1
|
Materials, workflows and applications of IMAC for phosphoproteome profiling in the recent decade: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
3
|
Sürmen MG, Sürmen S, Ali A, Musharraf SG, Emekli N. Phosphoproteomic strategies in cancer research: a minireview. Analyst 2020; 145:7125-7149. [PMID: 32996481 DOI: 10.1039/d0an00915f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the cellular processes is central to comprehend disease conditions and is also true for cancer research. Proteomic studies provide significant insight into cancer mechanisms and aid in the diagnosis and prognosis of the disease. Phosphoproteome is one of the most studied complements of the whole proteome given its importance in the understanding of cellular processes such as signaling and regulations. Over the last decade, several new methods have been developed for phosphoproteome analysis. A significant amount of these efforts pertains to cancer research. The current use of powerful analytical instruments in phosphoproteomic approaches has paved the way for deeper and sensitive investigations. However, these methods and techniques need further improvements to deal with challenges posed by the complexity of samples and scarcity of phosphoproteins in the whole proteome, throughput and reproducibility. This review aims to provide a comprehensive summary of the variety of steps used in phosphoproteomic methods applied in cancer research including the enrichment and fractionation strategies. This will allow researchers to evaluate and choose a better combination of steps for their phosphoproteome studies.
Collapse
Affiliation(s)
- Mustafa Gani Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Saime Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nesrin Emekli
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
4
|
Chu H, Zheng H, Yao J, Sun N, Yan G, Deng C. Magnetic metal phenolic networks: expanding the application of a promising nanoprobe to phosphoproteomics research. Chem Commun (Camb) 2020; 56:11299-11302. [DOI: 10.1039/d0cc04615a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ti–tannic acid modified Fe3O4 was prepared through a facile, mild and eco-friendly synthesis procedure and can be applied to identify phosphopeptides from HeLa cell extracts with high efficiency.
Collapse
Affiliation(s)
- Huimin Chu
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Haoyang Zheng
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Jizong Yao
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology
- Zhongshan Hospital
- Fudan University
- Shanghai
- China
| | - Guoquan Yan
- Institutes of Biomedical Sciences
- Collaborative Innovation Center of Genetics and Development
- Fudan University
- Shanghai
- China
| | - Chunhui Deng
- Department of Chemistry
- Fudan University
- Shanghai
- China
- Institutes of Biomedical Sciences
| |
Collapse
|
5
|
Zheng H, Wang J, Gao M, Zhang X. Titanium(IV)-functionalized zirconium-organic frameworks as dual-metal affinity probe for recognition of endogenous phosphopeptides prior to mass spectrometric quantification. Mikrochim Acta 2019; 186:829. [PMID: 31754799 DOI: 10.1007/s00604-019-3962-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022]
Abstract
A zirconium-organic framework was modified with titanium(IV) ions to obtain a modified framework that is shown to be a viable sorbent for selective capture of phosphopeptides. This dual-metal affinity probe exhibits 0.1 fM limits of detection and excellent size-exclusion effect (the mass ratio of β-casein digests/BSA/intact β-casein is 1:1000:1000). This is attributed to abundant Ti(IV) and Zr(IV) coordination sites and high porosity. The performance of the sorbent for extracting endogenous phosphopeptides from human serum and saliva was investigated. Especially, 105 endogenous phosphopeptides from saliva were captured specifically. In addition, the amino acid frequency of the enriched phosphopeptides was analyzed. Conservation of sequence around the identified phosphorylated sites from saliva confirmed that phosphorylation took place in the proline-directed motifs. Graphical abstractSchematic representation of a method for the specific enrichment of phosphopeptides by a modified metal-organic framework. Following size-exclusion elution, the phosphopeptides are quantified by mass spectrometry.
Collapse
Affiliation(s)
- Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jiaxi Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
6
|
Iliuk A. Identification of Phosphorylated Proteins on a Global Scale. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2018; 10:e48. [PMID: 29927094 PMCID: PMC6125197 DOI: 10.1002/cpch.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) has enabled researchers to analyze complex biological samples with unprecedented depth. It facilitates the identification and quantification of modifications within thousands of proteins in a single large-scale proteomic experiment. Analysis of phosphorylation, one of the most common and important post-translational modifications, has particularly benefited from such progress in the field. Here, detailed protocols are provided for a few well-regarded, common sample preparation methods for an effective phosphoproteomic experiment. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Anton Iliuk
- Tymora Analytical Operations, Innovations, West Lafayette, Indiana
| |
Collapse
|
7
|
Capriotti AL, Cavaliere C, Ferraris F, Gianotti V, Laus M, Piovesana S, Sparnacci K, Zenezini Chiozzi R, Laganà A. New Ti-IMAC magnetic polymeric nanoparticles for phosphopeptide enrichment from complex real samples. Talanta 2018; 178:274-281. [DOI: 10.1016/j.talanta.2017.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022]
|
8
|
Wang M, Zhao B, Gao J, He H, Castellanos LJ, Thayumanavan S, Vachet RW. Altering the Peptide Binding Selectivity of Polymeric Reverse Micelle Assemblies via Metal Ion Loading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14004-14010. [PMID: 28803471 PMCID: PMC5730948 DOI: 10.1021/acs.langmuir.7b02488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Supramolecular reverse micelle assemblies, formed by amphiphilic copolymers, can selectively encapsulate molecules in their interiors depending on the functional groups present in the polymers. Altering the binding selectivity of these materials typically requires the synthesis of alternate functional groups. Here, we demonstrate that the addition of Zr(IV) ions to the interiors of reverse micelles having phosphonate functional groups transforms the supramolecular materials from ones that selectively bind positively charged peptides into materials that selectively bind phosphorylated peptides. We also show that the binding selectivity of these reverse micelle assemblies can be further tuned by varying the fractions of phosphonate groups in the copolymer structure. The optimized reverse micelle materials can selectively transfer and bind phosphorylated peptides from aqueous solutions over a wide range of pH conditions and can selectively enrich phosphorylated peptides even in complicated mixtures.
Collapse
Affiliation(s)
- Meizhe Wang
- Department
of Chemistry, Center for Bioactive Delivery—Institute for
Applied Life Sciences, and Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Bo Zhao
- Department
of Chemistry, Center for Bioactive Delivery—Institute for
Applied Life Sciences, and Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jingjing Gao
- Department
of Chemistry, Center for Bioactive Delivery—Institute for
Applied Life Sciences, and Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Huan He
- Department
of Chemistry, Center for Bioactive Delivery—Institute for
Applied Life Sciences, and Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Laura J. Castellanos
- Department
of Chemistry, Center for Bioactive Delivery—Institute for
Applied Life Sciences, and Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department
of Chemistry, Center for Bioactive Delivery—Institute for
Applied Life Sciences, and Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Richard W. Vachet
- Department
of Chemistry, Center for Bioactive Delivery—Institute for
Applied Life Sciences, and Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Lv DW, Zhong J, Zhang K, Pandey A, Li R. Understanding Epstein-Barr Virus Life Cycle with Proteomics: A Temporal Analysis of Ubiquitination During Virus Reactivation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:27-37. [PMID: 28271981 DOI: 10.1089/omi.2016.0158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) is a human γ-herpesvirus associated with cancer, including Burkitt lymphoma, nasopharyngeal, and gastric carcinoma. EBV reactivation in latently infected B cells is essential for persistent infection whereby B cell receptor (BCR) activation is a physiologically relevant stimulus. Yet, a global view of BCR activation-regulated protein ubiquitination is lacking when EBV is actively replicating. We report here, for the first time, the long-term effects of IgG cross-linking-regulated protein ubiquitination and offer a basis for dissecting the cellular environment during the course of EBV lytic replication. Using the Akata-BX1 (EBV+) and Akata-4E3 (EBV-) Burkitt lymphoma cells, we monitored the dynamic changes in protein ubiquitination using quantitative proteomics. We observed temporal alterations in the level of ubiquitination at ∼150 sites in both EBV+ and EBV- B cells post-IgG cross-linking, compared with controls with no cross-linking. The majority of protein ubiquitination was downregulated. The upregulated ubiquitination events were associated with proteins involved in RNA processing. Among the downregulated ubiquitination events were proteins involved in apoptosis, ubiquitination, and DNA repair. These comparative and quantitative proteomic observations represent the first analysis on the effects of IgG cross-linking at later time points when the majority of EBV genes are expressed and the viral genome is actively being replicated. In all, these data enhance our understanding of mechanistic linkages connecting protein ubiquitination, RNA processing, apoptosis, and the EBV life cycle.
Collapse
Affiliation(s)
- Dong-Wen Lv
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia
| | - Jun Zhong
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Kun Zhang
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia
| | - Akhilesh Pandey
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Diana Helis Henry Medical Research Foundation , New Orleans, Louisiana
| | - Renfeng Li
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia.,5 Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University , Richmond, Virginia.,6 Massey Cancer Center, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
10
|
Li J, Liu J, Liu Z, Tan Y, Liu X, Wang F. Detecting Proteins Glycosylation by a Homogeneous Reaction System with Zwitterionic Gold Nanoclusters. Anal Chem 2017; 89:4339-4343. [DOI: 10.1021/acs.analchem.6b04880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jinan Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jing Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yuan Tan
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xiaoyan Liu
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
11
|
Abstract
TCR signaling critically depends on protein phosphorylation across many proteins. Localization of each phosphorylation event relative to the T-cell receptor (TCR) and canonical T-cell signaling proteins will provide clues about the structure of TCR signaling networks. Quantitative phosphoproteomic analysis by mass spectrometry provides a wide-scale view of cellular phosphorylation networks. However, analysis of phosphorylation by mass spectrometry is still challenging due to the relative low abundance of phosphorylated proteins relative to all proteins and the extraordinary diversity of phosphorylation sites across the proteome. Highly selective enrichment of phosphorylated peptides is essential to provide the most comprehensive view of the phosphoproteome. Optimization of phosphopeptide enrichment methods coupled with highly sensitive mass spectrometry workflows significantly improves the sequencing depth of the phosphoproteome to over 10,000 unique phosphorylation sites from complex cell lysates. Here we describe a step-by-step method for phosphoproteomic analysis that has achieved widespread success for identification of serine, threonine, and tyrosine phosphorylation. Reproducible quantification of relative phosphopeptide abundance is provided by intensity-based label-free quantitation. An ideal set of mass spectrometry analysis parameters is also provided that optimize the yield of identified sites. We also provide guidelines for the bioinformatic analysis of this type of data to assess the quality of the data and to comply with proteomic data reporting requirements.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine, Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Arthur R Salomon
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, 02903, USA.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
12
|
Klein T, Viner RI, Overall CM. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0372. [PMID: 27644975 PMCID: PMC5031638 DOI: 10.1098/rsta.2015.0372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Theo Klein
- Centre for Blood Research, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| | - Rosa I Viner
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Christopher M Overall
- Centre for Blood Research, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| |
Collapse
|
13
|
Iliuk A, Li L, Melesse M, Hall MC, Tao WA. Multiplexed Imaging of Protein Phosphorylation on Membranes Based on Ti(IV) Functionalized Nanopolymers. Chembiochem 2016; 17:900-3. [PMID: 27037847 PMCID: PMC4870103 DOI: 10.1002/cbic.201600068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 01/10/2023]
Abstract
Accurate protein phosphorylation analysis reveals dynamic cellular signaling events not evident from protein expression levels. The most dominant biochemical assay, western blotting, suffers from the inadequate availability and poor quality of phospho-specific antibodies for phosphorylated proteins. Furthermore, multiplexed assays based on antibodies are limited by steric interference between the antibodies. Here we introduce a multifunctionalized nanopolymer for the universal detection of phosphoproteins that, in combination with regular antibodies, allows multiplexed imaging and accurate determination of protein phosphorylation on membranes.
Collapse
Affiliation(s)
- Anton Iliuk
- Department of Biochemistry, Purdue University, 201 S University, West Lafayette, IN, 47907, USA
- Tymora Analytical Operations, 3495 Kent Avenue, West Lafayette, IN, 47906, USA
| | - Li Li
- Department of Biochemistry, Purdue University, 201 S University, West Lafayette, IN, 47907, USA
- Tymora Analytical Operations, 3495 Kent Avenue, West Lafayette, IN, 47906, USA
| | - Michael Melesse
- Department of Biochemistry, Purdue University, 201 S University, West Lafayette, IN, 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, 201 S University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, 201 S University, West Lafayette, IN, 47907, USA.
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
14
|
Abstract
The comprehensive study of the phosphoproteome is heavily dependent on appropriate enrichment strategies that are most often, but not exclusively, carried out on the peptide level. In this chapter, I give an overview of the most widely used techniques. In addition to dedicated antibodies, phosphopeptides are enriched by their selective interaction with metals in the form of chelated metal ions or metal oxides. The negative charge of the phosphate group is also exploited in a variety of chromatographic fractionation methods that include different types of ion exchange chromatography, hydrophilic interaction chromatography (HILIC), and electrostatic repulsion HILIC (ERLIC) chromatography. Selected examples from the literature will demonstrate how a combination of these techniques with current high-performance mass spectrometry enables the identification of thousands of phosphorylation sites from various sample types.
Collapse
Affiliation(s)
- Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Yue X, Schunter A, Hummon AB. Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for phosphopeptide enrichment. Anal Chem 2015; 87:8837-44. [PMID: 26237447 PMCID: PMC4766865 DOI: 10.1021/acs.analchem.5b01833] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphopeptide enrichment from complicated peptide mixtures is an essential step for mass spectrometry-based phosphoproteomic studies to reduce sample complexity and ionization suppression effects. Typical methods for enriching phosphopeptides include immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) beads, which have selective affinity and can interact with phosphopeptides. In this study, the IMAC enrichment method was compared with the TiO2 enrichment method, using a multistep enrichment strategy from whole cell lysate, to evaluate their abilities to enrich for different types of phosphopeptides. The peptide-to-beads ratios were optimized for both IMAC and TiO2 beads. Both IMAC and TiO2 enrichments were performed for three rounds to enable the maximum extraction of phosphopeptides from the whole cell lysates. The phosphopeptides that are unique to IMAC enrichment, unique to TiO2 enrichment, and identified with both IMAC and TiO2 enrichment were analyzed for their characteristics. Both IMAC and TiO2 enriched similar amounts of phosphopeptides with comparable enrichment efficiency. However, phosphopeptides that are unique to IMAC enrichment showed a higher percentage of multiphosphopeptides as well as a higher percentage of longer, basic, and hydrophilic phosphopeptides. Also, the IMAC and TiO2 procedures clearly enriched phosphopeptides with different motifs. Finally, further enriching with two rounds of TiO2 from the supernatant after IMAC enrichment or further enriching with two rounds of IMAC from the supernatant TiO2 enrichment does not fully recover the phosphopeptides that are not identified with the corresponding multistep enrichment.
Collapse
Affiliation(s)
- Xiaoshan Yue
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Alissa Schunter
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
16
|
Helou YA, Salomon AR. Protein networks and activation of lymphocytes. Curr Opin Immunol 2015; 33:78-85. [PMID: 25687331 DOI: 10.1016/j.coi.2015.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 12/30/2022]
Abstract
The signal transduction pathways initiated by lymphocyte activation play a critical role in regulating host immunity. High-resolution mass spectrometry has accelerated the investigation of these complex and dynamic pathways by enabling the qualitative and quantitative investigation of thousands of proteins and phosphoproteins simultaneously. In addition, the unbiased and wide-scale identification of protein-protein interaction networks and protein kinase substrates in lymphocyte signaling pathways can be achieved by mass spectrometry-based approaches. Critically, the integration of these discovery-driven strategies with single-cell analysis using mass cytometry can facilitate the understanding of complex signaling phenotypes in distinct immunophenotypes.
Collapse
Affiliation(s)
- Ynes A Helou
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|