1
|
Lenar N, Drużyńska M, Piech R, Paczosa-Bator B. Ion-Selective Electrode for Nitrates Based on a Black PCV Membrane. Molecules 2024; 29:3473. [PMID: 39124878 PMCID: PMC11314076 DOI: 10.3390/molecules29153473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Carbon nanomaterials were introduced into this research as modifiers for polymeric membranes for single-piece electrodes, and their properties were studied for the case of nitrate-selective sensors. The use of graphene, carbon black and carbon nanotubes is shown to significantly improve the potentiometric response, while no redox response was observed. The use of carbon nanomaterials results in a near-Nernstian response (54 mV/pNO3-) towards nitrate ions over a wide linear range (from 10-1 to 10-6 M NO3-). The results obtained by chronopotentiometry and electrochemical impedance spectroscopy reveal little resistance, and the capacitance parameter is as high as 0.9 mF (for graphene-based sensor). The high electrical capacity of electrodes results in the good stability of the potentiometric response and a low potential drift (0.065 mV/h). Introducing carbon nanomaterials into the polymetric membrane, instead of using them as separate layers, allows for the simplification of the sensors' preparation procedure. With single-piece electrodes, one step of the procedure could be omitted, in comparison to the procedure for the preparation of solid-contact electrodes.
Collapse
Affiliation(s)
| | | | | | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.); (M.D.); (R.P.)
| |
Collapse
|
2
|
Mirabootalebi SO, Liu Y. Recent advances in nanomaterial-based solid-contact ion-selective electrodes. Analyst 2024; 149:3694-3710. [PMID: 38885067 DOI: 10.1039/d4an00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) are advanced potentiometric sensors with great capability to detect a wide range of ions for the monitoring of industrial processes and environmental pollutants, as well as the determination of electrolytes for clinical analysis. Over the past decades, the innovative design of ion-selective electrodes (ISEs), specifically SC-ISEs, to improve potential stability and miniaturization for in situ/real-time analysis, has attracted considerable interest. Recently, the utilisation of nanomaterials was particularly prominent in SC-ISEs due to their excellent physical and chemical properties. In this article, we review the recent applications of various types of nanostructured materials that are composed of carbon, metals and polymers for the development of SC-ISEs. The challenges and opportunities in this field, along with the prospects for future applications of nanomaterials in SC-ISEs are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
3
|
Liu ZH, Cai X, Dai HH, Zhao YH, Gao ZW, Yang YF, Liu YZ, Yang M, Li MQ, Li PH, Huang XJ. Highly Stable Solid Contact Calcium Ion-Selective Electrodes: Rapid Ion-Electron Transduction Triggered by Lipophilic Anions Participating in Redox Reactions of Cu nS Nanoflowers. Anal Chem 2024; 96:9069-9077. [PMID: 38749062 DOI: 10.1021/acs.analchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Solid contact (SC) calcium ion-selective electrodes (Ca2+-ISEs) have been widely applied in the analysis of water quality and body fluids by virtue of the unique advantages of easy operation and rapid response. However, the potential drift during the long-term stability test hinders their further practical applications. Designing novel redox SC layers with large capacitance and high hydrophobicity is a promising approach to stabilize the potential stability, meanwhile, exploring the transduction mechanism is also of great guiding significance for the precise design of SC layer materials. Herein, flower-like copper sulfide (CunS-50) composed of nanosheets is meticulously designed as the redox SC layer by modification with the surfactant (CTAB). The CunS-50-based Ca2+-ISE (CunS-50/Ca2+-ISE) demonstrates a near-Nernstian slope of 28.23 mV/dec for Ca2+ in a wide activity linear range of 10-7 to 10-1 M, with a low detection limit of 3.16 × 10-8 M. CunS-50/Ca2+-ISE possesses an extremely low potential drift of only 1.23 ± 0.13 μV/h in the long-term potential stability test. Notably, X-ray absorption fine-structure (XAFS) spectra and electrochemical experiments are adopted to elucidate the transduction mechanism that the lipophilic anion (TFPB-) participates in the redox reaction of CunS-50 at the solid-solid interface of ion-selective membrane (ISM) and redox inorganic SC layer (CunS-50), thereby promoting the generation of free electrons to accelerate ion-electron transduction. This work provides an in-depth comprehension of the transduction mechanism of the potentiometric response and an effective strategy for designing redox materials of ion-electron transduction triggered by lipophilic anions.
Collapse
Affiliation(s)
- Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Hua Dai
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Wei Gao
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Zhi Liu
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Min-Qiang Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Shahzad U, Saeed M, Marwani HM, Al-Humaidi JY, Rehman SU, Althomali RH, Awual MR, Rahman MM. Recent Progress on Potentiometric Sensor Applications Based on Nanoscale Metal Oxides: A Comprehensive Review. Crit Rev Anal Chem 2024:1-18. [PMID: 38593048 DOI: 10.1080/10408347.2024.2337876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Electrochemical sensors have been the subject of much research and development as of late, with several publications detailing new designs boasting enhanced performance metrics. That is, without a doubt, because such sensors stand out from other analytical tools thanks to their excellent analytical characteristics, low cost, and ease of use. Their progress has shown a trend toward seeking out novel useful nano structure materials. A variety of nanostructure metal oxides have been utilized in the creation of potentiometric sensors, which are the subject of this article. For screen-printed pH sensors, metal oxides have been utilized as sensing layers due to their mixed ion-electron conductivity and as paste-ion-selective electrode components and in solid-contact electrodes. Further significant uses include solid-contact layers. All the metal oxide uses mentioned are within the purview of this article. Nanoscale metal oxides have several potential uses in the potentiometry method, and this paper summarizes such uses, including hybrid materials and single-component layers. Potentiometric sensors with outstanding analytical properties can be manufactured entirely from metal oxides. These novel sensors outperform the more traditional, conventional electrodes in terms of useful characteristics. In this review, we looked at the potentiometric analytical properties of different building solutions with various nanoscale metal oxides.
Collapse
Affiliation(s)
- Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shujah Ur Rehman
- Institute of Energy & Environmental Engineering, University of the Punjab, Lahore, Pakistan
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, Saudi Arabia
| | - Md Rabiul Awual
- Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, Australia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Lenar N, Piech R, Wardak C, Paczosa-Bator B. Application of Metal Oxide Nanoparticles in the Field of Potentiometric Sensors: A Review. MEMBRANES 2023; 13:876. [PMID: 37999362 PMCID: PMC10672869 DOI: 10.3390/membranes13110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Recently, there has been rapid development of electrochemical sensors, and there have been numerous reports in the literature that describe new constructions with improved performance parameters. Undoubtedly, this is due to the fact that those sensors are characterized by very good analytical parameters, and at the same time, they are cheap and easy to use, which distinguishes them from other analytical tools. One of the trends observed in their development is the search for new functional materials. This review focuses on potentiometric sensors designed with the use of various metal oxides. Metal oxides, because of their remarkable properties including high electrical capacity and mixed ion-electron conductivity, have found applications as both sensing layers (e.g., of screen-printing pH sensors) or solid-contact layers and paste components in solid-contact and paste-ion-selective electrodes. All the mentioned applications of metal oxides are described in the scope of the paper. This paper presents a survey on the use of metal oxides in the field of the potentiometry method as both single-component layers and as a component of hybrid materials. Metal oxides are allowed to obtain potentiometric sensors of all-solid-state construction characterized by remarkable analytical parameters. These new types of sensors exhibit properties that are competitive with those of the commonly used conventional electrodes. Different construction solutions and various metal oxides were compared in the scope of this review based on their analytical parameters.
Collapse
Affiliation(s)
- Nikola Lenar
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.)
| | - Robert Piech
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.)
| | - Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 3, PL-20031 Lublin, Poland;
| | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.)
| |
Collapse
|
6
|
Zhang W, Li J, Qin W. Solid-contact polymeric membrane ion-selective electrodes using a covalent organic framework@reduced graphene oxide composite as ion-to-electron transducer. Talanta 2023; 258:124444. [PMID: 36934662 DOI: 10.1016/j.talanta.2023.124444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
A solid-contact ion-selective electrode (SC-ISE) based on a covalent organic framework@reduced graphene oxide (rGO) composite is proposed. The composite can be synthesized through the polycondensation of 1,3,5-triformylphloroglucinol (TFP) and 2,6-diaminoanthraquinone (DAAQ) on the rGO nanosheets, which shows high capacitance and good redox-active properties. By applying Cd2+-ISE as a model, the electrode exhibits a Nernstian slope of 29.7 ± 0.4 mV/decade in the activity range of 1.0 × 10-7 - 7.9 × 10-4 M and the limit of detection is 6.8 × 10-8 M. Particularly, the electrode based on DAAQ-TFP@rGO exhibits a low potential drift of 1.2 ± 0.2 μV/h over 70 h due to the large capacitance of 2.0 mF. Moreover, the DAAQ-TFP@rGO-based Cd2+-ISE shows good reproducibility and the standard deviations of the standard potentials for single batch and batch-to-batch are 0.28 (n = 4) and 0.30 mV (n = 4), respectively. The developed SC-Cd2+-ISE is not disturbed by light or gas and no aqueous layer occurs between the sensing membrane and DAAQ-TFP@rGO layer. The DAAQ-TFP@rGO composite is highly promising for construction of calibration-free SC-ISEs.
Collapse
Affiliation(s)
- Wenting Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong, 264005, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China
| | - Jinghui Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
7
|
Kozma J, Papp S, Gyurcsányi RE. TEMPO-Functionalized Carbon Nanotubes for Solid-Contact Ion-Selective Electrodes with Largely Improved Potential Reproducibility and Stability. Anal Chem 2022; 94:8249-8257. [PMID: 35622612 PMCID: PMC9201804 DOI: 10.1021/acs.analchem.2c00395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-contact ion-selective electrodes (SCISEs) can overcome essential limitations of their counterparts based on liquid contacts. However, attaining a highly reproducible and predictable E0, especially between different fabrication batches, turned out to be difficult even with the most established solid-contact materials, i.e., conducting polymers and large-surface-area conducting materials (e.g., carbon nanotubes), that otherwise possess excellent potential stability. An appropriate batch-to-batch E0 reproducibility of SCISEs besides aiding the rapid quality control of the electrode manufacturing process is at the core of their "calibration-free" application, which is perhaps the last major challenge for their routine use as single-use "disposable" or wearable potentiometric sensors. Therefore, here, we propose a new class of solid-contact material based on the covalent functionalization of multiwalled carbon nanotubes (MWCNTs) with a chemically stable redox molecule, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). This material combines the advantages of (i) the large double-layer capacitance of MWCNT layers, (ii) the adjustable redox couple ratio provided by the TEMPO moiety, (iii) the covalent confinement of the redox couple, and (iv) the hydrophobicity of the components to achieve the potential reproducibility and stability for demanding applications. The TEMPO-MWCNT-based SC potassium ion-selective electrodes (K+-SCISEs) showed excellent analytical performance and potential stability with no sign of an aqueous layer formation beneath the ion-selective membrane nor sensitivity toward O2, CO2, and light. A major convenience of the fabrication procedure is the E0 adjustment of the K+-SCISEs by the polarization of the TEMPO-MWCNT suspension prior to its use as solid contact. While most E0 reproducibility studies are limited to a single fabrication batch of SCISEs, the use of prepolarized TEMPO-MWCNT resulted also in an outstanding batch-to-batch potential reproducibility. We were also able to overcome the hydration-related potential drifts for the use of SCISEs without prior conditioning and to feature application for accurate K+ measurements in undiluted blood serum.
Collapse
Affiliation(s)
- József Kozma
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Soma Papp
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
8
|
Ozer T, Henry CS. All-solid-state potassium-selective sensor based on carbon black modified thermoplastic electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Zhai J, Zhang Y, Zhao D, Kou L, Zhao G. In vivo monitoring of calcium ions in rat cerebrospinal fluid using an all-solid-state acupuncture needle based potentiometric microelectrode. Anal Chim Acta 2022; 1191:339209. [PMID: 35033241 DOI: 10.1016/j.aca.2021.339209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Acupuncture needles are regarded as ideal materiel for the development of microelectrodes for in vivo sensing. In this work, an all-solid-state ion-selective microelectrode (ISμE) has been developed by coating a calcium ion-selective membrane on an acupuncture needle tip with a diameter of less than 80 μm, which is modified with poly(3,4-ethylenedioxythiophene)-poly(sodium 4-styrenesulfonate) as solid contact. The proposed Ca2+-ISμE shows a Nernstian response toward Ca2+ in the range from 1.0 × 10-6 to 3.1 × 10-3 M with a slope of 30.8 ± 0.9 mV/decade (R2 = 0.999), and the detection limit is 1.2 × 10-7 M. The Ca2+-ISμE has been used for in vivo monitoring of the calcium changes in rat cerebrospinal fluid (CSF) under the injury of spinal cord transection. The results demonstrate that the calcium concentration in CSF increases sharply from the normal level of 20.6 ± 1.72 μM (n = 3) to 133.2 ± 7.63 μM (n = 3) with a severe fluctuation after spinal cord damage. Thus, the proposed Ca2+-ISμE is available for in vivo monitoring of calcium ions with high temporal resolution and flexibility. The detection system can be extended to measure other ions in CSF by changing different ion-selective membranes.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Rehabilitation, Binzhou Medical University, Yantai, PR, 264003, China
| | - Yaqun Zhang
- School of Basic Medicine, Binzhou Medical University, Yantai, PR, 264003, China
| | - Dongmei Zhao
- School of Basic Medicine, Binzhou Medical University, Yantai, PR, 264003, China
| | - Lijuan Kou
- School of Pharmacy, Binzhou Medical University, Yantai, PR, 264003, China
| | - Guangtao Zhao
- School of Basic Medicine, Binzhou Medical University, Yantai, PR, 264003, China.
| |
Collapse
|
10
|
Lisak G. Reliable environmental trace heavy metal analysis with potentiometric ion sensors - reality or a distant dream. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117882. [PMID: 34364114 DOI: 10.1016/j.envpol.2021.117882] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Over two decades have passed since polymeric membrane ion-selective electrodes were found to exhibit sufficiently lower detection limits. This in turn brought a great promise to measure trace level concentrations of heavy metals using potentiometric ion sensors at environmental conditions. Despite great efforts, trace analysis of heavy metals using ion-selective electrodes at environmental conditions is still not commercially available. This work will predominantly concentrate on summarizing and evaluating prospects of using potentiometric ion sensors in view of environmental determination of heavy metals in on-site and on-line analysis modes. Challenges associated with development of reliable potentiometric sensors to be operational in environmental conditions will be discussed and reasoning behind unsuccessful efforts to develop potentiometric on-site and on-line environmental ion sensors will be explored. In short, it is now clear that solely lowering the detection limit of the ion-selective electrodes does not guarantee development of successful sensors that would meet the requirement of environmental matrices over long term usage. More pressing challenges of the properties and the performance of the potentiometric sensors must be addressed first before considering extending their sensitivity to low analyte concentrations. These are, in order of importance, selectivity of the ion-selective membrane to main ion followed by the membrane resistance to parallel processes, such as water ingress to the ISM, light sensitivity, change in temperature, presence of gasses in solution and pH and finally resistance of the ion-selective membrane to fouling. In the future, targeted on-site and on-line environmental sensors should be developed, addressing specific environmental conditions. Thus, ion-selective electrodes should be developed with the intention to be suitable to the operational environmental conditions, rather than looking at universal sensor design validated in the idealized and simple sample matrices.
Collapse
Affiliation(s)
- Grzegorz Lisak
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| |
Collapse
|
11
|
Zeng X, Jiang W, Waterhouse GIN, Jiang X, Zhang Z, Yu L. Stable Pb(II) ion-selective electrodes with a low detection limit using silver nanoparticles/polyaniline as the solid contact. Mikrochim Acta 2021; 188:393. [PMID: 34698939 DOI: 10.1007/s00604-021-05046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Solid contact-based ion-selective electrodes (SC-ISEs) based on silver nanoparticles/polyaniline (Ag@PANI) as the solid contact (SC) were successfully prepared. The Ag@PANI SC showed high capacitance and excellent electron transport performance. Owing to the synergetic effects of the Ag nanoparticles and PANI, a GC/Ag@PANI-II/Pb2+-ISE (where II refers to a Ag content of 0.01 wt% in the SC layer) showed a low Pb2+ detection limit (6.31 × 10-10 M) with a slope of 29.1 ± 0.3 mV/dec, a fast response (< 5 s), and high stability. GC/Ag@PANI-II/Pb2+-ISE exhibited a Nernstian response for Pb2+ ions over a wide concentration range (10-3 to 10-9 M). After a 3-week operation, GC/Ag@PANI-II/Pb2+-ISE responded linearly to Pb2+ over the range of 10-7-10-3 M, demonstrating good long-term potential stability. Furthermore, the electrode showed excellent reproducibility and repeatability of the potential values and was successfully applied to detect the Pb2+ concentration in real samples with a recovery of 97 - 109%. Results suggest that Ag@PANI composites offer good transducer performance in trace ion detection sensors.
Collapse
Affiliation(s)
- Xianghua Zeng
- Frontiers Science Center for Deep Ocean Multi Spheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, People's Republic of China
| | - Wenwen Jiang
- Frontiers Science Center for Deep Ocean Multi Spheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, People's Republic of China
| | | | - Xiaohui Jiang
- Frontiers Science Center for Deep Ocean Multi Spheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, People's Republic of China
| | - Zhiming Zhang
- Frontiers Science Center for Deep Ocean Multi Spheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, People's Republic of China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multi Spheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, People's Republic of China.
| |
Collapse
|
12
|
Rousseau CR, Bühlmann P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116277] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Improving the stability of Pb2+ ion-selective electrodes by using 3D polyaniline nanowire arrays as the inner solid-contact transducer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Lyu Y, Zhang Y, Xu L, Zhong L, Sun Z, Ma Y, Bao Y, Gan S, Niu L. Solid-Contact Ion Sensing Without Using an Ion-Selective Membrane through Classic Li-Ion Battery Materials. Anal Chem 2021; 93:7588-7595. [PMID: 34008950 DOI: 10.1021/acs.analchem.0c05422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The solid-contact ion-selective electrodes (SC-ISEs) are a type of potentiometric analytical device with features of rapid response, online analysis, and miniaturization. The state-of-the-art SC-ISEs are composed of a solid-contact (SC) layer and an ion-selective membrane (ISM) layer with respective functions of ion-to-electron transduction and ion recognition. Two challenges for the SC-ISEs are the water-layer formation at the SC/ISM phase boundary and the leaking of ISM components, which are both originated from the ISM. Herein, we report a type of SC-ISE based on classic Li-ion battery materials as the SC layer without using the ISM for potentiometric lithium-ion sensing. Both LiFePO4- and LiMn2O4-based SC-ISEs display good Li+ sensing properties (sensitivity, selectivity, and stability). The proposed LiFePO4 electrode exhibits comparable sensitivity and a linear range to conventional SC-ISEs with ISM. Owing to the nonexistence of ISM, the LiFePO4 electrode displays high potential stability. Besides, the LiMn2O4 electrode shows a Nernstian response toward Li+ sensing in a human blood serum solution. This work emphasizes the concept of non-ISM-based SC-ISEs for potentiometric ion sensing.
Collapse
Affiliation(s)
- Yan Lyu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yirong Zhang
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Longbin Xu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Lijie Zhong
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhonghui Sun
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yingming Ma
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiyu Gan
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Wang H, Yuan B, Yin T, Qin W. Alternative coulometric signal readout based on a solid-contact ion-selective electrode for detection of nitrate. Anal Chim Acta 2020; 1129:136-142. [DOI: 10.1016/j.aca.2020.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 01/09/2023]
|
16
|
Phase-dependent ion-to-electron transducing efficiency of WS 2 nanosheets for an all-solid-state potentiometric calcium sensor. Mikrochim Acta 2020; 187:525. [PMID: 32857233 DOI: 10.1007/s00604-020-04501-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Ultrathin metallic WS2 (M-WS2) nanosheets and semiconductive WS2 (S-WS2) nanosheets were exfoliated and for the first time employed as ion-to-electron transducing layer to construct an all-solid-state ion-selective electrode. Importantly, we found that the transducing efficiency of WS2 nanosheet-based solid-contact layer is phase-dependent. The M-WS2 nanosheets with larger content of 1 T-phase structure exhibit higher transducing efficiency than S-WS2 nanosheets, which can be ascribed to the remarkable conductivity of M-WS2 nanosheets. In order to demonstrate the excellent properties of the M-WS2 nanosheet-based tranducing layer, an all-solid-state calcium ion potentiometric sensor was constructed as the model. As expected, a Nernstian response (27.41 mV per decade, R2 = 0.9998) with a wide linear range of 1.0 × 10-5.0 to 1.0 × 10-2.0 M and a limit of detection of 2.0 μM was obtained. The developed all-solid-state potentiometric sensor using M-WS2 nanosheets as ion-to-electron transducing layer is expected to bring new progress for routine detection in various fields. Graphical Abstract Schematic illustration of the introduction of WS2 nanosheets with different phase structures as a new-generation solid-contact ion-to-electron transducing layer for all-solid-state potentiometric sensors.
Collapse
|
17
|
Zeng X, Qin W. A solid-contact Ca2+-selective electrode based on an inorganic redox buffer of Ag@AgCl/1-tetradecyl-3-methylimidazolium chloride as ion-to-electron transducer. Talanta 2020; 209:120570. [DOI: 10.1016/j.talanta.2019.120570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
|
18
|
Yin T, Han T, Li C, Qin W, Bobacka J. Real-time monitoring of the dissolution of silver nanoparticles by using a solid-contact Ag+-selective electrode. Anal Chim Acta 2020; 1101:50-57. [DOI: 10.1016/j.aca.2019.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/19/2023]
|
19
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
20
|
Stable Pb2+ ion-selective electrodes based on polyaniline-TiO2 solid contacts. Anal Chim Acta 2020; 1094:26-33. [DOI: 10.1016/j.aca.2019.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/14/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
|
21
|
Lenar N, Paczosa-Bator B, Piech R. Ruthenium dioxide nanoparticles as a high-capacity transducer in solid-contact polymer membrane-based pH-selective electrodes. Mikrochim Acta 2019; 186:777. [PMID: 31728640 PMCID: PMC6856033 DOI: 10.1007/s00604-019-3830-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/14/2019] [Indexed: 11/14/2022]
Abstract
A new approach is presented for the design of ion selective electrodes. Ruthenium dioxide nanoparticles were incorporated into solid-contact electrodes, and their properties were studied for the case of pH-selective electrodes. The use of the RuO2 is shown to significantly improve the potentiometric response, while no redox response is observed. The use of RuO2 results in a Nernstian slope (59 mV/decade) towards hydrogen ions over a wide linear range (pH 2 to 12). The results obtained by chronopotentiometry reveal small resistance, and the capacitance is as high as 1.12 mF. This results in a good stability of the response and in a low potential drift (0.89 μV∙s-1). The electrodes exhibit properties nearly as excellent as those of a glass electrode, but they are much smaller, less fragile, and easy to use. Graphical abstractSchematic representation of the construction of the new kind of electrodes along with calibration and chronopotentiometric plots compared to non-modified GCD/H+-ISM and modified GCD/RuO2/H+-ISM electrodes, respectively. The use of ruthenium dioxide results in a wide analytical pH range (2-12) and in high electrical capacitance (1.12 mF).
Collapse
Affiliation(s)
- Nikola Lenar
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, PL-30059, Krakow, Poland
| | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, PL-30059, Krakow, Poland.
| | - Robert Piech
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, PL-30059, Krakow, Poland
| |
Collapse
|
22
|
Fine-scale in-situ measurement of lead ions in coastal sediment pore water based on an all-solid-state potentiometric microsensor. Anal Chim Acta 2019; 1073:39-44. [DOI: 10.1016/j.aca.2019.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/29/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022]
|
23
|
Hassan SSM, Abdelbasir SM, Fathy MA, Amr AEGE, Al-Omar MA, Kamel AH. Gold Plate Electrodes Functionalized by Multiwall Carbon Nanotube Film for Potentiometric Thallium(I) Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1160. [PMID: 31416119 PMCID: PMC6723907 DOI: 10.3390/nano9081160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022]
Abstract
Solid-contact potentiometric ion-selective electrodes (SC-ISEs) for thallium determination have been designed using multiwall carbon nanotubes (MWCNTs) as the ion-to-electron transducer. Dispersed MWCNTs were drop-casted over a gold plate electrode. Two different crown ethers were used in the sensing membrane for the recognition of thallium (I). Sensorsbased on dibenzo-18-crown-6 (DB18C6) as a neutral carrier and NaTPB as an anionic additive exhibited a near Nernstian response of 57.3 mV/decade towards Tl+ ions over the activity range 4.5 × 10-6-7.0 × 10-4 M, with a limit of detection of 3.2 × 10-7 M. The time required to achieve 95% of the steadyequilibrium potential was <10 s. The complex formation constant (log βML) between dibenzo-18-crown-6 and thallium (I) (i.e., 5.99) was measured using the sandwich membrane technique. The potential response was pH independent over the range 3.0-9.5. The introduction of MWCNTs as an electron-ion-transducer layer between gold plate and the sensing membrane lead to a smaller membrane resistance and a large double layer capacitance, which was proven using impedance spectra and chronopotentiometry (i.e., 114.9 ± 12 kΩ, 52.1 ± 3.3 pF, 200 ± 13.2 kΩ, and 50 ± 4.2 µF). Additionally, reduction ofthe water layer between the sensing membrane and the underlying conductor wastested. Thus, it is clear that MWCNTs can be used as a transducing layer in SC-ISEs. The proposed sensor was introduced as an indicator electrode for potentiometric titration of single and ternary mixtures of I-, Br-, and S2- anions.
Collapse
Affiliation(s)
- Saad S M Hassan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia 11566, Cairo, Egypt.
| | - Sabah M Abdelbasir
- Electro Chemical Treatment Dept., Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo, Egypt
| | - M Abdelwahab Fathy
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia 11566, Cairo, Egypt
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, Dokki 12622, Giza, Egypt.
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman H Kamel
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia 11566, Cairo, Egypt.
| |
Collapse
|
24
|
Urbanowicz M, Pijanowska DG, Jasiński A, Bocheńska M. The computational methods in the development of a novel multianalyte calibration technique for potentiometric integrated sensors systems. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04323-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Papp S, Bojtár M, Gyurcsányi RE, Lindfors T. Potential Reproducibility of Potassium-Selective Electrodes Having Perfluorinated Alkanoate Side Chain Functionalized Poly(3,4-ethylenedioxytiophene) as a Hydrophobic Solid Contact. Anal Chem 2019; 91:9111-9118. [PMID: 31184105 PMCID: PMC6750645 DOI: 10.1021/acs.analchem.9b01587] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The irreproducibility of the standard potential (E°) is probably the last major challenge for the commercialization of solid-contact ion-selective electrodes (SCISEs) as single-use or wearable sensors. To overcome this issue, we are introducing for the first time a perfluorinated alkanoate side chain functionalized poly(3,4-ethylenedioxythiophene) (PEDOTF) as a hydrophobic SC in potassium-selective electrodes (K-SCISEs) based on plasticized poly(vinyl chloride). The SC incorporates the tetrakis(pentafluorophenyl)borate (TFAB-) anion, which is also present as a lipophilic additive in the ion-selective membrane (ISM), thus ensuring thermodynamic reversibility at the SC/ISM interface and improving the potential reproducibility of the electrodes. We show here that the PEDOTF-TFAB solid contact, which was prepolarized prior to the ISM deposition to either its half or fully conducting form (i.e. different oxidation states) in acetonitrile containing 0.01 M KTFAB, had a very stable open-circuit potential and an outstanding potential reproducibility of only ±0.5 mV (n = 6) for 1 h in the same solution after the prepolarization. This shows that the oxidation state of the highly hydrophobic PEDOTF-TFAB film (water contact angle 133°) is stable over time and can be precisely controlled with prepolarization. The SC was also not light sensitive, which is normally a disadvantage of conducting polymer SCs. After the ISM deposition, the standard deviation of the E° of the K-SCISEs prepared on glassy carbon was ±3.0 mV (n = 5), which is the same as that for conventional liquid contact K-ISEs. This indicates that the ISM deposition is the main source for the potential irreproducibility of the K-SCISEs, which has been overlooked previously.
Collapse
Affiliation(s)
- Soma Papp
- Department of Inorganic and Analytical Chemistry, Chemical Nanosensor Research Group , Budapest University of Technology and Economics , Szt. Gellért tér 4 , H-1111 Budapest , Hungary
| | - Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok krt. 2 , H-1117 Budapest , Hungary
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Chemical Nanosensor Research Group , Budapest University of Technology and Economics , Szt. Gellért tér 4 , H-1111 Budapest , Hungary
| | - Tom Lindfors
- Åbo Akademi University , Faculty of Science and Engineering, Laboratory of Analytical Chemistry , Biskopsgatan 8 , FIN-20500 Åbo , Finland
| |
Collapse
|
26
|
Criscuolo F, Taurino I, Dam VA, Catthoor F, Zevenbergen M, Carrara S, De Micheli G. Fast Procedures for the Electrodeposition of Platinum Nanostructures on Miniaturized Electrodes for Improved Ion Sensing. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2260. [PMID: 31100795 PMCID: PMC6567323 DOI: 10.3390/s19102260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
Abstract
Nanostructured materials have attracted considerable interest over the last few decades to enhance sensing capabilities thanks to their unique properties and large surface area. In particular, noble metal nanostructures offer several advantages including high stability, non-toxicity and excellent electrochemical behaviour. However, in recent years the great expansion of point-of-care (POC) and wearable systems and the attempt to perform measurements in tiny spaces have also risen the need of increasing sensors miniaturization. Fast constant potential electrodeposition techniques have been proven to be an efficient way to obtain conformal platinum and gold nanostructured layers on macro-electrodes. However, this technique is not effective on micro-electrodes. In this paper, we investigate an alternative one-step deposition technique of platinum nanoflowers on micro-electrodes by linear sweep voltammetry (LSV). The effective deposition of platinum nanoflowers with similar properties to the ones deposited on macro-electrodes is confirmed by morphological analysis and by the similar roughness factor (~200) and capacitance (~18 μ F/mm 2 ). The electrochemical behaviour of the nanostructured layer is then tested in an solid-contact (SC) L i + -selective micro-electrode and compared to the case of macro-electrodes. The sensor offers Nernstian calibration with same response time (~15 s) and a one-order of magnitude smaller limit of detection (LOD) ( 2.6 × 10 - 6 ) with respect to the macro-ion-selective sensors (ISE). Finally, sensor reversibility and stability in both wet and dry conditions is proven.
Collapse
Affiliation(s)
- Francesca Criscuolo
- Laboratory of Integrated Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Irene Taurino
- Laboratory of Integrated Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Van Anh Dam
- Holst Centre, Interuniversity Microelectronics Centre (IMEC), 5656 AE Eindhoven, The Netherlands.
| | - Francky Catthoor
- Department ESAT, Interuniversity Microelectronics Centre (IMEC), 3001 Leuven, Belgium.
| | - Marcel Zevenbergen
- Holst Centre, Interuniversity Microelectronics Centre (IMEC), 5656 AE Eindhoven, The Netherlands.
| | - Sandro Carrara
- Laboratory of Integrated Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Giovanni De Micheli
- Laboratory of Integrated Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
27
|
Zhao L, Jiang Y, Wei H, Jiang Y, Ma W, Zheng W, Cao AM, Mao L. In Vivo Measurement of Calcium Ion with Solid-State Ion-Selective Electrode by Using Shelled Hollow Carbon Nanospheres as a Transducing Layer. Anal Chem 2019; 91:4421-4428. [DOI: 10.1021/acs.analchem.8b04944] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lijun Zhao
- Institute of Surface/Interface Science and Technology, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ying Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Huan Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zheng
- Institute of Surface/Interface Science and Technology, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - An-Min Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Criscuolo F, Taurino I, Stradolini F, Carrara S, De Micheli G. Highly-stable Li + ion-selective electrodes based on noble metal nanostructured layers as solid-contacts. Anal Chim Acta 2018; 1027:22-32. [PMID: 29866266 DOI: 10.1016/j.aca.2018.04.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/16/2018] [Accepted: 04/23/2018] [Indexed: 10/16/2022]
Abstract
Nowadays the development of stable and highly efficient Solid-Contact Ion-Selective Electrodes (SC-ISEs) attracts much attention in the research community because of the great expansion of portable analytical devices. In this work, we present highly stable Li+ all-solid-state ISEs exploiting noble metals nanostructures as ion-to-electron transducers. The detection of lithium is essential for therapeutic drug monitoring of bipolar patients. In addition, greater environmental exposure to this ion is occurring due to the large diffusion of lithium-ion batteries. However, only a limited number of SC Li+ ISEs already exists in literature based on Conductive Polymers (CPs) and carbon nanotubes. The use of noble metals for ion-to-electron transduction offers considerable advantages over CPs and carbon materials, including fast and conformal one-step deposition by electrochemical means, non-toxicity and high stability. We investigate for the first time the use of gold nanocorals obtained by means of a one-step electrodeposition process to improve sensor performance and we compare it to all-solid-state ISEs based on electrodeposited platinum nanoflowers. In addition, the effect of substrate electrode material, membrane thickness and conditioning concentration on the potentiometric response is carefully analysed. Scanning Electron Microscopy (SEM) and Current Reversal Chronopotentiometry (CRC) techniques are used to characterize the morphology and the electrochemical behaviour of the different ISEs. The use of nanostructured gold and platinum contacts allows the increase of the SC capacitance by one or two orders of magnitude, respectively, with respect to the flat metal, while the SC resistance is significantly reduced. We show that the microfabricated sensors offer Nernstian behaviour (58.7±0.8 mV/decade) in the activity range from 10-5 to 0.1 M, with short response time (∼15 s) and small potential drift during CRC measurements (dEdt=3×10-5±2×10-5 V/s). The exceptional response stability is verified also when no potential is applied. The sensor shows high selectivity towards all clinically important ions, with values very similar to conventional ISEs. Furthermore, to our knowledge, the selectivity towards Ca+2 is the best ever reported for SC-ISEs. In conclusion, the present study opens up new interesting perspectives towards the development of simple and reproducible fabrication protocols to obtain high-quality and high-stability all-solid-state ISEs.
Collapse
Affiliation(s)
| | - Irene Taurino
- Laboratory of Integrated System, EPFL, CH-1015, Lausanne, Switzerland
| | | | - Sandro Carrara
- Laboratory of Integrated System, EPFL, CH-1015, Lausanne, Switzerland
| | | |
Collapse
|
29
|
Yin T, Jiang X, Qin W. A magnetic field-directed self-assembly solid contact for construction of an all-solid-state polymeric membrane Ca 2+ -selective electrode. Anal Chim Acta 2017; 989:15-20. [DOI: 10.1016/j.aca.2017.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
30
|
Wang S, Wu Y, Gu Y, Li T, Luo H, Li LH, Bai Y, Li L, Liu L, Cao Y, Ding H, Zhang T. Wearable Sweatband Sensor Platform Based on Gold Nanodendrite Array as Efficient Solid Contact of Ion-Selective Electrode. Anal Chem 2017; 89:10224-10231. [DOI: 10.1021/acs.analchem.7b01560] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shuqi Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Yongjin Wu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Yang Gu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Tie Li
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Hui Luo
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Lian-Hui Li
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Yuanyuan Bai
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Lili Li
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Lin Liu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Yudong Cao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Haiyan Ding
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| | - Ting Zhang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
31
|
A solid-contact potassium-selective electrode with MoO2 microspheres as ion-to-electron transducer. Anal Chim Acta 2017; 982:72-77. [DOI: 10.1016/j.aca.2017.05.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/14/2017] [Accepted: 05/19/2017] [Indexed: 11/19/2022]
|
32
|
Urbanowicz M, Jasiński A, Jasińska M, Drucis K, Ekman M, Szarmach A, Suchodolski R, Pomećko R, Bocheńska M. Simultaneous Determination of Na+, K+, Ca2+, Mg2+and Cl−in Unstimulated and Stimulated Human Saliva Using All Solid State Multisensor Platform. ELECTROANAL 2017. [DOI: 10.1002/elan.201700149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marcin Urbanowicz
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty; Gdansk University of Technology; Narutowicza 11/12 80-233 Gdańsk Poland
| | - Artur Jasiński
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty; Gdansk University of Technology; Narutowicza 11/12 80-233 Gdańsk Poland
| | - Małgorzata Jasińska
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty; Gdansk University of Technology; Narutowicza 11/12 80-233 Gdańsk Poland
| | - Kamil Drucis
- Department of Surgical Oncology; Medical University of Gdansk; Debinki 7 80-952 Gdansk Poland
| | - Marcin Ekman
- Department of Surgical Oncology; Medical University of Gdansk; Debinki 7 80-952 Gdansk Poland
| | - Arkadiusz Szarmach
- Department of Surgical Oncology; Medical University of Gdansk; Debinki 7 80-952 Gdansk Poland
| | - Rafał Suchodolski
- Department of Surgical Oncology; Medical University of Gdansk; Debinki 7 80-952 Gdansk Poland
| | - Radosław Pomećko
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty; Gdansk University of Technology; Narutowicza 11/12 80-233 Gdańsk Poland
| | - Maria Bocheńska
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty; Gdansk University of Technology; Narutowicza 11/12 80-233 Gdańsk Poland
| |
Collapse
|
33
|
A solid-contact Pb 2+ - selective electrode based on electrospun polyaniline microfibers film as ion-to-electron transducer. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.162] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
He N, Papp S, Lindfors T, Höfler L, Latonen RM, Gyurcsányi RE. Pre-Polarized Hydrophobic Conducting Polymer Solid-Contact Ion-Selective Electrodes with Improved Potential Reproducibility. Anal Chem 2017; 89:2598-2605. [DOI: 10.1021/acs.analchem.6b04885] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ning He
- Åbo Akademi University, Johan Gadolin Process
Chemistry Centre, Faculty of Science and Engineering, Laboratory of
Analytical Chemistry, Biskopsgatan 8, FIN-20500 Turku/Åbo, Finland
| | - Soma Papp
- Department
of Inorganic and Analytical Chemistry, MTA-BME “Lendület”
Chemical Nanosensors Research Group, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest, Hungary
| | - Tom Lindfors
- Åbo Akademi University, Johan Gadolin Process
Chemistry Centre, Faculty of Science and Engineering, Laboratory of
Analytical Chemistry, Biskopsgatan 8, FIN-20500 Turku/Åbo, Finland
| | - Lajos Höfler
- Department
of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Rose-Marie Latonen
- Åbo Akademi University, Johan Gadolin Process
Chemistry Centre, Faculty of Science and Engineering, Laboratory of
Analytical Chemistry, Biskopsgatan 8, FIN-20500 Turku/Åbo, Finland
| | - Róbert E. Gyurcsányi
- Department
of Inorganic and Analytical Chemistry, MTA-BME “Lendület”
Chemical Nanosensors Research Group, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest, Hungary
| |
Collapse
|
35
|
Hu J, Stein A, Bühlmann P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.004] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Wang T, Liang R, Yin T, Yao R, Qin W. An all-solid-state imprinted polymer-based potentiometric sensor for determination of bisphenol S. RSC Adv 2016. [DOI: 10.1039/c6ra14461f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An all-solid-state polymeric membrane potentiometric sensor for sensitive and selective determination of bisphenol S is developed for the first time.
Collapse
Affiliation(s)
- Tiantian Wang
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Rongning Liang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes
- YICCAS
| | - Tanji Yin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes
- YICCAS
| | - Ruiqing Yao
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes
- YICCAS
| |
Collapse
|
37
|
Cuartero M, Bishop J, Walker R, Acres RG, Bakker E, De Marco R, Crespo GA. Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes. Chem Commun (Camb) 2016; 52:9703-6. [DOI: 10.1039/c6cc04876e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the first direct spectroscopic evidence of the capacitive ion-to-electron transducing mechanism of carbon nanomaterials in solid contact polymeric ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Maria Cuartero
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- CH-1211 Geneva
- Switzerland
| | - Josiah Bishop
- Faculty of Science
- Health, Education and Engineering
- University of the Sunshine Coast
- Sippy Downs
- Australia
| | - Raymart Walker
- Faculty of Science
- Health, Education and Engineering
- University of the Sunshine Coast
- Sippy Downs
- Australia
| | | | - Eric Bakker
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- CH-1211 Geneva
- Switzerland
| | - Roland De Marco
- Faculty of Science
- Health, Education and Engineering
- University of the Sunshine Coast
- Sippy Downs
- Australia
| | - Gaston A. Crespo
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- CH-1211 Geneva
- Switzerland
| |
Collapse
|
38
|
Affiliation(s)
- Eric Bakker
- Department of Inorganic and
Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|