1
|
Zhang H, Sun J, Guo C, Feng Q, Li Y, Zhao X, Sun L, Xu C. Application of surface Plasmon resonance imaging in the high-throughput detection of influenza virus. Ann Clin Biochem 2024:45632241297819. [PMID: 39439152 DOI: 10.1177/00045632241297819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE To evaluate the application effect of SPRi monoclonal antibody (mAb) chip in the detection of influenza virus antigen in complex mixtures. METHODS A total of 115 strains of mAbs against different subtypes (H1N1, H5N1, A1, A3, B, H7N9, H9N2, and H3N2) of influenza virus were prepared. The chip of mAbs against influenza virus was prepared by surface plasmonic resonance imaging (SPRi) technology, which was used for the detection of influenza virus supernatant, and compared with the traditional antigen capture ELISA method. RESULTS Comparative studies have shown that traditional antigen capture ELISA methods have a higher sensitivity (86.8% (46/53) vs. 46.5% (46/99); z = 4.84, P < .001), while the SPRi chip methods present a significantly higher specificity (56.3% (9/16) vs. 14.5% (9/62); z = 3.54, P < .001). The SPRi chip detection method for influenza virus antibodies can well reflect the specific binding characteristics of influenza virus antigens and antibodies. CONCLUSION The SPRi mAb chip can be used for the detection of specific pathogenic microorganisms or viral proteins in complex mixtures such as influenza virus supernatant. It has significant advantages of label free, real-time, high-throughput, and good specificity, and can play an important role in disease diagnosis and infectious disease prevention and control.
Collapse
Affiliation(s)
- Haixiang Zhang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
| | - Chunyan Guo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
| | - Qing Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
| | - Yan Li
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
| | - Lijun Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, P. R. China
| |
Collapse
|
2
|
Hemmerová E, Homola J. Combining plasmonic and electrochemical biosensing methods. Biosens Bioelectron 2024; 251:116098. [PMID: 38359667 DOI: 10.1016/j.bios.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The idea of combining electrochemical (EC) and plasmonic biosensor methods was introduced almost thirty years ago and the potential of electrochemical-plasmonic (EC-P) biosensors has been highlighted ever since. Despite that, the use of EC-P biosensors in analytics has been rather limited so far and the search for unique applications of the EC-P method continues. In this paper, we review the advances in the field of EC-P biosensors and discuss the features and benefits they can provide. In addition, we identify the main challenges for the development of EC-P biosensors and the limitations that prevent EC-P biosensors from more widespread use. Finally, we review applications of EC-P biosensors for the investigation and quantification of biomolecules, and for the study of biomolecular and cellular processes.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic.
| |
Collapse
|
3
|
Luo J, Liu S, Chen Y, Tan J, Zhao W, Zhang Y, Li G, Du Y, Zheng Y, Li X, Li H, Tan Y. Light Addressable Potentiometric Sensors for Biochemical Imaging on Microscale: A Review on Optimization of Imaging Speed and Spatial Resolution. ACS OMEGA 2023; 8:42028-42044. [PMID: 38024735 PMCID: PMC10652365 DOI: 10.1021/acsomega.3c04789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Light addressable potentiometric sensors (LAPS) are a competitive tool for unmarked biochemical imaging, especially imaging on microscale. It is essential to optimize the imaging speed and spatial resolution of LAPS since the imaging targets of LAPS, such as cell, microfluidic channel, etc., require LAPS to image at the micrometer level, and a fast enough imaging speed is a prerequisite for the dynamic process involved in biochemical imaging. In this study, we discuss the improvement of LAPS in terms of imaging speed and spatial resolution. The development of LAPS in imaging speed and spatial resolution is demonstrated by the latest applications of biochemistry monitoring and imaging on the microscale.
Collapse
Affiliation(s)
- Jiezhang Luo
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Shibin Liu
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yinhao Chen
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Jie Tan
- School
of Electrical Engineering and Electronic Information, Xihua University, Chengdou, Sichuan 610097, People’s Republic of China
| | - Wenbo Zhao
- Institute
of Flexible Electronics, Northwestern Polytechnical
University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yun Zhang
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Guifang Li
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yongqian Du
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yaoxin Zheng
- Beijing
Automation Control Equipment Institute, Beijing 100074, People’s Republic of China
| | - Xueliang Li
- School
of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People’s Republic of China
| | - Huijuan Li
- College of
Electrical Engineering, Shaanxi Polytechnic
Institute, Xianyang, Shaanxi 712000, People’s Republic of China
| | - Yue Tan
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| |
Collapse
|
4
|
García-Milán V, Franco A, Zvezdanova ME, Marcos S, Martin-Laez R, Moreno F, Velasquez C, Fernandez-Luna JL. Discriminating Glioblastoma from Peritumoral Tissue by a Nanohole Array-Based Optical and Label-Free Biosensor. BIOSENSORS 2023; 13:591. [PMID: 37366956 DOI: 10.3390/bios13060591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
In glioblastoma (GBM) patients, maximal safe resection remains a challenge today due to its invasiveness and diffuse parenchymal infiltration. In this context, plasmonic biosensors could potentially help to discriminate tumor tissue from peritumoral parenchyma based on differences in their optical properties. A nanostructured gold biosensor was used ex vivo to identify tumor tissue in a prospective series of 35 GBM patients who underwent surgical treatment. For each patient, two paired samples, tumor and peritumoral tissue, were extracted. Then, the imprint left by each sample on the surface of the biosensor was individually analyzed, obtaining the difference between their refractive indices. The tumor and non-tumor origins of each tissue were assessed by histopathological analysis. The refractive index (RI) values obtained by analyzing the imprint of the tissue were significantly lower (p = 0.0047) in the peritumoral samples (1.341, Interquartile Range (IQR) 1.339-1.349) compared with the tumor samples (1.350, IQR 1.344-1.363). The ROC (receiver operating characteristic) curve showed the capacity of the biosensor to discriminate between both tissues (area under the curve, 0.8779, p < 0.0001). The Youden index provided an optimal RI cut-off point of 0.003. The sensitivity and specificity of the biosensor were 81% and 80%, respectively. Overall, the plasmonic-based nanostructured biosensor is a label-free system with the potential to be used for real-time intraoperative discrimination between tumor and peritumoral tissue in patients with GBM.
Collapse
Affiliation(s)
- Víctor García-Milán
- Department of Neurological Surgery and Spine Unit, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Alfredo Franco
- Department of Applied Physics, Faculty of Sciences, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39012 Santander, Spain
| | | | - Sara Marcos
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Rubén Martin-Laez
- Department of Neurological Surgery and Spine Unit, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Fernando Moreno
- Department of Applied Physics, Faculty of Sciences, Universidad de Cantabria, 39005 Santander, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39012 Santander, Spain
| | - Carlos Velasquez
- Department of Neurological Surgery and Spine Unit, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39012 Santander, Spain
- Department of Anatomy and Cell Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - José L Fernandez-Luna
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39012 Santander, Spain
- Genetics Unit, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| |
Collapse
|
5
|
Recent advances in surface plasmon resonance imaging and biological applications. Talanta 2023; 255:124213. [PMID: 36584617 DOI: 10.1016/j.talanta.2022.124213] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Surface Plasmon Resonance Imaging (SPRI) is a robust technique for visualizing refractive index changes, which enables researchers to observe interactions between nanoscale objects in an imaging manner. In the past period, scholars have been attracted by the Prism-Coupled and Non-prism Coupled configurations of SPRI and have published numerous experimental results. This review describes the principle of SPRI and discusses recent developments in Prism-Coupled and Non-prism Coupled SPRI techniques in detail, respectively. And then, major advances in biological applications of SPRI are reviewed, including four sub-fields (cells, viruses, bacteria, exosomes, and biomolecules). The purpose is to briefly summarize the recent advances of SPRI and provide an outlook on the development of SPRI in various fields.
Collapse
|
6
|
Semi-quantitatively Predicting the Residence Time of Three Natural Products on Endothelin Receptor A by Peak Profiling Using the Receptor Functionalized Macroporous Silica Gel as Stationary Phase. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Mapping the conformational energy landscape of Abl kinase using ClyA nanopore tweezers. Nat Commun 2022; 13:3541. [PMID: 35725977 PMCID: PMC9209526 DOI: 10.1038/s41467-022-31215-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Protein kinases play central roles in cellular regulation by catalyzing the phosphorylation of target proteins. Kinases have inherent structural flexibility allowing them to switch between active and inactive states. Quantitative characterization of kinase conformational dynamics is challenging. Here, we use nanopore tweezers to assess the conformational dynamics of Abl kinase domain, which is shown to interconvert between two major conformational states where one conformation comprises three sub-states. Analysis of kinase-substrate and kinase-inhibitor interactions uncovers the functional roles of relevant states and enables the elucidation of the mechanism underlying the catalytic deficiency of an inactive Abl mutant G321V. Furthermore, we obtain the energy landscape of Abl kinase by quantifying the population and transition rates of the conformational states. These results extend the view on the dynamic nature of Abl kinase and suggest nanopore tweezers can be used as an efficient tool for other members of the human kinome. Quantitative characterization of kinase conformational dynamics remains challenging. Here, the authors show that protein nanopore tweezers allow analyzing the conformational energy landscape and ligand binding of the Abl kinase domain.
Collapse
|
8
|
Priest L, Peters JS, Kukura P. Scattering-based Light Microscopy: From Metal Nanoparticles to Single Proteins. Chem Rev 2021; 121:11937-11970. [PMID: 34587448 PMCID: PMC8517954 DOI: 10.1021/acs.chemrev.1c00271] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 02/02/2023]
Abstract
Our ability to detect, image, and quantify nanoscopic objects and molecules with visible light has undergone dramatic improvements over the past few decades. While fluorescence has historically been the go-to contrast mechanism for ultrasensitive light microscopy due to its superior background suppression and specificity, recent developments based on light scattering have reached single-molecule sensitivity. They also have the advantages of universal applicability and the ability to obtain information about the species of interest beyond its presence and location. Many of the recent advances are driven by novel approaches to illumination, detection, and background suppression, all aimed at isolating and maximizing the signal of interest. Here, we review these developments grouped according to the basic principles used, namely darkfield imaging, interferometric detection, and surface plasmon resonance microscopy.
Collapse
Affiliation(s)
| | | | - Philipp Kukura
- Physical and Theoretical
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
9
|
Zhang F, Wang S, Yang Y, Jiang J, Tao N. Imaging Single Bacterial Cells with Electro-optical Impedance Microscopy. ACS Sens 2021; 6:348-354. [PMID: 32456424 DOI: 10.1021/acssensors.0c00751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Impedance measurements have been an important tool for biosensor applications, including protein detection, DNA quantification, and cell study. We present here an electro-optical impedance microscopy (EIM) based on the dependence of surface optical transmission on local surface charge density for single bacteria impedance imaging. We applied a potential modulation to bacteria placed on an indium tin oxide-coated slide and simultaneously recorded a sequence of transmitted microscopy images. By performing fast Fourier transform analysis on the image sequences, we obtained the DC component (signal at 0 Hz) for cell morphology imaging and the AC component (signal at the modulation frequency) for the mapping of cell impedance responses with subcellular resolution for the first time. Using this method, we have monitored the viability of Escherichia coli bacterial cells under treatment with two different classes of antibiotics with low-frequency potential modulation. The results showed that the impedance response is sensitive to the antibiotic that targets the bacterial cell membrane as the membrane capacitance dominated at low-frequency modulation. Heterogeneous responses to the antibiotic treatment were observed at a single bacteria level. In addition to the high spatial resolution, EIM is label-free and simple and can be potentially used for the continuous mapping of single bacteria impedance changes under different conditions.
Collapse
Affiliation(s)
- Fenni Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287-5801, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287-5801, United States
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287-5801, United States
| | - Jiapei Jiang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287-5801, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287-5801, United States
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
10
|
Polonschii C, Gheorghiu M, David S, Gáspár S, Melinte S, Majeed H, Kandel ME, Popescu G, Gheorghiu E. High-resolution impedance mapping using electrically activated quantitative phase imaging. LIGHT, SCIENCE & APPLICATIONS 2021; 10:20. [PMID: 33479199 PMCID: PMC7820407 DOI: 10.1038/s41377-020-00461-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 05/23/2023]
Abstract
Retrieving electrical impedance maps at the nanoscale rapidly via nondestructive inspection with a high signal-to-noise ratio is an unmet need, likely to impact various applications from biomedicine to energy conversion. In this study, we develop a multimodal functional imaging instrument that is characterized by the dual capability of impedance mapping and phase quantitation, high spatial resolution, and low temporal noise. To achieve this, we advance a quantitative phase imaging system, referred to as epi-magnified image spatial spectrum microscopy combined with electrical actuation, to provide complementary maps of the optical path and electrical impedance. We demonstrate our system with high-resolution maps of optical path differences and electrical impedance variations that can distinguish nanosized, semi-transparent, structured coatings involving two materials with relatively similar electrical properties. We map heterogeneous interfaces corresponding to an indium tin oxide layer exposed by holes with diameters as small as ~550 nm in a titanium (dioxide) over-layer deposited on a glass support. We show that electrical modulation during the phase imaging of a macro-electrode is decisive for retrieving electrical impedance distributions with submicron spatial resolution and beyond the limitations of electrode-based technologies (surface or scanning technologies). The findings, which are substantiated by a theoretical model that fits the experimental data very well enable achieving electro-optical maps with high spatial and temporal resolutions. The virtues and limitations of the novel optoelectrochemical method that provides grounds for a wider range of electrically modulated optical methods for measuring the electric field locally are critically discussed.
Collapse
Affiliation(s)
| | | | - Sorin David
- International Centre of Biodynamics, 060101, Bucharest, Romania
| | | | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Hassaan Majeed
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mikhail E Kandel
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Eugen Gheorghiu
- International Centre of Biodynamics, 060101, Bucharest, Romania.
| |
Collapse
|
11
|
Pavelić SK, Markova-Car E, Klobučar M, Sappe L, Spaventi R. Technological Advances in Preclinical Drug Evaluation: The Role of -Omics Methods. Curr Med Chem 2020; 27:1337-1349. [PMID: 31296156 DOI: 10.2174/0929867326666190711122819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Preclinical drug development is an essential step in the drug development process where the evaluation of new chemical entities occurs. In particular, preclinical drug development phases include deep analysis of drug candidates' interactions with biomolecules/targets, their safety, toxicity, pharmacokinetics, metabolism by use of assays in vitro and in vivo animal assays. Legal aspects of the required procedures are well-established. Herein, we present a comprehensive summary of current state-of-the art approaches and techniques used in preclinical studies. In particular, we will review the potential of new, -omics methods and platforms for mechanistic evaluation of drug candidates and speed-up of the preclinical evaluation steps.
Collapse
Affiliation(s)
- Sandra Kraljević Pavelić
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Elitza Markova-Car
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Marko Klobučar
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Lana Sappe
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia.,Novartis Oncology Region Europe Headquarter, Largo Umberto Boccioni 1, 21040 Origgio, Italia
| | - Radan Spaventi
- Triadelta Partners d.o.o., Međimurska 19/2, Zagreb, Croatia
| |
Collapse
|
12
|
Zhou XL, Yang Y, Wang S, Liu XW. Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging. Angew Chem Int Ed Engl 2020; 59:1776-1785. [PMID: 31531917 PMCID: PMC7020607 DOI: 10.1002/anie.201908806] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Indexed: 12/20/2022]
Abstract
Surface plasmon resonance microscopy (SPRM) is a versatile platform for chemical and biological sensing and imaging. Great progress in exploring its applications, ranging from single-molecule sensing to single-cell imaging, has been made. In this Minireview, we introduce the principles and instrumentation of SPRM. We also summarize the broad and exciting applications of SPRM to the analysis of single entities. Finally, we discuss the challenges and limitations associated with SPRM and potential solutions.
Collapse
Affiliation(s)
- Xiao-Li Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Yunze Yang
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Xian-Wei Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
13
|
Zhou X, Yang Y, Wang S, Liu X. Surface Plasmon Resonance Microscopy: From Single‐Molecule Sensing to Single‐Cell Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao‐Li Zhou
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Applied ChemistryUniversity of Science & Technology of China Hefei 230026 China
| | - Yunze Yang
- Center for Biosensors and Bioelectronics, Biodesign InstituteArizona State University Tempe AZ 85287 USA
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, Biodesign InstituteArizona State University Tempe AZ 85287 USA
| | - Xian‐Wei Liu
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Applied ChemistryUniversity of Science & Technology of China Hefei 230026 China
| |
Collapse
|
14
|
Moon G, Son T, Lee H, Kim D. Deep Learning Approach for Enhanced Detection of Surface Plasmon Scattering. Anal Chem 2019; 91:9538-9545. [PMID: 31287294 DOI: 10.1021/acs.analchem.9b00683] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A deep learning approach has been taken to improve detection characteristics of surface plasmon microscopy (SPM) of light scattering. Deep learning based on the convolutional neural network algorithm was used to estimate the effect of scattering parameters, mainly the number of scatterers. The improvement was assessed on a quantitative basis by applying the approach to SPM images formed by coherent interference of scatterers. It was found that deep learning significantly improves the accuracy over conventional detection: the enhancement in the accuracy was shown to be significantly higher by almost 6 times and useful for scattering by polydisperse mixtures. This suggests that deep learning can be used to find scattering objects effectively in the noisy environment. Furthermore, deep learning can be extended directly to label-free molecular detection assays and provide considerably improved detection in imaging and microscopy techniques.
Collapse
Affiliation(s)
- Gwiyeong Moon
- School of Electrical and Electronic Engineering Yonsei University , Seoul , Korea , 120-749
| | - Taehwang Son
- School of Electrical and Electronic Engineering Yonsei University , Seoul , Korea , 120-749
| | - Hongki Lee
- School of Electrical and Electronic Engineering Yonsei University , Seoul , Korea , 120-749
| | - Donghyun Kim
- School of Electrical and Electronic Engineering Yonsei University , Seoul , Korea , 120-749
| |
Collapse
|
15
|
Zhao J, Liang D, Gao S, Hu X, Koh K, Chen H. Analyte-resolved magnetoplasmonic nanocomposite to enhance SPR signals and dual recognition strategy for detection of BNP in serum samples. Biosens Bioelectron 2019; 141:111440. [PMID: 31233987 DOI: 10.1016/j.bios.2019.111440] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 01/14/2023]
Abstract
B-type natriuretic peptide (BNP) is a short peptide that is considered to be an important heart failure (HF)-related biomarker. Due to its low concentration in the blood and short half-life, the sensitive detection of BNP is a bottleneck for diagnosing patients at early stages of HF. In this paper, we report a facile surface plasmon resonance (SPR) sensor to measure BNP; the sensor is based on aptamer-functionalized Au nanoparticles (GNPs-Apt) and antibody-modified magnetoplasmonic nanoparticles (MNPs-Ab) to enable dual screening of BNP in complex environments. During sensing, BNP forms MNP-Ab/BNP/GNP-Apt nanoconjugates that can be rapidly separated from the complex sample by a magnet to avoid degradation within the analyte's half-life. The developed SPR biosensor shows high selectivity, a wide dynamic response range of BNP concentrations from 100 fg/mL to 10 ng/mL, and a low detection limit of 28.2 fg/mL (S/N = 3). Using the proposed sensor, BNP was successfully detected in clinical samples. Thus, the designed SPR biosensor provides a novel and sensitive sensing platform for BNP detection with potential applications in clinical practice.
Collapse
Affiliation(s)
- Jialin Zhao
- Center for Molecular Recognition selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Danli Liang
- Center for Molecular Recognition selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Shouwei Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Xiaojun Hu
- Center for Molecular Recognition selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- Center for Molecular Recognition selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
16
|
Qatamin AH, Ghithan JH, Moreno M, Nunn BM, Jones KB, Zamborini FP, Keynton RS, O'Toole MG, Mendes SB. Detection of influenza virus by electrochemical surface plasmon resonance under potential modulation. APPLIED OPTICS 2019; 58:2839-2844. [PMID: 31044886 DOI: 10.1364/ao.58.002839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
In this study we report the development of a novel viral pathogen immunosensor technology based on the electrochemical modulation of the optical signal from a surface plasmon wave interacting with a redox dye reporter. The device is formed by incorporating a sandwich immunoassay onto the surface of a plasmonic device mounted in a micro-electrochemical flow cell, where it is functionalized with a monoclonal antibody aimed to a specific target pathogen antigen. Once the target antigen is bound to the surface, it promotes the capturing of a secondary polyclonal antibody that has been conjugated with a redox-active methylene blue dye. The methylene blue displays a reversible change in the complex refractive index throughout a reduction-oxidation transition, which generates an optical signal that can be electrochemically modulated and detected at high sensitivity. For proof-of-principle measurements, we have targeted the hemagglutinin protein from the H5N1 avian influenza A virus to demonstrate the capabilities of our device for detection and quantification of a critical influenza antigen. Our experimental results of the EC-SPR-based immunosensor under potential modulation showed a 300 pM limit of detection for the H5N1 antigen.
Collapse
|
17
|
A decade of Nucleic Acid Programmable Protein Arrays (NAPPA) availability: News, actors, progress, prospects and access. J Proteomics 2018; 198:27-35. [PMID: 30553075 DOI: 10.1016/j.jprot.2018.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022]
Abstract
Understanding the dynamic of the proteome is a critical challenge because it requires high sensitive methodologies in high-throughput formats in order to decipher its modifications and complexity. While molecular biology provides relevant information about cell physiology that may be reflected in post-translational changes, High-Throughput (HT) experimental proteomic techniques are essential to provide valuable functional information of the proteins, peptides and the interconnections between them. Hence, many methodological developments and innovations have been reported during the last decade. To study more dynamic protein networks and fine interactions, Nucleic Acid Programmable Protein Arrays (NAPPA) was introduced a decade ago. The tool is rapidly maturing and serving as a gateway to characterize biological systems and diseases thanks primarily to its accuracy, reproducibility, throughput and flexibility. Currently, NAPPA technology has proved successful in several research areas adding valuable information towards innovative diagnostic and therapeutic applications. Here, the basic and latest advances within this modern technology in basic, translational research are reviewed, in addition to presenting its exciting new directions. Our final goal is to encourage more scientists/researchers to incorporate this method, which can help to remove bottlenecks in their particular research or biomedical projects. SIGNIFICANCE: Nucleic Acid Programmable Protein Arrays (NAPPA) is becoming an essential tool for functional proteomics and protein-protein interaction studies. The technology impacts decisively on projects aiming massive screenings and the latest innovations like the multiplexing capability or printing consistency make this a promising method to be integrated in novel and combinatorial proteomic approaches.
Collapse
|
18
|
Peng Z, Lu J, Zhang L, Liu Y, Li J. Label-free imaging of epidermal growth factor receptor-induced response in single living cells. Analyst 2018; 143:5264-5270. [PMID: 30280173 DOI: 10.1039/c8an01534a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidermal growth factor receptor (EGFR), which belongs to the second-largest protein family for cell signal transduction, plays crucial roles in homeostasis, cellular organized patterns and most human cancers. In EGFR-activated signaling networks, the detection of the spatial and temporal dynamics of cascades that encode the many cell fates is still a challenge. Here, we report real-time imaging of epidermal growth factor (EGF)-induced EGFR activation and its signaling cascade in single A431 cells using surface plasmon resonance (SPR) microscopy. A two-phase SPR response pattern was observed within 30 min after EGF treatment, including a positive SPR response that was related to the EGFR-activated mass redistribution in the first 600 s, and a subsequent negative SPR signal caused by the morphological change of the cells. Furthermore, the inhibitor analysis verified that AG1478 inhibited the response from the whole the cell, whereas cytochalasin B strongly inhibited the response from the cell edge region.
Collapse
Affiliation(s)
- Zanying Peng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Jin Lu
- Department of Electrical and Systems Engineering, Washington University in St Louis, MO 63130, USA
| | - Ling Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Yang Liu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Ma TF, Chen YP, Guo JS, Wang W, Fang F. Cellular analysis and detection using surface plasmon resonance imaging. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Cao Y, Griffith B, Bhomkar P, Wishart DS, McDermott MT. Functionalized gold nanoparticle-enhanced competitive assay for sensitive small-molecule metabolite detection using surface plasmon resonance. Analyst 2018; 143:289-296. [DOI: 10.1039/c7an01680h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A functionalized gold nanoparticle-enhanced competitive assay was developed to overcome the sensitivity challenge associated with direct SPR sensing of small-molecule metabolites.
Collapse
Affiliation(s)
- Yong Cao
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
- National Institute for Nanotechnology
| | | | | | - David S. Wishart
- National Institute for Nanotechnology
- Edmonton
- Canada
- Department of Computing Science
- 2-21 Athabasca Hall
| | - Mark T. McDermott
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
- National Institute for Nanotechnology
| |
Collapse
|
21
|
Kim JY, Zeng ZC, Xiao L, Schultz ZD. Elucidating Protein/Ligand Recognition with Combined Surface Plasmon Resonance and Surface Enhanced Raman Spectroscopy. Anal Chem 2017; 89:13074-13081. [PMID: 29135238 DOI: 10.1021/acs.analchem.7b04246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ability to distinguish between specific and nonspecific binding is important for assessing the interactions between protein receptors and ligands. Surface plasmon resonance (SPR) spectroscopy is an advanced tool to measure binding events, yet the ability to distinguish between specific and nonspecific binding remains a limitation. To address this problem, we use SPR spectroscopy correlated with surface enhanced Raman scattering (SERS). The chemical information present in SERS spectra provides insight into the molecular interactions between functionalized nanoparticles and proteins, which are not detectable by SPR alone. Using a custom instrument with the Kretschmann configuration, we successfully demonstrate simultaneous affinity and the chemical characterization of streptavidin-functionalized gold nanoparticles (STV-NPs) binding to biotin immobilized on a gold film in both air and flowing phosphate buffered saline (PBS). The SPR performance is consistent with that of previous reports. The association constant (KA) for streptavidin/biotin and STV-NPs/biotin interactions observed (2 ± 1 × 107 M-1 and 2.4 ± 0.3 × 1010 M-1, respectively) agree with literature values and show a strong avidity effect associated with the STV-NPs. The SERS scattering from STV-NPs is excited by the surface plasmon polariton and collected from an objective lens mounted over the fluidic channel. The SERS spectra are recorded simultaneously with the SPR sensorgram, and the detected Raman bands provide chemical insight into the binding event. Multivariate curve resolution analysis of the spectra can differentiate specific from nonspecific binding. This label-free, real time, and surface sensitive detection method provides chemical information to protein/ligand binding affinity measurements.
Collapse
Affiliation(s)
- Ju-Young Kim
- Department of Chemistry and Biochemistry, University of Notre Dame , 140 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Zhi-Cong Zeng
- Department of Chemistry and Biochemistry, University of Notre Dame , 140 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Lifu Xiao
- Department of Chemistry and Biochemistry, University of Notre Dame , 140 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame , 140 McCourtney Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
22
|
Gagarinova A, Phanse S, Cygler M, Babu M. Insights from protein-protein interaction studies on bacterial pathogenesis. Expert Rev Proteomics 2017; 14:779-797. [DOI: 10.1080/14789450.2017.1365603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
23
|
Yuan L, Tao N, Wang W. Plasmonic Imaging of Electrochemical Impedance. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:183-200. [PMID: 28301751 DOI: 10.1146/annurev-anchem-061516-045150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) measures the frequency spectrum of an electrochemical interface to resist an alternating current. This method allows label-free and noninvasive studies on interfacial adsorption and molecular interactions and has applications in biosensing and drug screening. Although powerful, traditional EIS lacks spatial resolution or imaging capability, hindering the study of heterogeneous electrochemical processes on electrodes. We have recently developed a plasmonics-based electrochemical impedance technique to image local electrochemical impedance with a submicron spatial resolution and a submillisecond temporal resolution. In this review, we provide a systematic description of the theory, instrumentation, and data analysis of this technique. To illustrate its present and future applications, we further describe several selected samples analyzed with this method, including protein microarrays, two-dimensional materials, and single cells. We conclude by summarizing the technique's unique features and discussing the remaining challenges and new directions of its application.
Collapse
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
| |
Collapse
|
24
|
Hinman SS, Cheng Q. Bioinspired Assemblies and Plasmonic Interfaces for Electrochemical Biosensing. J Electroanal Chem (Lausanne) 2016; 781:136-146. [PMID: 28163664 PMCID: PMC5283611 DOI: 10.1016/j.jelechem.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrochemical biosensing represents a collection of techniques that may be utilized for capture and detection of biomolecules in both simple and complex media. While the instrumentation and technological aspects play important roles in detection capabilities, the interfacial design aspects are of equal importance, and often, those inspired by nature produce the best results. This review highlights recent material designs, recognition schemes, and method developments as they relate to targeted electrochemical analysis for biological systems. This includes the design of electrodes functionalized with peptides, proteins, nucleic acids, and lipid membranes, along with nanoparticle mediated signal amplification mechanisms. The topic of hyphenated surface plasmon resonance assays is also discussed, as this technique may be performed concurrently with complementary and/or confirmatory measurements. Together, smart materials and experimental designs will continue to pave the way for complete biomolecular analyses of complex and technically challenging systems.
Collapse
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
| | - Quan Cheng
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California – Riverside, Riverside, CA 92521, USA
| |
Collapse
|
25
|
Fang Y, Wang H, Yu H, Liu X, Wang W, Chen HY, Tao NJ. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles. Acc Chem Res 2016; 49:2614-2624. [PMID: 27662069 DOI: 10.1021/acs.accounts.6b00348] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electrochemical reactions are involved in many natural phenomena, and are responsible for various applications, including energy conversion and storage, material processing and protection, and chemical detection and analysis. An electrochemical reaction is accompanied by electron transfer between a chemical species and an electrode. For this reason, it has been studied by measuring current, charge, or related electrical quantities. This approach has led to the development of various electrochemical methods, which have played an essential role in the understanding and applications of electrochemistry. While powerful, most of the traditional methods lack spatial and temporal resolutions desired for studying heterogeneous electrochemical reactions on electrode surfaces and in nanoscale materials. To overcome the limitations, scanning probe microscopes have been invented to map local electrochemical reactions with nanometer resolution. Examples include the scanning electrochemical microscope and scanning electrochemical cell microscope, which directly image local electrochemical reaction current using a scanning electrode or pipet. The use of a scanning probe in these microscopes provides high spatial resolution, but at the expense of temporal resolution and throughput. This Account discusses an alternative approach to study electrochemical reactions. Instead of measuring electron transfer electrically, it detects the accompanying changes in the reactant and product concentrations on the electrode surface optically via surface plasmon resonance (SPR). SPR is highly surface sensitive, and it provides quantitative information on the surface concentrations of reactants and products vs time and electrode potential, from which local reaction kinetics can be analyzed and quantified. The plasmonic approach allows imaging of local electrochemical reactions with high temporal resolution and sensitivity, making it attractive for studying electrochemical reactions in biological systems and nanoscale materials with high throughput. The plasmonic approach has two imaging modes: electrochemical current imaging and interfacial impedance imaging. The former images local electrochemical current associated with electrochemical reactions (faradic current), and the latter maps local interfacial impedance, including nonfaradic contributions (e.g., double layer charging). The plasmonic imaging technique can perform voltammetry (cyclic or square wave) in an analogous manner to the traditional electrochemical methods. It can also be integrated with bright field, dark field, and fluorescence imaging capabilities in one optical setup to provide additional capabilities. To date the plasmonic imaging technique has found various applications, including mapping of heterogeneous surface reactions, analysis of trace substances, detection of catalytic reactions, and measurement of graphene quantum capacitance. The plasmonic and other emerging optical imaging techniques (e.g., dark field and fluorescence microscopy), together with the scanning probe-based electrochemical imaging and single nanoparticle analysis techniques, provide new capabilities for one to study single nanoparticle electrochemistry with unprecedented spatial and temporal resolutions. In this Account, we focus on imaging of electrochemical reactions at single nanoparticles.
Collapse
Affiliation(s)
- Yimin Fang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hui Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hui Yu
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xianwei Liu
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Wei Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - N. J. Tao
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Lu J, Yang Y, Wang W, Li J, Tao N, Wang S. Label-Free Imaging of Histamine Mediated G Protein-Coupled Receptors Activation in Live Cells. Anal Chem 2016; 88:11498-11503. [PMID: 27802015 PMCID: PMC5144837 DOI: 10.1021/acs.analchem.6b02677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest protein family for cell signal transduction, and most of them are crucial drug targets. Conventional label-free assays lack the spatial information to address the heterogeneous response from single cells after GPCRs activation. Here, we reported a GPCRs study in live cells using plasmonic-based electrochemical impedance microscopy. This label-free optical imaging platform is able to resolve responses from individual cells with subcellular resolution. Using this platform, we studied the histamine mediated GPCRs activation and revealed spatiotemporal heterogeneity of cellular downstream responses. Triphasic responses were observed from individual HeLa cells upon histamine stimulation. A quick peak P1 in less than 10 s was attributed to the GPCRs triggered calcium release. An inverted P2 phase within 1 min was attributed to the alternations of cell-matrix adhesion after the activation of Protein Kinase C (PKC). The main peak (P3) around 3-6 min after the histamine treatment was due to dynamic mass redistribution and showed a dose-dependent response with a half-maximal effective concentration (EC50) of 3.9 ± 1.2 μM. Heterogeneous P3 responses among individual cells were observed, particularly at high histamine concentration, indicating diverse histamine H1 receptor expression level in the cell population.
Collapse
Affiliation(s)
- Jin Lu
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University , Tempe, Arizona 85287, United States.,Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University , Beijing 100084, China
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University , Tempe, Arizona 85287, United States.,School of Electrical Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, United States
| | - Wei Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University , Tempe, Arizona 85287, United States
| | - Jinghong Li
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University , Beijing 100084, China
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University , Tempe, Arizona 85287, United States.,School of Electrical Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
27
|
Applications in high-content functional protein microarrays. Curr Opin Chem Biol 2016; 30:21-27. [DOI: 10.1016/j.cbpa.2015.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/11/2015] [Indexed: 12/19/2022]
|
28
|
Yin LL, Wang SP, Shan XN, Zhang ST, Tao NJ. Quantification of protein interaction kinetics in a micro droplet. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:114101. [PMID: 26628149 PMCID: PMC4636506 DOI: 10.1063/1.4934802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.
Collapse
Affiliation(s)
- L L Yin
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - S P Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - X N Shan
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - S T Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - N J Tao
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
29
|
Zhang F, Wang S, Yin L, Yang Y, Guan Y, Wang W, Xu H, Tao N. Quantification of epidermal growth factor receptor expression level and binding kinetics on cell surfaces by surface plasmon resonance imaging. Anal Chem 2015; 87:9960-5. [PMID: 26368334 PMCID: PMC4836855 DOI: 10.1021/acs.analchem.5b02572] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER-1) is a membrane bound protein that has been associated with a variety of solid tumors and the control of cell survival, proliferation, and metabolism. Quantification of the EGFR expression level in cell membranes and the interaction kinetics with drugs are thus important for cancer diagnosis and treatment. Here we report mapping of the distribution and interaction kinetics of EGFR in their native environment with the surface plasmon resonance imaging (SPRi) technique. The monoclonal anti-EGFR antibody was used as a model drug in this study. The binding of the antibody to EGFR overexpressed A431 cells was monitored in real time, which was found to follow the first-order kinetics with an association rate constant (ka) and dissociation rate constant (kd) of (2.7 ± 0.6) × 10(5) M(-1) s(-1) and (1.4 ± 0.5) × 10(-4) s(-1), respectively. The dissociation constant (KD) was determined to be 0.53 ± 0.26 nM with up to seven-fold variation among different individual A431 cells. In addition, the averaged A431 cell surface EGFR density was found to be 636/μm(2) with an estimation of 5 × 10(5) EGFR per cell. Additional measurement also revealed that different EGFR positive cell lines (A431, HeLa, and A549) show receptor density dependent anti-EGFR binding kinetics. The results demonstrate that SPRi is a valuable tool for direct quantification of membrane protein expression level and ligand binding kinetics at single cell resolution. Our findings show that the local environment affects the drug-receptor interactions, and in situ measurement of membrane protein binding kinetics is important.
Collapse
Affiliation(s)
- Fenni Zhang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Shaopeng Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Linliang Yin
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunze Yang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Yan Guan
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093. China
| | - Han Xu
- Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Nongjian Tao
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093. China
| |
Collapse
|
30
|
Díez P, González-González M, Lourido L, Dégano RM, Ibarrola N, Casado-Vela J, LaBaer J, Fuentes M. NAPPA as a Real New Method for Protein Microarray Generation. MICROARRAYS 2015; 4:214-27. [PMID: 27600221 PMCID: PMC4996395 DOI: 10.3390/microarrays4020214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/30/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
Nucleic Acid Programmable Protein Arrays (NAPPA) have emerged as a powerful and innovative technology for the screening of biomarkers and the study of protein-protein interactions, among others possible applications. The principal advantages are the high specificity and sensitivity that this platform offers. Moreover, compared to conventional protein microarrays, NAPPA technology avoids the necessity of protein purification, which is expensive and time-consuming, by substituting expression in situ with an in vitro transcription/translation kit. In summary, NAPPA arrays have been broadly employed in different studies improving knowledge about diseases and responses to treatments. Here, we review the principal advances and applications performed using this platform during the last years.
Collapse
Affiliation(s)
- Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - María González-González
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Lucía Lourido
- Rheumatology Division, ProteoRed/ISCIII Proteomics Group, INIBIC, Hospital Universitario de A Coruña, A Coruña 15006, Spain.
| | - Rosa M Dégano
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Nieves Ibarrola
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Juan Casado-Vela
- Biotechnology National Centre, Spanish National Research Council (CSIC), Madrid 28049, Spain.
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287, USA.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| |
Collapse
|
31
|
Dallaire AM, Patskovsky S, Vallée-Bélisle A, Meunier M. Electrochemical plasmonic sensing system for highly selective multiplexed detection of biomolecules based on redox nanoswitches. Biosens Bioelectron 2015; 71:75-81. [PMID: 25889347 DOI: 10.1016/j.bios.2015.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/24/2015] [Indexed: 02/01/2023]
Abstract
In this paper, we present the development of a nanoswitch-based electrochemical surface plasmon resonance (eSPR) transducer for the multiplexed and selective detection of DNA and other biomolecules directly in complex media. To do so, we designed an experimental set-up for the synchronized measurements of electrochemical and electro-plasmonic responses to the activation of multiple electrochemically labeled structure-switching biosensors. As a proof of principle, we adapted this strategy for the detection of DNA sequences that are diagnostic of two pathogens (drug-resistant tuberculosis and Escherichia coli) by using methylene blue-labeled structure-switching DNA stem-loop. The experimental sensitivity of the switch-based eSPR sensor is estimated at 5 nM and target detection is achieved within minutes. Each sensor is reusable several times with a simple 8M urea washing procedure. We then demonstrated the selectivity and multiplexed ability of these switch-based eSPR by simultaneously detecting two different DNA sequences. We discuss the advantages of the proposed eSPR approach for the development of highly selective sensor devices for the rapid and reliable detection of multiple molecular markers in complex samples.
Collapse
Affiliation(s)
- Anne-Marie Dallaire
- Laser Processing and Plasmonics Laboratory, École Polytechnique de Montréal, Department of Engineering Physics, C.P. 6079, succ. Centre-Ville, Montréal, QC, Canada H3C 3A7
| | - Sergiy Patskovsky
- Laser Processing and Plasmonics Laboratory, École Polytechnique de Montréal, Department of Engineering Physics, C.P. 6079, succ. Centre-Ville, Montréal, QC, Canada H3C 3A7
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors and Nanomachines, Université de Montréal, Department of Chemistry, C.P. 6128, succ. Centre-Ville, Montréal, QC, Canada H3C 3J7.
| | - Michel Meunier
- Laser Processing and Plasmonics Laboratory, École Polytechnique de Montréal, Department of Engineering Physics, C.P. 6079, succ. Centre-Ville, Montréal, QC, Canada H3C 3A7.
| |
Collapse
|