1
|
Movassaghi CS, Alcañiz Fillol M, Kishida KT, McCarty G, Sombers LA, Wassum KM, Andrews AM. Maximizing Electrochemical Information: A Perspective on Background-Inclusive Fast Voltammetry. Anal Chem 2024; 96:6097-6105. [PMID: 38597398 PMCID: PMC11044109 DOI: 10.1021/acs.analchem.3c04938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
This perspective encompasses a focused review of the literature leading to a tipping point in electroanalytical chemistry. We tie together the threads of a "revolution" quietly in the making for years through the work of many authors. Long-held misconceptions about the use of background subtraction in fast voltammetry are addressed. We lay out future advantages that accompany background-inclusive voltammetry, particularly when paired with modern machine-learning algorithms for data analysis.
Collapse
Affiliation(s)
- Cameron S. Movassaghi
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Miguel Alcañiz Fillol
- Interuniversity
Research Institute for Molecular Recognition and Technological Development, Universitat Politècnica de València-Universitat
de València, Camino de Vera s/n, Valencia 46022, Spain
| | - Kenneth T. Kishida
- Department
of Translational Neuroscience, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27101, United States
- Department
of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Gregory McCarty
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Kate M. Wassum
- Department
of Psychology, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Brain Research
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
- Integrative
Center for Learning and Memory, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Integrative
Center for Addictive Disorders, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Anne Milasincic Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Brain Research
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Science, University of California, Los Angeles, Los Angeles, California 90095, United States
- Hatos Center
for Neuropharmacology, University of California,
Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Movassaghi CS, Perrotta KA, Yang H, Iyer R, Cheng X, Dagher M, Fillol MA, Andrews AM. Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression. Anal Bioanal Chem 2021; 413:6747-6767. [PMID: 34686897 PMCID: PMC8551120 DOI: 10.1007/s00216-021-03665-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/12/2022]
Abstract
Many voltammetry methods have been developed to monitor brain extracellular dopamine levels. Fewer approaches have been successful in detecting serotonin in vivo. No voltammetric techniques are currently available to monitor both neurotransmitters simultaneously across timescales, even though they play integrated roles in modulating behavior. We provide proof-of-concept for rapid pulse voltammetry coupled with partial least squares regression (RPV-PLSR), an approach adapted from multi-electrode systems (i.e., electronic tongues) used to identify multiple components in complex environments. We exploited small differences in analyte redox profiles to select pulse steps for RPV waveforms. Using an intentionally designed pulse strategy combined with custom instrumentation and analysis software, we monitored basal and stimulated levels of dopamine and serotonin. In addition to faradaic currents, capacitive currents were important factors in analyte identification arguing against background subtraction. Compared to fast-scan cyclic voltammetry-principal components regression (FSCV-PCR), RPV-PLSR better differentiated and quantified basal and stimulated dopamine and serotonin associated with striatal recording electrode position, optical stimulation frequency, and serotonin reuptake inhibition. The RPV-PLSR approach can be generalized to other electrochemically active neurotransmitters and provides a feedback pipeline for future optimization of multi-analyte, fit-for-purpose waveforms and machine learning approaches to data analysis.
Collapse
Affiliation(s)
- Cameron S Movassaghi
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Katie A Perrotta
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rahul Iyer
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinyi Cheng
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Merel Dagher
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Miguel Alcañiz Fillol
- Interuniversity Research Institute for Molecular Recognition and Technological Development, Universitat Politècnica de València - Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Anne M Andrews
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Peak potential shift of fast cyclic voltammograms owing to capacitance of redox reactions. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113609] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
4
|
Jo T, Yoshimi K, Takahashi T, Oyama G, Hattori N. Dual use of rectangular and triangular waveforms in voltammetry using a carbon fiber microelectrode to differentiate norepinephrine from dopamine. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Johnson JA, Hobbs CN, Wightman RM. Removal of Differential Capacitive Interferences in Fast-Scan Cyclic Voltammetry. Anal Chem 2017; 89:6166-6174. [PMID: 28488873 PMCID: PMC5685151 DOI: 10.1021/acs.analchem.7b01005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to its high spatiotemporal resolution, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes enables the localized in vivo monitoring of subsecond fluctuations in electroactive neurotransmitter concentrations. In practice, resolution of the analytical signal relies on digital background subtraction for removal of the large current due to charging of the electrical double layer as well as surface faradaic reactions. However, fluctuations in this background current often occur with changes in the electrode state or ionic environment, leading to nonspecific contributions to the FSCV data that confound data analysis. Here, we both explore the origin of such shifts seen with local changes in cations and develop a model to account for their shape. Further, we describe a convolution-based method for removal of the differential capacitive contributions to the FSCV current. The method relies on the use of a small-amplitude pulse made prior to the FSCV sweep that probes the impedance of the system. To predict the nonfaradaic current response to the voltammetric sweep, the step current response is differentiated to provide an estimate of the system's impulse response function and is used to convolute the applied waveform. The generated prediction is then subtracted from the observed current to the voltammetric sweep, removing artifacts associated with electrode impedance changes. The technique is demonstrated to remove select contributions from capacitive characteristics changes of the electrode both in vitro (i.e., in flow-injection analysis) and in vivo (i.e., during a spreading depression event in an anesthetized rat).
Collapse
Affiliation(s)
- Justin A Johnson
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Caddy N Hobbs
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - R Mark Wightman
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
6
|
Taylor IM, Robbins EM, Catt KA, Cody PA, Happe CL, Cui XT. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens Bioelectron 2017; 89:400-410. [PMID: 27268013 PMCID: PMC5107160 DOI: 10.1016/j.bios.2016.05.084] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo.
Collapse
Affiliation(s)
- I Mitch Taylor
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Elaine M Robbins
- University of Pittsburgh, Department of Chemistry, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - Kasey A Catt
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Patrick A Cody
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Cassandra L Happe
- University of California, San Diego, Department of Bioengineering, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Xinyan Tracy Cui
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA.
| |
Collapse
|
7
|
Weitemier AZ, McHugh TJ. Noradrenergic modulation of evoked dopamine release and pH shift in the mouse dorsal hippocampus and ventral striatum. Brain Res 2017; 1657:74-86. [DOI: 10.1016/j.brainres.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 01/24/2023]
|
8
|
Yoshimi K, Kumada S, Weitemier A, Jo T, Inoue M. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen. PLoS One 2015; 10:e0130443. [PMID: 26110516 PMCID: PMC4482386 DOI: 10.1371/journal.pone.0130443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/20/2015] [Indexed: 12/13/2022] Open
Abstract
In-vivo voltammetry has successfully been used to detect dopamine release in rodent brains, but its application to monkeys has been limited. We have previously detected dopamine release in the caudate of behaving Japanese monkeys using diamond microelectrodes (Yoshimi 2011); however it is not known whether the release pattern is the same in various areas of the forebrain. Recent studies have suggested variations in the dopaminergic projections to forebrain areas. In the present study, we attempted simultaneous recording at two locations in the striatum, using fast-scan cyclic voltammetry (FSCV) on carbon fibers, which has been widely used in rodents. Responses to unpredicted food and liquid rewards were detected repeatedly. The response to the liquid reward after conditioned stimuli was enhanced after switching the prediction cue. These characteristics were generally similar between the ventral striatum and the putamen. Overall, the technical application of FSCV recording in multiple locations was successful in behaving primates, and further voltammetric recordings in multiple locations will expand our knowledge of dopamine reward responses.
Collapse
Affiliation(s)
- Kenji Yoshimi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Shiori Kumada
- Department of Psychology, Japan Women's University, Kawasaki, Kanagawa, Japan
| | | | - Takayuki Jo
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masato Inoue
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|