracellular electron transfer chain, and glutathione metabolism suggests that glutathione S-transferase and ubiquinol-cytochrome c reductase iron-sulfur subunit play importance roles in the biosynthesis of AgNPs. These findings contribute to a deeper understanding of the functions exerted by glutathione S-transferase and ferredoxin-thioredoxin reductase iron-sulfur subunits in the biogenesis of AgNPs, thereby hold immense potential for optimizing biotechnological techniques aimed at enhancing the yield and purity of biosynthetic AgNPs.
Collapse
Affiliation(s)
- Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hong-Lin Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Si-Ru Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yi-Nan Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Gao-Kai Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Meng-Xin Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Shan-Shan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Su-Fang Qin
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, PR China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
4
|
Natmai S, Kuntip N, Japrung D, Pongprayoon P. The aggregation of multiple miR-29a cancer biomarkers induced by graphene quantum dots: Molecular dynamics simulations. J Mol Graph Model 2022; 116:108267. [PMID: 35849900 DOI: 10.1016/j.jmgm.2022.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a role in regulating gene expression. MiRNAs are focused on as potential cancer biomarkers due to their involvement in the cancer development. New effective techniques for extracting miRNA from a biological matrix is important. Recently, graphene quantum dots (GQDs) have been used to detect DNA/RNA in many sensor platforms, but the application in miRNA extraction remains limited. To extract miRNAs, the miRNA adsorption and desorption on GQD are the key. Thus, in this work, the adsorption mechanism of excess miRNA on GQD in solution is revealed using Molecular dynamics simulations. The miRNA assemblies on one and two GQDs were studied to explore the possibility of using GQD for miRNA extraction. The folded miR-29a molecule, one of key cancer biomarkers, is used as an miRNA model. Three systems with one (6miR) and two GQDs (with parallel (6miR_2GP) and sandwich (6miR_2GS) organisations) in six-miR-29a solution were set. The data show excess miR-29a can reduce the miR-29a-GQD binding efficiency. The opening of intrabase pairing of GQD-absorbed miR-29a facilitates the interbase coupling resulting in the self-aggregation of miR-29a. The GQD organisation also affects the miR-29a adsorption ability. The additional GQDs result in the tighter miR-29a adsorption which can retard the miR-29a desorption. The proper GQD concentration is thus important to successfully collect all miR-29a and accommodate the easy miR-29a dissociation. Our results can be useful for a design of DNA probe and choosing decent nanosized GRA concentration for experimental setups.
Collapse
Affiliation(s)
- Saowalak Natmai
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, 12120, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studied in Nanotechnology for Chemical, Food, and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
5
|
Chen W, He L, Song W, Huang J, Zhong N. Encapsulation of lipases by nucleotide/metal ion coordination polymers: enzymatic properties and their applications in glycerolysis and esterification studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4012-4024. [PMID: 34997576 DOI: 10.1002/jsfa.11749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the present study, lipases of TLL (lipase from Thermomyces lanuginosus), AOL (lipase from Aspergillus oryzae), RML (lipase from Rhizomucor miehei), BCL (lipase from Burkholderia cepacia), CALA (Candida antarctica lipase A) and LU (Lecitase® Ultra) were encapsulated into nucleotide-hybrid metal coordination polymers (CPs). Enzyme concentration was optimized for encapsulation and the enzymatic properties of the obtained lipases were investigated. In addition, their performance in glycerolysis and esterification was evaluated, and glycerolysis conditions (water content, temperature and time) were optimized. RESULTS Hydrolysis activity over 10 000 U g-1 and activity recovery over 90% were observed from AOL@GMP/Tb, TLL@GMP/Tb and RML@GMP/Tb. GMP/Tb encapsulation (of AOL, TLL, RML and LU) improved their thermostability when incubated in air. The encapsulated lipases exhibited moderate [triacylglycerols (TAG) conversion 30-50%] and considerable glycerolysis activity (TAG conversion over 60%). TAG conversions from 69.37% to 82.35% and diacylglycerols (DAG) contents from 58.62% to 64.88% were obtained from CALA@GMP/metal samples (except for CALA@GMP/Cu). Interestingly, none of the encapsulated lipases initiated the esterification reaction. AOL@GMP/Tb, TLL@GMP/Tb, RML@GMP/Tb and CALA@GMP/Tb showed good reusability in glycerolysis, with 88.80%, 94.67%, 89.85% and 78.16% of their initial glycerolysis activity, respectively, remaining after five cycles of reuse. The relationships between temperature and TAG conversion were LnV0 = 6.5364-3.7943/T and LnV0 = 13.8820-6.4684/T for AOL@GMP/Tb and CALA@GMP/Tb, respectively; in addition, their activation energies were 31.55 and 53.78 kJ mol-1 , respectively. CONCLUSION Most of the present encapsulated lipases exhibited moderate and considerable glycerolysis activity. In addition, AOL@GMP/Tb, TLL@GMP/Tb, RML@GMP/Tb and CALA@GMP/Tb exhibited good reusability in glycerolysis reactions and potential in practical applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenyi Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Lihong He
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Wenzhu Song
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Jianrong Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| |
Collapse
|
6
|
Han Q, Zhang X, Jia Y, Guo S, Zhu J, Luo S, Na N, Ouyang J. Synthesis and Characteristics of Self‐Assembled Multifunctional Ln
3+
‐DNA Hybrid Coordination Polymers. Chemistry 2022; 28:e202200281. [DOI: 10.1002/chem.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Qingzhi Han
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Xinlian Zhang
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yijing Jia
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Shaoshi Guo
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jiale Zhu
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Shirui Luo
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
7
|
Immel JR, Bloom S. carba-Nucleopeptides (cNPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205606. [PMID: 35507689 PMCID: PMC9256812 DOI: 10.1002/anie.202205606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 12/14/2022]
Abstract
Exchanging the ribose backbone of an oligonucleotide for a peptide can enhance its physiologic stability and nucleic acid binding affinity. Ordinarily, the eneamino nitrogen atom of a nucleobase is fused to the side chain of a polypeptide through a new C-N bond. The discovery of C-C linked nucleobases in the human transcriptome reveals new opportunities for engineering nucleopeptides that replace the traditional C-N bond with a non-classical C-C bond, liberating a captive nitrogen atom and promoting new hydrogen bonding and π-stacking interactions. We report the first late-stage synthesis of C-C linked carba-nucleopeptides (cNPs) using aqueous Rhodamine B photoredox catalysis. We prepare brand-new cNPs in batch, in parallel, and in flow using three long-wavelength photochemical setups. We detail the mechanism of our reaction by experimental and computational studies and highlight the essential role of diisopropylethylamine as a bifurcated two-electron reductant.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
8
|
Bağda E, Kızılyar Y, İnci ÖG, Ghaffarlou M, Barsbay M. One-pot modification of oleate-capped UCNPs with AS1411 G-quadruplex DNA in a fully aqueous medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Immel JR, Bloom S. carba
‐Nucleopeptides (
c
NPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jacob R. Immel
- Department of Medicinal Chemistry University of Kansas Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry University of Kansas Lawrence KS 66045 USA
| |
Collapse
|
10
|
Chen W, Xu L, Zhong N. Encapsulation of CALB by nucleotide/metal ions coordination nanoparticles: highly selective catalysis of esterification while poor performance in glycerolysis reaction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1812-1822. [PMID: 34460944 DOI: 10.1002/jsfa.11516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Enzymatic esterification is attracting for particular high-acid oil deacidification. In this study, Candida antarctica lipase B (CALB) was encapsulated into a series of nucleotide-hybrid metal coordination polymers (CPs), which were constructed by guanosine 5'-monophosphate (GMP) and various metals. RESULTS We here found that, most of the present CPs encapsulated CALB (CALB@CPs) samples were highly selective for esterification while poor in glycerolysis reaction. They exhibited quite poor performance in glycerolysis, with triacylglycerols (TAGs) conversion lower than 5%, despite this considerable enzymatic hydrolysis activities were observed. However, they (most of them) showed good performance in esterification of fatty acids and glycerol for TAG synthesis. In addition, the GMP/Tb (CPs constructed by GMP and Tb3+ ) encapsulated CALB (CALB@GMP/Tb) transformed over 98% of oleic acid into glycerides in the high-acid oil deacidification process, and TAG content from 87 to 89% was obtained. Moreover, the CALB@GMP/Tb showed good reusability in the esterification system. CONCLUSION The present CALB@CPs samples are selective for esterification and suitable for high-acid oils deacidification. This work provides a new system for enzymatic selectivity improvement study. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenyi Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| |
Collapse
|
11
|
Rai M, Ingle AP, Trzcińska-Wencel J, Wypij M, Bonde S, Yadav A, Kratošová G, Golińska P. Biogenic Silver Nanoparticles: What We Know and What Do We Need to Know? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2901. [PMID: 34835665 PMCID: PMC8624974 DOI: 10.3390/nano11112901] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Nanobiotechnology is considered to be one of the fastest emerging fields. It is still a relatively new and exciting area of research with considerable potential for development. Among the inorganic nanomaterials, biogenically synthesized silver nanoparticles (bio-AgNPs) have been frequently used due to their unique physicochemical properties that result not only from their shape and size but also from surface coatings of natural origin. These properties determine antibacterial, antifungal, antiprotozoal, anticancer, anti-inflammatory, and many more activities of bio-AgNPs. This review provides the current state of knowledge on the methods and mechanisms of biogenic synthesis of silver nanoparticles as well as their potential applications in different fields such as medicine, food, agriculture, and industries.
Collapse
Affiliation(s)
- Mahendra Rai
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444104, India;
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| | - Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| | - Shital Bonde
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Alka Yadav
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Gabriela Kratošová
- Nanotechnology Centre, CEET, VŠB–Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava Poruba, Czech Republic;
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| |
Collapse
|
12
|
Aptamer-based surface enhanced Raman spectroscopy (SERS) for the rapid detection of Salmonella Enteritidis contaminated in ground beef. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Kuntip N, Japrung D, Pongprayoon P. Modeling the Adsorption of the miR-29a Cancer Biomarker on a Graphene Quantum Dot. ACS OMEGA 2021; 6:21764-21772. [PMID: 34471778 PMCID: PMC8388069 DOI: 10.1021/acsomega.1c03404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/30/2021] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules associated with the regulation of gene expression in organisms. MiRNAs are focused on as potential cancer biomarkers due to their involvement in cancer development. New potential techniques for miRNA detection are rapidly developed, while there is a lack of effective extraction approaches, especially for miRNAs. Recently, graphene quantum dots (GQDs) have been involved in many disease biosensor platforms including miRNA detection, but no application in miRNA extraction is studied. To extract miRNAs, miRNA adsorption and desorption on GQDs are the key. Thus, in this work, the adsorption mechanism of miRNA on GQDs in solution is revealed using molecular dynamics simulations. The aim is to explore the possibility of using GQDs for miRNA extraction. The folded miR-29a molecule, one of the key cancer biomarkers, is used as a miRNA model. Two systems with one (1miR) and four (4miR) chains of miR-29a were set. MiR-29a molecules in all systems are simultaneously adsorbed on the GQD surface. Our finding highlights the ability of the GQD in collecting miRNAs in solution. In 1miR, the whole miR-29a chain sits on the GQD face, whereas all miR-29a molecules in 4miR show the "clamping" conformation. No "lying flat" orientation of miR-29a is observed due to the existence of the preserved hairpin region. Interestingly, the 5' end shows tighter binding than the 3' terminus. A design of complementary DNA with the recognition segment involving the sequences close to the 3' end can promote effective miR-29a desorption.
Collapse
Affiliation(s)
- Nattapon Kuntip
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National
Nanotechnology Center, National Science
and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
- . Phone:+66-2564-6665. Fax:+66-25647000
| | - Prapasiri Pongprayoon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- . Phone: +66-2562-5555. Fax:+66-2579-3955
| |
Collapse
|
14
|
Mikhailova EO. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J Funct Biomater 2020; 11:E84. [PMID: 33255874 PMCID: PMC7711612 DOI: 10.3390/jfb11040084] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
This review is devoted to the medical application of silver nanoparticles produced as a result of "green" synthesis using various living organisms (bacteria, fungi, plants). The proposed mechanisms of AgNPs synthesis and the action mechanisms on target cells are highlighted.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of innovation management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
15
|
Huang Z, Liu B, Liu J. A high local DNA concentration for nucleating a DNA/Fe coordination shell on gold nanoparticles. Chem Commun (Camb) 2020; 56:4208-4211. [PMID: 32168370 DOI: 10.1039/d0cc01418d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preparing DNA/Fe coordination nanoparticles in solution requires a high concentration of DNA. Herein we grew a DNA/Fe shell on DNA-functionalized gold nanoparticles. Taking advantage of the high local DNA density, the required DNA concentration decreased 60-fold, and the size can be controlled. This hybrid material allowed drug loading and colorimetric sensing.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
16
|
Xiao YP, Zhang J, Liu YH, Huang Z, Guo Y, Yu XQ. Bioinspired pyrimidine-containing cationic polymers as effective nanocarriers for DNA and protein delivery. J Mater Chem B 2020; 8:2275-2285. [PMID: 32100787 DOI: 10.1039/c9tb02528f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic polymers have shown great potential in the delivery of nucleic acids and proteins. In this study, a series of pyrimidine-based cationic polymers were synthesized via the Michael addition reaction from pyrimidine-based linkages and low molecular weight polyethyleneimine (PEI). The structure-activity relationship (SAR) of these materials in DNA and protein delivery was investigated. These materials could condense both DNA and protein into nanoparticles with proper sizes and zeta-potentials. In vitro experiments indicated that such polymers were efficient in transporting DNA and proteins into cells. Furthermore, the bioactivity of the genes and proteins encapsulated in these polymers were maintained during the delivery processes. Among the polymers, U-PEI600 synthesized from a uracil-containing linker and PEI 600 Da mediated comparable gene expression to PEI 25 kDa. Moreover, the activities of β-galactosidase delivered by U-PEI600 were well maintained after entering the cells. Evaluation using an immune response assay showed that the U-PEI600/OVA polyplex could stimulate greater production of immune factors with low cytotoxicity. Our study provides a strategy for the construction of cationic polymeric gene and cytosolic protein vectors with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yu Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
17
|
Zhang C, Sun G, Senapati S, Chang HC. A bifurcated continuous field-flow fractionation (BCFFF) chip for high-yield and high-throughput nucleic acid extraction and purification. LAB ON A CHIP 2019; 19:3853-3861. [PMID: 31621762 PMCID: PMC6982425 DOI: 10.1039/c9lc00818g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report a bifurcated continuous field-flow fractionation (BCFFF) chip for high-yield and high-throughput (20 min) extraction of nucleic acids from physiological samples. The design uses a membrane ionic transistor to sustain low-ionic strength in a localized region at a junction, such that the resulting high field can selectively isolate high-charge density nucleic acids from the main flow channel and insert them into a standardized buffer in a side channel that bifurcates from the junction. The high local electric field and the bifurcated field-flow design facilitate concentration reduction of both divalent cation (Ca2+) and molecular PCR inhibitors by more than two orders of magnitude, even with high-throughput continuous loading. The unique design with a large (>20 mM mm-1) on-chip ionic-strength gradient allows miniaturization into a high-throughput field-flow fractionation chip that can be integrated with upstream lysing and downstream PCR/sensor modules for various nucleic acid detection/quantification applications. A concentration-independent 85% yield for extraction and an overall post-PCR yield exceeding 60% are demonstrated for a 111 bp dsDNA in 10 μL of human plasma, compared to no amplification with the raw sample. A net yield four times larger than a commercial extraction kit is demonstrated for miR-39 in human plasma.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA and Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
18
|
Gao S, He L. Development of a filtration-based SERS mapping platform for specific screening of Salmonella enterica serovar Enteritidis. Anal Bioanal Chem 2019; 411:7899-7906. [PMID: 31745614 DOI: 10.1007/s00216-019-02204-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/12/2023]
Abstract
The presence of Salmonella in natural freshwater and drinking water is a leading cause of intestinal illness all over the world; thus, the detection of Salmonella in water is of great importance to public health. The objective of this study is to develop a rapid screening method for the detection of Salmonella enterica serovar Enteritidis in water involving surface-enhanced Raman spectroscopy (SERS), aptamers, and filtration. SERS offers a great alternative to traditional methods of pathogen detection, with a simplified detection assay and shortened detection time. The specific capturing and labeling of Salmonella Enteritidis are realized by a specific single-stranded DNA aptamer, which is modified with an additional chain of adenine and fluorescein (FAM) and used as presence/absence indicator of Salmonella Enteritidis. By incorporating a vacuum filtration system, bacterial cells recognized by the specific aptamer are concentrated onto a membrane. With additional filtration of gold nanoparticles, the aptamer signals were captured and used to construct a SERS mapping indicating the presence and absence of target bacterial strains with potential quantitative capability. The specificity of the method was validated by using other strains of bacteria such as Escherichia coli and Listeria monocytogenes. The sensitivity of the method goes down to 103 CFU/mL for 1 mL of sample with a total detection and analyzing time within 3 h. This study demonstrates the capability of the filtration-based SERS platform for detecting Salmonella Enteritidis in various aqueous matrices such as distilled water and rinsing water from fresh produce with high selectivity and sensitivity. Graphical abstract.
Collapse
Affiliation(s)
- Siyue Gao
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01002, USA
| | - Lili He
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01002, USA.
| |
Collapse
|
19
|
Coordination Nanoparticles Formed by Fluorescent 2-Aminopurine and Au3+: Stability and Nanozyme Activities. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00112-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Qiu H, Pu F, Liu Z, Deng Q, Sun P, Ren J, Qu X. Depriving Bacterial Adhesion-Related Molecule to Inhibit Biofilm Formation Using CeO 2 -Decorated Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902522. [PMID: 31328358 DOI: 10.1002/smll.201902522] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/19/2019] [Indexed: 06/10/2023]
Abstract
The formation of bacterial biofilm is one of the causes of antimicrobial resistance, often leading to persistent infections and a high fatality rate. Therefore, there is an urgent need to develop novel and effective strategies to inhibit biofilm formation. Adenosine triphosphate (ATP) plays an important role in bacterial adhesion and biofilm formation through stimulating cell lysis and extracellular DNA (eDNA) release. Herein, a simple and robust strategy for inhibiting biofilm formation is developed using CeO2 -decorated porphyrin-based metal-organic frameworks (MOFs). The function of extracellular ATP (eATP) can be inhibited by CeO2 nanoparticles, leading to the disruption of the initial adhesion of bacteria. Furthermore, planktonic bacteria can be killed by cytotoxic reactive oxygen species (ROS) generated by MOFs. As a consequence, the synergic effect of eATP deprivation and ROS generation presents excellent capacity to prevent biofilm formation, which may provide a new direction for designing flexible and effective biofilm-inhibiting systems.
Collapse
Affiliation(s)
- Hao Qiu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fang Pu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
| | - Zhengwei Liu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - QingQing Deng
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Panpan Sun
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
21
|
Liu Y, Liu J. Growing a Nucleotide/Lanthanide Coordination Polymer Shell on Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11217-11224. [PMID: 31379173 DOI: 10.1021/acs.langmuir.9b00677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coating liposomes with a shell is a useful strategy to increase membrane stability and prevent leakage or fusion. Nucleotide/lanthanide coordination nanoparticles (NPs) are formed by a simple mixing at ambient conditions. Because some lipid headgroups contain lanthanide binding ligands, they may direct the growth of such coordination NPs. Herein, a gadolinium/adenosine monophosphate (Gd3+/AMP) shell was formed on liposomes (liposome@Gd3+/AMP) using lipids containing phosphoserine (PS) or cholinephosphate (CP) headgroups, while phosphocholine liposomes did not support the shell. Liposome binding Gd3+ is confirmed by transmission electron microscopy (TEM). The negatively charged CP and PS liposomes reversed to positive upon Gd3+ binding, while other metals such as Ca2+ and Zn2+ did not reverse the charge. Binding of Gd3+ did not leak the PS liposomes. Then, AMP was further added to cross-link Gd3+ on the liposome surface. A shell was formed as indicated by TEM, and the content inside the liposome remained for the PS liposomes. While adding Triton X-100 still induced leakage of the encapsulated liposomes, the shell protected the liposomes from leakage induced by ZnO NPs, suggesting a porous structure of the Gd3+/AMP shell which allowed penetration of Triton X-100 but not the larger ZnO NPs. This work provides a simple method to coat liposomes, and also offers a fundamental understanding of liposome adsorption of lanthanide ions.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
22
|
He Y, Lopez A, Zhang Z, Chen D, Yang R, Liu J. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
He J, Sun S, Lu M, Yuan Q, Liu Y, Liang H. Metal-nucleobase hybrid nanoparticles for enhancing the activity and stability of metal-activated enzymes. Chem Commun (Camb) 2019; 55:6293-6296. [DOI: 10.1039/c9cc03155c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel strategy for enhancing the activity and stability of metal-activated enzyme methionine adenosyltransferase (MAT) by allosteric control and confinement of metal-nulceobase hybrid coordination.
Collapse
Affiliation(s)
- Jie He
- State key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Shanshan Sun
- State key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Mingzhu Lu
- State key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Qipeng Yuan
- State key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Yanhui Liu
- State key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Hao Liang
- State key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| |
Collapse
|
24
|
Zou T, Han Y, Li X, Li W, Zhang J, Fu Y. Unexpected catalytic activity of Pd(II)-coordinated nucleotides in hydrogenation reduction. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Wang SR, Wang JQ, Fu BS, Chen K, Xiong W, Wei L, Qing G, Tian T, Zhou X. Supramolecular Coordination-Directed Reversible Regulation of Protein Activities at Epigenetic DNA Marks. J Am Chem Soc 2018; 140:15842-15849. [DOI: 10.1021/jacs.8b09113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shao-Ru Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Jia-Qi Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China
| | - Kun Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Lai Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Tian Tian
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
26
|
Xu L, Zhang P, Liu Y, Fang X, Zhang Z, Liu Y, Peng L, Liu J. Continuously Tunable Nucleotide/Lanthanide Coordination Nanoparticles for DNA Adsorption and Sensing. ACS OMEGA 2018; 3:9043-9051. [PMID: 31459038 PMCID: PMC6644583 DOI: 10.1021/acsomega.8b01217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/07/2018] [Indexed: 05/02/2023]
Abstract
Metal-organic coordination polymers (CPs) have attracted great research interest because they are easy to prepare, porous, flexible in composition, and designable in structure. Their applications in biosensor development, drug delivery, and catalysis have been explored. Lanthanides and nucleotides can form interesting CPs, although most previous works have focused on a single type of metal ligand. In this work, we explored mixed nucleotides and studied their DNA adsorption properties using fluorescently labeled oligonucleotides. Adenosine monophosphate (AMP) and guanosine monophosphate (GMP) formed negatively charged CP nanoparticles with most lanthanides, and thus a salt was required to adsorb negatively charged DNA. DNA adsorption was faster and reached a higher capacity with lighter lanthanides. Desorption of pre-adsorbed DNA by inorganic phosphates, urea, proteins, surfactants, and competing DNA was successively carried out. The results suggested the importance of the DNA phosphate backbone, although hydrogen bonding and DNA bases also contributed to adsorption. The AMP CPs adsorbed DNA more strongly than the GMP ones, and using mixtures of AMP and GMP, continuous tuning of DNA adsorption affinity was achieved. Such CPs were also used as a sensor for DNA detection based on the different affinities of single- and double-stranded DNA, and a detection limit of 0.9 nM target DNA was achieved. Instead of tuning DNA adsorption by varying the length and sequence of DNA, the composition of CPs can also be controlled to achieve this goal.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry
and Chemical Engineering, Guangdong Pharmaceutical
University, Zhongshan 528458, P. R. China
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Peipei Zhang
- School of Chemistry
and Chemical Engineering, Guangdong Pharmaceutical
University, Zhongshan 528458, P. R. China
| | - Yan Liu
- School of Chemistry
and Chemical Engineering, Guangdong Pharmaceutical
University, Zhongshan 528458, P. R. China
| | - Xiaoqiang Fang
- School of Chemistry
and Chemical Engineering, Guangdong Pharmaceutical
University, Zhongshan 528458, P. R. China
| | - Zijie Zhang
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Yibo Liu
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Lulu Peng
- School of Chemistry
and Chemical Engineering, Guangdong Pharmaceutical
University, Zhongshan 528458, P. R. China
| | - Juewen Liu
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
27
|
Xu L, Zhang Z, Fang X, Liu Y, Liu B, Liu J. Robust Hydrogels from Lanthanide Nucleotide Coordination with Evolving Nanostructures for a Highly Stable Protein Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14321-14330. [PMID: 29644845 DOI: 10.1021/acsami.7b18005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metal coordination with organic ligands often produce crystalline metal-organic frameworks and sometimes amorphous nanoparticles. In this work, we explore a different type of material from the same chemistry: hydrogels. Lanthanides are chosen as the metal component because of their important technological applications and continuously tunable properties. Adenosine monophosphate (AMP) and lanthanides form two types of coordination materials: the lighter lanthanides from La3+ to Tb3+ form nanoparticles, whereas the rest heavier ones initially form nanoparticles but later spontaneously transform to hydrogels. This slow sol-to-gel transition is accompanied by heat release, as indicated by isothermal titration calorimetry. The transition is also accompanied by a morphology change from nanoparticles to nanofibers, as indicated by transmission electron microscopy. These gels are insensitive to ionic strength or temperature with excellent stability. Gelation is unique to AMP because other nucleotides or other adenine derivatives only yield nanoparticles or soluble products. Entrapment of guest molecules such as glucose oxidase is also explored, where the hydrogels allow a better enzyme activity and stability compared to nanoparticles. Further applications of lanthanide coordinated hydrogels might include biosensors, imaging agents, and drug delivery.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. China
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Zijie Zhang
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Xiaoqiang Fang
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. China
| | - Yibo Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Biwu Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| |
Collapse
|
28
|
Zhang Z, Morishita K, Lin WTD, Huang PJJ, Liu J. Nucleotide coordination with 14 lanthanides studied by isothermal titration calorimetry. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Javaid A, Oloketuyi SF, Khan MM, Khan F. Diversity of Bacterial Synthesis of Silver Nanoparticles. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0496-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Pu F, Ren J, Qu X. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem Soc Rev 2017; 47:1285-1306. [PMID: 29265140 DOI: 10.1039/c7cs00673j] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.
Collapse
Affiliation(s)
- Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
31
|
Ma L, Sun N, Zhang J, Tu C, Cao X, Duan D, Diao A, Man S. Polyethylenimine-coated Fe 3O 4 nanoparticles effectively quench fluorescent DNA, which can be developed as a novel platform for protein detection. NANOSCALE 2017; 9:17699-17703. [PMID: 29130087 DOI: 10.1039/c7nr07085c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a novel assembly of polyethyleneimine (PEI)-coated Fe3O4 nanoparticles (NPs) with single-stranded DNA (ssDNA), and the fluorescence of the dye labeled in the DNA is remarkably quenched. In the presence of a target protein, the protein-DNA aptamer mutual interaction releases the ssDNA from this assembly and hence restores the fluorescence. This feature could be adopted to develop an aptasensor for protein detection. As a proof-of-concept, for the first time, we have used this proposed sensing strategy to detect thrombin selectively and sensitively. Furthermore, simultaneous multiple detection of thrombin and lysozyme in a complex protein mixture has been proven to be possible.
Collapse
Affiliation(s)
- Long Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
In-Situ Self-Assembly of Zinc/Adenine Hybrid Nanomaterials for Enzyme Immobilization. Catalysts 2017. [DOI: 10.3390/catal7110327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
33
|
Jimenez LA, Gionet-Gonzales MA, Sedano S, Carballo JG, Mendez Y, Zhong W. Extraction of microRNAs from biological matrices with titanium dioxide nanofibers. Anal Bioanal Chem 2017; 410:1053-1060. [PMID: 29030663 DOI: 10.1007/s00216-017-0649-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small RNAs that bind to mRNA targets and regulate their translation. A functional study of miRNAs and exploration of their utility as disease markers require miRNA extraction from biological samples, which contain large amounts of interfering compounds for downstream RNA identification and quantification. The most common extraction methods employ silica columns or the TRIzol reagent but give out low recovery for small RNAs probably due to their short strand lengths. Herein, we fabricated the titanium dioxide nanofibers using electrospinning to facilitate miRNA extraction and developed the optimal buffer conditions to improve miRNA recovery from biological matrices of cell lysate and serum. We found that our TiO2 fibers could obtain a recovery of 18.0 ± 3.6% for miRNA fibers while carrying out the extraction in the more complex medium of cell lysate, much higher than the 0.02 ± 0.0001% recovery from the commercial kit. The much improved extraction of miRNAs from our fibers could be originated from the strong coordination between TiO2 and RNA's phosphate backbone. In addition, the binding, washing, and elution buffers judiciously developed in the present study can achieve selective extraction of small RNA shorter than 500 nucleotides in length. Our results demonstrate that TiO2 nanofibers can work as a valuable tool for extraction of miRNAs from biological samples with high recovery. Graphical abstract Schematic for extraction of small RNAs using TiO2 nanofibers.
Collapse
Affiliation(s)
- Luis A Jimenez
- Program in Biomedical Sciences, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | | | - Sabrina Sedano
- Department of Chemistry, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | - Jocelyn G Carballo
- Department of Chemistry, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | - Yomara Mendez
- Department of Chemistry, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
35
|
Xu L, Zhou L, Chen X, Shen X, Wang J, Zhang J, Pei R. Luminescence sensitization of Tb 3+-DNA complexes by Ag . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 180:85-90. [PMID: 28279827 DOI: 10.1016/j.saa.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Terbium ions (Tb3+) with unique photophysical properties have been utilized to develop biosensors with low background and high sensitivity. In this study, the Ag+-sensitized luminescence of Tb3+-DNA complexes was uncovered. The luminescence of Tb3+-DNA complexes could be enhanced by more than 30 times in the presence of Ag+, when Tb3+ was bound with poly(G) and poly(T) whereas not with other homopolymers. This research confirmed that the sensitization resulted from the interaction of Ag+ with certain bases involved in DNA, not just with the reported certain G-quadruplex sequence. The coordination of Ag+ to guanine and thymine bases was expected to increase their rigidities, form Tb3+-DNA-Ag+ ternary structures, and thus enhance energy transfer from guanine and thymine to Tb3+. These findings benefit the development of sensitive luminescence probes for various nucleic acids-related targets.
Collapse
Affiliation(s)
- Lijun Xu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xing Chen
- Public Health of Guangxi Medical University, Nanning 530021, China
| | - Xiaoqiang Shen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianye Zhang
- School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
36
|
A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials 2017; 122:23-33. [DOI: 10.1016/j.biomaterials.2017.01.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/26/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
|
37
|
Li C, Jiang S, Zhao X, Liang H. Co-Immobilization of Enzymes and Magnetic Nanoparticles by Metal-Nucleotide Hydrogelnanofibers for Improving Stability and Recycling. Molecules 2017; 22:E179. [PMID: 28125003 PMCID: PMC6155653 DOI: 10.3390/molecules22010179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/09/2023] Open
Abstract
In this paper we report a facile method for preparing co-immobilized enzyme and magnetic nanoparticles (MNPs) using metal coordinated hydrogel nanofibers. Candida rugosa lipase (CRL) was selected as guest protein. For good aqueous dispersity, low price and other unique properties, citric acid-modified magnetic iron oxide nanoparticles (CA-Fe₃O₄ NPs) have been widely used for immobilizing enzymes. As a result, the relative activity of CA-Fe₃O₄@Zn/AMP nanofiber-immobilized CRL increased by 8-fold at pH 10.0 and nearly 1-fold in a 50 °C water bath after 30 min, compared to free CRL. Moreover, the immobilized CRL had excellent long-term storage stability (nearly 80% releative activity after storage for 13 days). This work indicated that metal-nucleotide nanofibers could efficiently co-immobilize enzymes and MNPs simultaneously, and improve the stability of biocatalysts.
Collapse
Affiliation(s)
- Chunfang Li
- Department of Environment Protection and Detection, Beijing Industrial Technician College, Beijing 100023, China.
| | - Shuhui Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinying Zhao
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China.
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
38
|
Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J. Multicopper Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1352-1360. [PMID: 28004568 DOI: 10.1021/acsami.6b15124] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Using nanomaterials to achieve functional enzyme mimics (nanozymes) is attractive for both applied and fundamental research. Laccases are multicopper oxidases highly important for biotechnology and environmental remediation. In this work, we report an exceptionally simple yet functional laccase mimic based on guanosine monophosphate (GMP) coordinated copper. It forms an amorphous metal-organic framework (MOF) material. The ratio of copper and GMP is 3:4 as determined by isothermal titration calorimetry. It has excellent laccase-like activity and converts a diverse range of phenol containing substrates such as hydroquinone, naphthol, catechol and epinephrine. Comparative work shows that the activity is originated from guanosine coordination instead of phosphate binding in GMP. Cu2+ is required and cannot be substituted by other metal ions. At the same mass concentration, the Cu/GMP nanozyme has a higher Vmax and similar Km compared to the protein laccase. To achieve the same catalytic efficiency, the cost of the Gu/GMP is ∼2400-fold lower than that of laccase. The Cu/GMP is much more stable at extreme pH, high salt, high temperature and for long-term storage. This is one of the first laccase-mimicking nanozymes, which will find important applications in analytical chemistry, environmental protection, and biotechnology.
Collapse
Affiliation(s)
- Hao Liang
- State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Feifei Lin
- State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Zijie Zhang
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Shuhui Jiang
- State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Qipeng Yuan
- State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
39
|
Pu F, Ran X, Ren J, Qu X. Artificial tongue based on metal-biomolecule coordination polymer nanoparticles. Chem Commun (Camb) 2016; 52:3410-3. [PMID: 26879044 DOI: 10.1039/c5cc10195f] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We construct an array-based recognition system (the so-called artificial tongue) through the self-assembly of nucleotides, dyes and lanthanide ions. Metal ions are selected as model analytes for verifying its discrimination ability. The work provides valuable insights into the application and development of biomolecule-based materials.
Collapse
Affiliation(s)
- Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Xiang Ran
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
40
|
Liang H, Liu B, Yuan Q, Liu J. Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15615-22. [PMID: 27248668 DOI: 10.1021/acsami.6b04038] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The introduction of functional molecules to the surface of magnetic iron oxide nanoparticles (NPs) is of critical importance. Most previously reported methods were focused on surface ligand attachment either by physisorption or covalent conjugation, resulting in limited ligand loading capacity. In this work, we report the seeded growth of a nucleotide coordinated polymer shell, which can be considered as a special form of adsorption by forming a complete shell. Among all of the tested metal ions, Fe(3+) is the most efficient for this seeded growth. A diverse range of guest molecules, including small organic dyes, proteins, DNA, and gold NPs, can be encapsulated in the shell. All of these molecules were loaded at a much higher capacity compared to that on the naked iron oxide NP core, confirming the advantage of the coordination polymer (CP) shell. In addition, the CP shell provides better guest protein stability compared to that of simple physisorption while retaining guest activity as confirmed by the entrapped glucose oxidase assay. Use of this system as a peroxidase nanozyme and glucose biosensor was demonstrated, detecting glucose as low as 1.4 μM with excellent stability. This work describes a new way to functionalize inorganic materials with a biocompatible shell.
Collapse
Affiliation(s)
- Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
41
|
Huang PJJ, Vazin M, Lin JJ, Pautler R, Liu J. Distinction of Individual Lanthanide Ions with a DNAzyme Beacon Array. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00239] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Po-Jung Jimmy Huang
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Mahsa Vazin
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Jennifer J. Lin
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Rachel Pautler
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Juewen Liu
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
42
|
Liang H, Jiang S, Yuan Q, Li G, Wang F, Zhang Z, Liu J. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection. NANOSCALE 2016; 8:6071-8. [PMID: 26932320 DOI: 10.1039/c5nr08734a] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn(2+) and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.
Collapse
Affiliation(s)
- Hao Liang
- State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Leng C, Wang C, Xiu H, Qu X, Chen L, Tang Q, Li L. Design and Fabrication of Plasmonic Nanostructures with DNA for Surface-Enhanced Raman Spectroscopy Applications. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Wu Y, Lai RY. Electrochemical Gold(III) Sensor with High Sensitivity and Tunable Dynamic Range. Anal Chem 2016; 88:2227-33. [DOI: 10.1021/acs.analchem.5b03868] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yao Wu
- University of Nebraska—Lincoln, 651 Hamilton
Hall, Lincoln, Nebraska 68588-0304, United States
| | - Rebecca Y. Lai
- University of Nebraska—Lincoln, 651 Hamilton
Hall, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
45
|
Li H, Fu Z, Yan C, Huang J, Liu YN, Kirin SI. Hydrophobic–hydrophilic post-cross-linked polystyrene/poly (methyl acryloyl diethylenetriamine) interpenetrating polymer networks and its adsorption properties. J Colloid Interface Sci 2016; 463:61-8. [DOI: 10.1016/j.jcis.2015.10.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/08/2015] [Accepted: 10/17/2015] [Indexed: 10/22/2022]
|
46
|
Vazin M, Huang PJJ, Matuszek Ż, Liu J. Biochemical Characterization of a Lanthanide-Dependent DNAzyme with Normal and Phosphorothioate-Modified Substrates. Biochemistry 2015; 54:6132-8. [DOI: 10.1021/acs.biochem.5b00691] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahsa Vazin
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Po-Jung Jimmy Huang
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Żaneta Matuszek
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Juewen Liu
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
47
|
Liang H, Zhang Z, Yuan Q, Liu J. Self-healing metal-coordinated hydrogels using nucleotide ligands. Chem Commun (Camb) 2015; 51:15196-9. [PMID: 26329792 DOI: 10.1039/c5cc06824j] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A supramolecular gel formed by coordination of Zn(2+) with adenosine monophosphate (AMP) is reported. The adenine base, the monophosphate, and Zn(2+) are all important for gel formation. Mechanically disrupted gels can re-form upon centrifugation; applications of this gel for guest-molecule entrapment are explored.
Collapse
Affiliation(s)
- Hao Liang
- State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| | | | | | | |
Collapse
|
48
|
Xu L, Qi X, Li X, Bai Y, Liu H. Recent advances in applications of nanomaterials for sample preparation. Talanta 2015; 146:714-26. [PMID: 26695321 DOI: 10.1016/j.talanta.2015.06.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/08/2015] [Accepted: 06/13/2015] [Indexed: 12/30/2022]
Abstract
Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes.
Collapse
Affiliation(s)
- Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyue Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianjiang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
49
|
Hun X, Xu Y, Luo X. Peptide-based biosensor for the prostate-specific antigen using magnetic particle-bound invertase and a personal glucose meter for readout. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1483-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Abstract
Lanthanides represent a group of very important but challenging analytes for biosensor development. These 15 elements are very similar in their chemical properties. So far, limited success has been realized using the rational ligand design approach. My laboratory has successfully accomplished the task of carrying out combinatorial selection to isolate lanthanide-dependent RNA-cleaving DNAzymes. We report two new DNAzymes, each discovered in a different selection condition and both are highly specific to lanthanides. When both DNAzymes are used together, it is possible to identify the last few heavy lanthanides. Upon introducing a phosphorothioate modification, one of the abovementioned DNAzymes becomes highly active with many toxic heavy metals. With the selection of more DNAzymes with different activity patterns cross the lanthanide series, a sensor array might be produced for identifying each ion. This article is a minireview of the current developments on this topic and some of the historical aspects. It reflects the main content of the Fred Beamish Award presentation delivered at the 2014 Canadian Society for Chemistry Conference in Vancouver. Future directions in this area are also discussed.
Collapse
Affiliation(s)
- Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|