1
|
Fernandes WM, Harris N, Zamalloa A, Adofina L, Srinivasan P, Menon K, Heaton N, Miquel R, Zen Y, Kelly G, Jarvis JA, Oregioni A, Chokshi S, Riva A, Cox IJ. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Paired Clinical Liver Tissue Samples from Hepatocellular Cancer and Surrounding Region. Int J Mol Sci 2024; 25:8924. [PMID: 39201610 PMCID: PMC11354908 DOI: 10.3390/ijms25168924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
The global burden of liver cancer is increasing. Timely diagnosis is important for optimising the limited available treatment options. Understanding the metabolic consequences of hepatocellular carcinoma (HCC) may lead to more effective treatment options. We aimed to document metabolite differences between HCC and matched surrounding tissues of varying aetiology, obtained at the time of liver resection, and to interpret metabolite changes with clinical findings. High-resolution magic angle spinning nuclear magnetic resonance (HRMAS-NMR) spectroscopy analyses of N = 10 paired HCC and surrounding non-tumour liver tissue samples were undertaken. There were marked HRMAS-NMR differences in lipid levels in HCC tissue compared to matched surrounding tissue and more subtle changes in low-molecular-weight metabolites, particularly when adjusting for patient-specific variability. Differences in lipid-CH3, lipid-CH2, formate, and acetate levels were of particular interest. The obvious differences in lipid content highlight the intricate interplay between metabolic adaptations and cancer cell survival in the complex microenvironment of liver cancer. Differences in formate and acetate might relate to bacterial metabolites. Therefore, documentation of metabolites in HCC tissue according to histology findings in patients is of interest for personalised medicine approaches and for tailoring targeted treatment strategies.
Collapse
Affiliation(s)
- Wendy M. Fernandes
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, UK (A.R.)
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Nicola Harris
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, UK (A.R.)
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Ane Zamalloa
- Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Lissette Adofina
- Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Parthi Srinivasan
- Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Krishna Menon
- Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Nigel Heaton
- Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Rosa Miquel
- Liver Histopathology Laboratory, Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Yoh Zen
- Liver Histopathology Laboratory, Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Geoff Kelly
- MRC Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James A. Jarvis
- Randall Centre for Cell & Molecular Biophysics and Centre for Biomolecular Spectroscopy, King’s College London, London SE1 1UL, UK
| | - Alain Oregioni
- MRC Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, UK (A.R.)
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, UK (A.R.)
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - I. Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, UK (A.R.)
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
2
|
Wong A. High-resolution magic-angle spinning NMR metabolic profiling with spatially localized spectroscopy under slow sample spinning. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6302-6308. [PMID: 37965882 DOI: 10.1039/d3ay01812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Owing to its feasibility and versatility, High-Resolution Magic-Angle Spinning (HRMAS) NMR spectroscopy is considered an essential analytical technique in metabolomics for assessing the biochemical composition of tissue samples. Localized profiling with HRMAS has recently emerged and shown promise for spatial resolution of metabolic profiles within the sampling tissues. However, the requisite sample spinning in a few kHz can perturb the tissues spatially and morphologically. This study explored a simple approach to slow sample spinning experiments at 500 Hz without needing pulse-assist sideband suppression experiments to acquire localized spectral data. Slow-spinning localized one-and two-dimensional spectroscopy, including Total Correlation Spectroscopy (TOCSY), were explored on soft tissues for metabolic profiling. We also examined inhomogeneous radiofrequency B1 field distribution across the sampling volume, which can affect the quantification analysis.
Collapse
Affiliation(s)
- Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Ghini V, Meoni G, Vignoli A, Di Cesare F, Tenori L, Turano P, Luchinat C. Fingerprinting and profiling in metabolomics of biosamples. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:105-135. [PMID: 38065666 DOI: 10.1016/j.pnmrs.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 12/18/2023]
Abstract
This review focuses on metabolomics from an NMR point of view. It attempts to cover the broad scope of metabolomics and describes the NMR experiments that are most suitable for each sample type. It is addressed not only to NMR specialists, but to all researchers who wish to approach metabolomics with a clear idea of what they wish to achieve but not necessarily with a deep knowledge of NMR. For this reason, some technical parts may seem a bit naïve to the experts. The review starts by describing standard metabolomics procedures, which imply the use of a dedicated 600 MHz instrument and of four properly standardized 1D experiments. Standardization is a must if one wants to directly compare NMR results obtained in different labs. A brief mention is also made of standardized pre-analytical procedures, which are even more essential. Attention is paid to the distinction between fingerprinting and profiling, and the advantages and disadvantages of fingerprinting are clarified. This aspect is often not fully appreciated. Then profiling, and the associated problems of signal assignment and quantitation, are discussed. We also describe less conventional approaches, such as the use of different magnetic fields, the use of signal enhancement techniques to increase sensitivity, and the potential of field-shuttling NMR. A few examples of biomedical applications are also given, again with the focus on NMR techniques that are most suitable to achieve each particular goal, including a description of the most common heteronuclear experiments. Finally, the growing applications of metabolomics to foodstuffs are described.
Collapse
Affiliation(s)
- Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy; Giotto Biotech S.r.l., Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Wishart DS, Cheng LL, Copié V, Edison AS, Eghbalnia HR, Hoch JC, Gouveia GJ, Pathmasiri W, Powers R, Schock TB, Sumner LW, Uchimiya M. NMR and Metabolomics-A Roadmap for the Future. Metabolites 2022; 12:678. [PMID: 35893244 PMCID: PMC9394421 DOI: 10.3390/metabo12080678] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021-the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements.
Collapse
Affiliation(s)
- David S. Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Leo L. Cheng
- Department of Pathology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA;
| | - Arthur S. Edison
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (A.S.E.); (G.J.G.); (M.U.)
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602-0001, USA
| | - Hamid R. Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA; (H.R.E.); (J.C.H.)
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA; (H.R.E.); (J.C.H.)
| | - Goncalo J. Gouveia
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (A.S.E.); (G.J.G.); (M.U.)
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602-0001, USA
| | - Wimal Pathmasiri
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Tracey B. Schock
- National Institute of Standards and Technology (NIST), Chemical Sciences Division, Charleston, SC 29412, USA;
| | - Lloyd W. Sumner
- Interdisciplinary Plant Group, MU Metabolomics Center, Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mario Uchimiya
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (A.S.E.); (G.J.G.); (M.U.)
| |
Collapse
|
6
|
Metabolomic analysis of endometrial cancer by high-resolution magic angle spinning NMR spectroscopy. Arch Gynecol Obstet 2022; 306:2155-2166. [PMID: 35567635 DOI: 10.1007/s00404-022-06587-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To analyze endometrial metabolite profiles between patients with endometrial cancer and controls. METHODS Seventeen (17) women with endometrium cancer and 18 controls were enrolled in this study. 1H HR-MAS (High Resolution-Magic Angle Spinning) NMR (Nuclear Magnetic Resonance) spectroscopy data obtained from endometrial tissue samples of patients with endometrial cancer and control group were analyzed with bioinformatics methods. RESULTS Principal component analysis (PCA) and the partial least squares discriminant analysis (PLS-DA) score plots obtained with the multivariate statistical analysis of pre-processed spectral data shows a separation between the samples from patients with endometrial cancer and controls. Analysis results suggest that the levels of lactate, glucose, o-phosphoethanolamine, choline, glycerophosphocholine, phosphocholine, leucine, isoleucine, valine, glutamate, glutamine, n-acetyltyrosine, methionine, taurine, alanine, aspartate and phenylalanine are increased in patients with endometrial cancer compared to the controls. CONCLUSION The metabolomics signature of patients with endometrial cancer is different from that of benign endometrial tissue.
Collapse
|
7
|
Piersanti E, Rezig L, Tranchida F, El-Houri W, Abagana SM, Campredon M, Shintu L, Yemloul M. Evaluation of the Rotating-Frame Relaxation ( T1ρ) Filter and Its Application in Metabolomics as an Alternative to the Transverse Relaxation ( T2) Filter. Anal Chem 2021; 93:8746-8753. [PMID: 34133140 DOI: 10.1021/acs.analchem.0c05251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nuclear magnetic resonance (NMR)-based metabolomic studies commonly involve the use of T2 filter pulse sequences to eliminate or attenuate the broad signals from large molecules and improve spectral resolution. In this paper, we demonstrate that the T1ρ filter-based pulse sequence represents an interesting alternative because it allows the stability and the reproducibility needed for statistical analysis. The integrity of the samples and the stability of the instruments were assessed for different filter durations and amplitudes. We showed that the T1ρ filter pulse sequence did not induce sample overheating for a filter duration of up to 500 ms. The reproducibility was evaluated and compared with the T2 filter in serum and liver samples. The implementation is relatively simple and provides the same statistical and analytical results as those obtained with the standard filters. Regarding tissues analysis, because the duration of the filter is the same as that of the spin-lock, the synchronization of the echo delays with the magic angle spinning (MAS) rate is no longer necessary as for T2 filter-based sequences. The results presented in this article aim at establishing a new protocol to improve metabolomic studies and pave the way for future developments on T1ρ alternative filters, in liquid and HR-MAS NMR experiments.
Collapse
Affiliation(s)
- Elena Piersanti
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2,Marseille, France
| | - Lamya Rezig
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2,Marseille, France
| | - Fabrice Tranchida
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2,Marseille, France
| | - Wael El-Houri
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2,Marseille, France
| | - Seidou M Abagana
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2,Marseille, France
| | - Mylène Campredon
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2,Marseille, France
| | - Laetitia Shintu
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2,Marseille, France
| | - Mehdi Yemloul
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2,Marseille, France
| |
Collapse
|
8
|
Vonhof EV, Piotto M, Holmes E, Lindon JC, Nicholson JK, Li JV. Improved Spatial Resolution of Metabolites in Tissue Biopsies Using High-Resolution Magic-Angle-Spinning Slice Localization NMR Spectroscopy. Anal Chem 2020; 92:11516-11519. [PMID: 32815363 DOI: 10.1021/acs.analchem.0c02377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-resolution magic-angle-spinning 1H NMR spectroscopy (HR-MAS NMR) is a well-established technique for assessing the biochemical composition of intact tissue samples. In this study, we utilized a method based on HR-MAS NMR spectroscopy with slice localization (SLS) to achieve spatial resolution of metabolites. The obtained 7 slice spectra from each of the model samples (i.e., chicken thigh muscle with skin and murine renal biopsy including medulla (M) and cortex (C)) showed distinct metabolite compositions. Furthermore, we analyzed previously acquired 1H HR-MAS NMR spectra of separated cortex and medulla samples using multivariate statistical methods. Concentrations of glycerophosphocholine (GPC) were found to be significantly higher in the renal medulla compared to the cortex. Using GPC as a biomarker, we identified the tissue slices that were predominantly the cortex or medulla. This study demonstrates that HR-MAS SLS combined with multivariate statistics has the potential for identifying tissue heterogeneity and detailed biochemical characterization of complex tissue samples.
Collapse
Affiliation(s)
- Elisabeth V Vonhof
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Martial Piotto
- Bruker Biospin SAS, 34 Rue de l'Industrie, 67160 Wissembourg, France
| | - Elaine Holmes
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, Western Australia 6150, Australia
| | - John C Lindon
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Jeremy K Nicholson
- The Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, Western Australia 6150, Australia
| | - Jia V Li
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Jensen HM, Bertram HC. The magic angle view to food: magic-angle spinning (MAS) NMR spectroscopy in food science. Metabolomics 2019; 15:44. [PMID: 30868337 DOI: 10.1007/s11306-019-1504-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023]
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy has been used in food science and nutritional studies for decades and is one of the major analytical platforms in metabolomics. Many foods are solid or at least semi-solid, which denotes that the molecular motions are restricted as opposed to in pure liquids. While the majority of NMR spectroscopy is performed on liquid samples and a solid material gives rise to constraints in terms of many chemical analyses, the magic angle thrillingly enables the application of NMR spectroscopy also on semi-solid and solid materials. This paper attempts to review how magic-angle spinning (MAS) NMR is used from 'farm-to-fork' in food science.
Collapse
Affiliation(s)
- Henrik Max Jensen
- DuPont Nutrition Biosciences ApS, Edwin Rahrsvej 38, 8220, Brabrand, Denmark
| | | |
Collapse
|
10
|
HR-MAS NMR Based Quantitative Metabolomics in Breast Cancer. Metabolites 2019; 9:metabo9020019. [PMID: 30678289 PMCID: PMC6410210 DOI: 10.3390/metabo9020019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/23/2023] Open
Abstract
High resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy is increasingly used for profiling of breast cancer tissue, delivering quantitative information for approximately 40 metabolites. One unique advantage of the method is that it can be used to analyse intact tissue, thereby requiring only minimal sample preparation. Importantly, since the method is non-destructive, it allows further investigations of the same specimen using for instance transcriptomics. Here, we discuss technical aspects critical for a successful analysis—including sample handling, measurement conditions, pulse sequences for one- and two dimensional analysis, and quantification methods—and summarize available studies, with a focus on significant associations of metabolite levels with clinically relevant parameters.
Collapse
|
11
|
Downes DP, Collins JHP, Lama B, Zeng H, Nguyen T, Keller G, Febo M, Long JR. Characterization of Brain Metabolism by Nuclear Magnetic Resonance. Chemphyschem 2019; 20:216-230. [PMID: 30536696 PMCID: PMC6501841 DOI: 10.1002/cphc.201800917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Indexed: 12/15/2022]
Abstract
The noninvasive, quantitative ability of nuclear magnetic resonance (NMR) spectroscopy to characterize small molecule metabolites has long been recognized as a major strength of its application in biology. Numerous techniques exist for characterizing metabolism in living, excised, or extracted tissue, with a particular focus on 1 H-based methods due to the high sensitivity and natural abundance of protons. With the increasing use of high magnetic fields, the utility of in vivo 1 H magnetic resonance spectroscopy (MRS) has markedly improved for measuring specific metabolite concentrations in biological tissues. Higher fields, coupled with recent developments in hyperpolarization, also enable techniques for complimenting 1 H measurements with spectroscopy of other nuclei, such as 31 P and 13 C, and for combining measurements of metabolite pools with metabolic flux measurements. We compare ex vivo and in vivo methods for studying metabolism in the brain using NMR and highlight insights gained through using higher magnetic fields, the advent of dissolution dynamic nuclear polarization, and combining in vivo MRS and ex vivo NMR approaches.
Collapse
Affiliation(s)
- Daniel P Downes
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
| | - James H P Collins
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, FL, 32610-0015, United States
| | - Bimala Lama
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309-0215, United States
| | - Huadong Zeng
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, FL, 32610-0015, United States
| | - Tan Nguyen
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
| | - Gabrielle Keller
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Box 100256, Gainesville, FL, 32610-0256, United States
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, FL, 32610-0015, United States
| |
Collapse
|
12
|
Flores IS, Martinelli BCB, Pinto VS, Queiroz LHK, Lião LM. Important issues in plant tissues analyses by HR-MAS NMR. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:5-13. [PMID: 30091158 DOI: 10.1002/pca.2785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/21/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy enables the analysis of the metabolic profile of plant and animal tissues under close to natural conditions, as well as of other heterogeneous natural or synthetic materials. Neither sample pretreatment is required after fragmentation nor powdering of the sample before insertion into the rotor. However, the efficiency of the method depends strongly on the sample preparation, rotor insertion procedure, and analysis conditions. OBJECTIVE To identify some of the variables that affect the spectral data and to propose solutions that minimise their impact on the quality of the analyses and results. METHODS Dried plant tissues were powdered, weighed, and homogenised in a 50 μL rotor with an optimised volume of deuterated solvent and sample in order to prevent material from escaping during spacer insertion, avoiding variations in magnetic susceptibility. Factors affecting the quality of HR-MAS NMR analysis such as particle size, sample and solvent amounts, solvent polarity, swelling time, rotor manipulation and pulse sequence setting were evaluated. RESULTS A strong correlation was observed between the signal area and the particle size of the powdered sample. The spectral profile varied depending on the deuterated solvent used. An incubation period was necessary to achieve adequate swelling of the sample and to ensure good data reproducibility. Proper sealing of the rotor, number of cycles and τ time on cpmgpr1d pulse sequence were found to affect the signal areas. CONCLUSION The study highlights the need for standardised sample preparation and instrumental setup protocols in order to achieve high reproducibility and obtain reliable data from HR-MAS NMR analyses.
Collapse
Affiliation(s)
| | | | - Vinicius S Pinto
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luiz H K Queiroz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luciano M Lião
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
13
|
Diserens G, Hertig D, Vermathen M, Legeza B, Flück CE, Nuoffer JM, Vermathen P. Metabolic stability of cells for extended metabolomical measurements using NMR. A comparison between lysed and additionally heat inactivated cells. Analyst 2018; 142:465-471. [PMID: 28074201 DOI: 10.1039/c6an02195f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
NMR measurements for metabolic characterization of biological samples like cells, biopsies or plasma, may take several hours for advanced methods. Preanalytical issues, such as sample preparation and stability over the measurement time, may have a high impact on metabolite content, and potentially lead to misinterpretation. The aim of this study was therefore to investigate by 1H HR-MAS NMR the impact of different cell handling preparation protocols on the stability of the cell metabolite content over the measurement time. For this purpose, the metabolite content of fibroblasts and adrenal cells were measured at different time points after lysis and after additional heating. Interestingly the results showed similar metabolite concentrations between lysed and lysed-heated cells at the beginning of the measurement, but increasing differences after some hours of measurement. In lysed cells, metabolism was ongoing, producing metabolite changes over time, contrary to a stable metabolite content of the lysed-heated cells. These results were confirmed in both fibroblasts and adrenal cells. Therefore, in order to minimize metabolite content modifications over the measurement time, it is suggested to use cell lysis in combination with heat inactivation for extended HR-MAS NMR measurements.
Collapse
Affiliation(s)
- G Diserens
- Departments of Clinical Research and Radiology, University of Bern, Bern, Switzerland.
| | - D Hertig
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland and University Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland
| | - M Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - B Legeza
- Pediatric Endocrinology and Diabetology of the Department of Pediatrics and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - C E Flück
- Pediatric Endocrinology and Diabetology of the Department of Pediatrics and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - J M Nuoffer
- University Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland
| | - P Vermathen
- Departments of Clinical Research and Radiology, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
1H HR-MAS NMR spectroscopy to study the metabolome of the protozoan parasite Giardia lamblia. Talanta 2018; 188:429-441. [PMID: 30029398 DOI: 10.1016/j.talanta.2018.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022]
Abstract
Knowledge of the metabolic profile and exchange processes in the protozoan parasite Giardia lamblia is of importance for a better understanding of the biochemical processes and for the development of drugs to control diseases caused by G. lamblia. In the current paper, 1H High Resolution Magic Angle Spinning (HR-MAS) NMR spectroscopy was directly applied to G. lamblia trophozoite suspensions to analyze the detectable small metabolites with a minimum of intervention. Thirty-one components were identified with main contributions from amino acids such as alanine and ornithine. The reproducibility, variability, and stability of the metabolites were investigated. Citrulline was found to be formed as an intermediate and citrulline levels depended on the stage of cell growth. Glucose-1-phosphate was found to be formed in relatively high amounts after cell harvesting if enzymes were not inactivated. In addition, the metabolic footprint of Giardia trophozoites, i.e. changes in the culture medium induced by G. lamblia, was investigated by liquid state NMR spectroscopy of culture media before and after inoculation. A quantitative comparison of the NMR spectra revealed component changes in the culture media during growth. The results suggested that not glucose but rather arginine serves as main energy supply. Biochemical functions of intracellular components and their metabolic exchange with the culture medium are discussed. The results provide an important basis for the design of HR-MAS NMR based metabolomic studies of G. lamblia in particular and any protozoan parasite samples in general.
Collapse
|
15
|
Kikuchi J, Ito K, Date Y. Environmental metabolomics with data science for investigating ecosystem homeostasis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 104:56-88. [PMID: 29405981 DOI: 10.1016/j.pnmrs.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 05/08/2023]
Abstract
A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches.
Collapse
Affiliation(s)
- Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan.
| | - Kengo Ito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
16
|
Wong A, Lucas-Torres C. High-resolution Magic-angle Spinning (HR-MAS) NMR Spectroscopy. NMR-BASED METABOLOMICS 2018. [DOI: 10.1039/9781782627937-00133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Since the beginning of high-resolution magic-angle spinning (HR-MAS) NMR spectroscopy in 1990s, we have witnessed tremendous instrumentation and methodological advancements in the HR-MAS NMR technique for semisolids. With HR-MAS, it is now possible to acquire reliable high-quality spectra in a routine and high-throughput fashion, and it has become a well-integrated metabolic screening tool for ex vivo biospecimens such as tissue biopsies, cells and organisms for NMR-based metabolomics research. This chapter provides the basic principles of HR-MAS and describes a few recent noteworthy developments that could strengthen the role of HR-MAS as a frontline NMR technique for metabolomics.
Collapse
Affiliation(s)
- Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette France
| | | |
Collapse
|
17
|
Coutinho ID, Moraes TB, Mertz-Henning LM, Nepomuceno AL, Giordani W, Marcolino-Gomes J, Santagneli S, Colnago LA. Integrating High-Resolution and Solid-State Magic Angle Spinning NMR Spectroscopy and a Transcriptomic Analysis of Soybean Tissues in Response to Water Deficiency. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:529-540. [PMID: 28722224 DOI: 10.1002/pca.2702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Solid-state NMR (SSNMR) spectroscopy methods provide chemical environment and ultrastructural details that are not easily accessible by other non-destructive, high-resolution spectral techniques. High-resolution magic angle spinning (HR-MAS) has been widely used to obtain the metabolic profile of a heterogeneous sample, combining the resolution enhancement provided by MAS in SSNMR with the shimming and locking procedures in liquid-state NMR. OBJECTIVE In this work, we explored the feasibility of using the HR-MAS and SSNMR techniques to identify metabolic changes in soybean leaves subjected to water-deficient conditions. METHODOLOGY Control and water-deficient soybean leaves were analysed using one-dimensional (1D) HR-MAS and SSNMR. Total RNA was extracted from the leaves for the transcriptomic analysis. RESULTS The 1 H HR-MAS and CP-MAS 13 C{1 H} spectra of soybean leaves grown with and without water deficiency stress revealed striking differences in metabolites. A total of 30 metabolites were identified, and the impact of water deficiency on the metabolite profile of soybean leaves was to induce amino acid synthesis. High expression levels of genes required for amino acid biosynthesis were highly correlated with the compounds identified by 1 H HR-MAS. CONCLUSIONS The integration of the 1 H HR-MAS and SSNMR spectra with the transcriptomic data provided a complete picture of the major changes in the metabolic profile of soybeans in response to water deficiency. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Isabel D Coutinho
- Embrapa Instrumentação, XV de Novembro, 1452, Centro, 13560-970, São Carlos, São Carlos, Brazil
| | - Tiago Bueno Moraes
- Embrapa Instrumentação, XV de Novembro, 1452, Centro, 13560-970, São Carlos, São Carlos, Brazil
| | | | | | - Willian Giordani
- Londrina State University, Rodovia Celso Garcia Cid, Km 380, 86051-900, Londrina, Paraná, Brazil
| | - Juliana Marcolino-Gomes
- Embrapa Soja, Rodovia Carlos João Strass, Distrito de Warta, 86001-970, Londrina, Paraná, Brazil
| | - Silvia Santagneli
- Institute of Chemistry, University of São Paulo State, Rua Prof. Francisco Degni, 55, 14800-060, Araraquara, São Paulo, Brazil
| | - Luiz Alberto Colnago
- Embrapa Soja, Rodovia Carlos João Strass, Distrito de Warta, 86001-970, Londrina, Paraná, Brazil
| |
Collapse
|
18
|
Le Guennec A, Tayyari F, Edison AS. Alternatives to Nuclear Overhauser Enhancement Spectroscopy Presat and Carr-Purcell-Meiboom-Gill Presat for NMR-Based Metabolomics. Anal Chem 2017; 89:8582-8588. [PMID: 28737383 PMCID: PMC5588096 DOI: 10.1021/acs.analchem.7b02354] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
NMR metabolomics are primarily conducted with 1D nuclear Overhauser enhancement spectroscopy (NOESY) presat for water suppression and Carr-Purcell-Meiboom-Gill (CPMG) presat as a T2 filter to remove macromolecule signals. Others pulse sequences exist for these two objectives but are not often used in metabolomics studies, because they are less robust or unknown to the NMR metabolomics community. However, recent improvements on alternative pulse sequences provide attractive alternatives to 1D NOESY presat and CPMG presat. We focus this perspective on PURGE, a water suppression technique, and PROJECT presat, a T2 filter. These two pulse sequences, when optimized, performed at least on par with 1D NOESY presat and CPMG presat, if not better. These pulse sequences were tested on common samples for metabolomics, human plasma, and urine.
Collapse
Affiliation(s)
- Adrien Le Guennec
- Complex
Carbohydrate Research Center (CCRC), Departments of Genetics and Biochemistry
& Molecular Biology, and Institute of Bioinformatics, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United
States
| | - Fariba Tayyari
- Complex
Carbohydrate Research Center (CCRC), Departments of Genetics and Biochemistry
& Molecular Biology, and Institute of Bioinformatics, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United
States
| | - Arthur S. Edison
- Complex
Carbohydrate Research Center (CCRC), Departments of Genetics and Biochemistry
& Molecular Biology, and Institute of Bioinformatics, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United
States
| |
Collapse
|
19
|
Hepatic metabolic effects of Curcuma longa extract supplement in high-fructose and saturated fat fed rats. Sci Rep 2017; 7:5880. [PMID: 28724959 PMCID: PMC5517472 DOI: 10.1038/s41598-017-06220-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
The metabolic effects of an oral supplementation with a Curcuma longa extract, at a dose nutritionally relevant with common human use, on hepatic metabolism in rats fed a high fructose and saturated fatty acid (HFS) diet was evaluated. High-resolution magic-angle spinning NMR and GC/MS in combination with multivariate analysis have been employed to characterize the NMR metabolite profiles and fatty acid composition of liver tissue respectively. The results showed a clear discrimination between HFS groups and controls involving metabolites such as glucose, glycogen, amino acids, acetate, choline, lysophosphatidylcholine, phosphatidylethanolamine, and β-hydroxybutyrate as well as an increase of MUFAs and a decrease of n-6 and n-3 PUFAs. Although the administration of CL did not counteract deleterious effects of the HFS diet, some metabolites, namely some n-6 PUFA and n-3 PUFA, and betaine were found to increase significantly in liver samples from rats having received extract of curcuma compared to those fed the HFS diet alone. This result suggests that curcuminoids may affect the transmethylation pathway and/or osmotic regulation. CL extract supplementation in rats appears to increase some of the natural defences preventing the development of fatty liver by acting on the choline metabolism to increase fat export from the liver.
Collapse
|
20
|
Effective combined water and sideband suppression for low-speed tissue and in vivo MAS NMR. Anal Bioanal Chem 2017. [DOI: 10.1007/s00216-017-0450-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
- Department of Chemistry, University of Washington, Seattle, Washington 98109, United States
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| |
Collapse
|
22
|
Zhou IY, Fuss TL, Igarashi T, Jiang W, Zhou X, Cheng LL, Sun PZ. Tissue Characterization with Quantitative High-Resolution Magic Angle Spinning Chemical Exchange Saturation Transfer Z-Spectroscopy. Anal Chem 2016; 88:10379-10383. [PMID: 27709896 PMCID: PMC5441684 DOI: 10.1021/acs.analchem.6b03137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemical exchange saturation transfer (CEST) provides sensitive magnetic resonance (MR) contrast for probing dilute compounds via exchangeable protons, serving as an emerging molecular imaging methodology. CEST Z-spectrum is often acquired by sweeping radiofrequency saturation around bulk water resonance, offset by offset, to detect CEST effects at characteristic chemical shift offsets, which requires prolonged acquisition time. Herein, combining high-resolution magic angle spinning (HRMAS) with concurrent application of gradient and rf saturation to achieve fast Z-spectral acquisition, we demonstrated the feasibility of fast quantitative HRMAS CEST Z-spectroscopy. The concept was validated with phantoms, which showed excellent agreement with results obtained from conventional HRMAS MR spectroscopy (MRS). We further utilized the HRMAS Z-spectroscopy for fast ex vivo quantification of ischemic injury with rodent brain tissues after ischemic stroke. This method allows rapid and quantitative CEST characterization of biological tissues and shows potential for a host of biomedical applications.
Collapse
Affiliation(s)
- Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Taylor L. Fuss
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Takahiro Igarashi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Weiping Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Leo L. Cheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
23
|
Elwinger F, Furó I. High-resolution magic angle spinning (1) H NMR measurement of ligand concentration in solvent-saturated chromatographic beads. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:291-297. [PMID: 26791865 PMCID: PMC4819705 DOI: 10.1002/mrc.4370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/26/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Abstract
A method based on (1) H high-resolution magic angle spinning NMR has been developed for measuring concentration accurately in heterogeneous materials like that of ligands in chromatography media. Ligand concentration is obtained by relating the peak integrals for a butyl ligand in the spectrum of a water-saturated chromatography medium to the integral of the added internal reference. The method is fast, with capacity of 10 min total sample preparation and analysis time per sample; precise, with a reproducibility expressed as 1.7% relative standard deviation; and accurate, as indicated by the excellent agreement of derived concentration with that obtained previously by (13) C single-pulse excitation MAS NMR. The effects of radiofrequency field inhomogeneity, spin rate, temperature increase due to spinning, and distribution and re-distribution of medium and reference solvent both inside the rotor during spinning and between bulk solvent and pore space are discussed in detail. © 2016 The Authors Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Fredrik Elwinger
- Division of Applied Physical ChemistryKTH Royal Institute of TechnologyStockholmSweden
- GE Healthcare Bio‐Sciences ABUppsalaSweden
| | - István Furó
- Division of Applied Physical ChemistryKTH Royal Institute of TechnologyStockholmSweden
| |
Collapse
|
24
|
Shiokawa Y, Misawa T, Date Y, Kikuchi J. Application of Market Basket Analysis for the Visualization of Transaction Data Based on Human Lifestyle and Spectroscopic Measurements. Anal Chem 2016; 88:2714-9. [PMID: 26824632 DOI: 10.1021/acs.analchem.5b04182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the innovation of high-throughput metabolic profiling methods such as nuclear magnetic resonance (NMR), data mining techniques that can reveal valuable information from substantial data sets are constantly desired in this field. In particular, for the analytical assessment of various human lifestyles, advanced computational methods are ultimately needed. In this study, we applied market basket analysis, which is generally applied in social sciences such as marketing, and used transaction data derived from dietary intake information and urinary chemical data generated using NMR and inductively coupled plasma optical emission spectrometry measurements. The analysis revealed several relationships, such as fish diets with high trimethylamine N-oxide excretion and N-methylnicotinamide excreted at higher levels in the morning and produced from a protein that was consumed one day prior. Therefore, market basket analysis can be applied to metabolic profiling to effectively understand the relationships between metabolites and lifestyle.
Collapse
Affiliation(s)
- Yuka Shiokawa
- Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takuma Misawa
- Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University , 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
| |
Collapse
|
25
|
Wang KY, Chen H, Zhang ZY, Huang YQ, Chen Z. Two-Dimensional J-Resolved NMR Analyses of Fish and Its Products via Spatially Encoded Intermolecular Double-Quantum Coherences. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0334-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|