1
|
Dong XIN, Spindler BD, Kim M, Stein A, Bühlmann P. Spontaneous Mesoporosity-Driven Sequestration of Ionic Liquids from Silicone-Based Reference Electrode Membranes. ACS Sens 2023; 8:1774-1781. [PMID: 37043696 DOI: 10.1021/acssensors.3c00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanopore-driven sequestration of ionic liquids from a silicone membrane is presented, a phenomenon that has not been reported previously. Reference electrodes with ionic liquid doped polydimethylsiloxane (PDMS) reference membranes and colloid-imprinted mesoporous carbon (CIM) as solid contact are not functional unless special attention is paid to the porosity of the solid contact. In the fabrication of such reference electrodes, a solution of a hydroxyl-terminated silicone oligomer, ionic liquid, cross-linking reagent, and polymerization catalyst is deposited on top of the carbon layer, rapidly filling the pores of the CIM carbon. The catalyzed polymerization curing of the silicone quickly results in cross-linking of the hydroxyl-terminated polydimethylsiloxane oligomers, forming structures that are too large to penetrate the CIM carbon pores. Therefore, as solvent evaporation from the top of freshly prepared membranes drives the diffusional transport of solvent toward that membrane surface, the solvent molecules that leave the CIM carbon pores can only be replaced by the ionic liquid. This depletes the ionic liquid in the reference membrane that overlies the CIM carbon solid contact and increases the membrane resistance by up to 3 orders of magnitude, rendering the devices dysfunctional. This problem can be avoided by presaturating the CIM carbon with ionic liquid prior to the deposition of the solution that contains the silicone oligomers and ionic liquid. Alternatively, a high amount of ionic liquid can be added into the membrane solution to account for the size-selective sequestration of ionic liquid into the carbon pores. Either way, a wide variety of ionic liquids can be used to prepare PDMS-based reference electrodes with CIM carbon as a solid contact. A similar depletion of the K+ ionophore BME-44 from ion-selective silicone membranes was observed too, highlighting that the depletion of active ingredients from polymeric ion-selective and reference membranes due to interactions with high surface area solid contacts may be a more common phenomenon that so far has been overlooked.
Collapse
Affiliation(s)
- Xin I N Dong
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Brian D Spindler
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Minog Kim
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Lee C, Gwyther REA, Freeley M, Jones D, Palma M. Fabrication and Functionalisation of Nanocarbon-Based Field-Effect Transistor Biosensors. Chembiochem 2022; 23:e202200282. [PMID: 36193790 PMCID: PMC10092808 DOI: 10.1002/cbic.202200282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Indexed: 01/25/2023]
Abstract
Nanocarbon-based field-effect transistor (NC-FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon-based platforms, high sensitivity real-time multiplexed sensing is possible. Combined with their small footprint, portability, ease of use, and label-free sensing mechanisms, NC-FETs are prime candidates for the rapidly expanding areas of point-of-care testing, environmental monitoring and biosensing as a whole. In this review we provide an overview of the basic operational mechanisms behind NC-FETs, synthesis and fabrication of FET devices, and developments in functionalisation strategies for biosensing applications.
Collapse
Affiliation(s)
- Chang‐Seuk Lee
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Rebecca E. A. Gwyther
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Mark Freeley
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Matteo Palma
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
3
|
Sherbow TJ, Kuhl GM, Lindquist GA, Levine JD, Pluth MD, Johnson DW, Fontenot SA. Hydrosulfide-selective ChemFETs for aqueous H 2S/HS - measurement. SENSING AND BIO-SENSING RESEARCH 2021; 31. [PMID: 33791191 PMCID: PMC8009328 DOI: 10.1016/j.sbsr.2020.100394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have prepared and characterized hydrosulfide-selective ChemFET devices based on a nitrile butadiene rubber membrane containing tetraoctylammonium nitrate as a chemical recognition element that is applied to commercially available field-effect transistors. The sensors have fast (120 s) reversible responses, selectivity over other biologically relevant thiol-containing species, detection limits of 8 mM, and a detection range from approximately 5 to 500 mM. Sensitivities are shown to be 53 mV per decade at pH 8. Use of this compact, benchtop sensor platform requires little training – only the ability to measure DC voltage, which can be accomplished with a conventional multimeter or a simple analog data acquisition device paired with a personal computer. To the best of our knowledge, this report describes the first example of direct potentiometric measurement of the hydrosulfide ion in water.
Collapse
Affiliation(s)
- Tobias J Sherbow
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Grace M Kuhl
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Grace A Lindquist
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Jordan D Levine
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Darren W Johnson
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Sean A Fontenot
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
4
|
Wang SL, Hsieh CY, Wu CR, Chen JC, Wang YL. Highly sensitive FET sensors for cadmium detection in one drop of human serum with a hand-held device and investigation of the sensing mechanism. BIOMICROFLUIDICS 2021; 15:024110. [PMID: 33868537 PMCID: PMC8043755 DOI: 10.1063/5.0042977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
As the heavy metal contamination is becoming worse, monitoring the heavy metal content in water or human body gets more and more important. In this research, a cadmium ion-selective field effect transistor (Cd-ISFET) for rapidly detecting cadmium ions has been developed and the mechanism of the sensor is also investigated in depth. Our Cd-ISFET sensor exhibits high sensitivity beyond the ideal Nernst sensitivity, wide dynamic range, low detection limit (∼10-11M), which is comparable with inductively coupled plasma mass spectrometry, and easy operation enabling people to detect cadmium ion by themselves. From the analysis of electrical measurement results, this Cd-ISFET is preferred to operate at the bias with the maximum transconductance of the FET to enhance the sensor signal. The AC impedance measurement is carried out to directly investigate the mechanism of an ion-selective membrane (ISM). From impedance results, the real part of the total impedance, which is the resistance, was shown to dominate the sensor signal. The potential drop across the ISM is caused by the heavy metal ion in the membrane, which is employed to the gate of the FET via an extended gate electrode. Cadmium ion detection in one drop of human serum with this sensor was demonstrated. This cost-effective and highly sensitive sensor is promising and can be used by anyone and anywhere to prevent people from cadmium poisoning.
Collapse
Affiliation(s)
- Shin-Li Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ching-Yen Hsieh
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chang-Run Wu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | - Yu-Lin Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
5
|
Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for simultaneous detection of antibiotics. Biosens Bioelectron 2019; 126:632-639. [DOI: 10.1016/j.bios.2018.10.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/23/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
|
6
|
High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity. Sci Rep 2018; 8:8300. [PMID: 29844607 PMCID: PMC5974191 DOI: 10.1038/s41598-018-26792-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
Lead ion selective membrane (Pb-ISM) coated AlGaN/GaN high electron mobility transistors (HEMT) was used to demonstrate a whole new methodology for ion-selective FET sensors, which can create ultra-high sensitivity (−36 mV/log [Pb2+]) surpassing the limit of ideal sensitivity (−29.58 mV/log [Pb2+]) in a typical Nernst equation for lead ion. The largely improved sensitivity has tremendously reduced the detection limit (10−10 M) for several orders of magnitude of lead ion concentration compared to typical ion-selective electrode (ISE) (10−7 M). The high sensitivity was obtained by creating a strong filed between the gate electrode and the HEMT channel. Systematical investigation was done by measuring different design of the sensor and gate bias, indicating ultra-high sensitivity and ultra-low detection limit obtained only in sufficiently strong field. Theoretical study in the sensitivity consistently agrees with the experimental finding and predicts the maximum and minimum sensitivity. The detection limit of our sensor is comparable to that of Inductively-Coupled-Plasma Mass Spectrum (ICP-MS), which also has detection limit near 10−10 M.
Collapse
|
7
|
Khoshbin Z, Housaindokht MR, Verdian A, Bozorgmehr MR. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens Bioelectron 2018; 116:130-147. [PMID: 29879539 DOI: 10.1016/j.bios.2018.05.051] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
The serious threats of mercury (Hg2+) and lead (Pb2+) ions for the public health makes it important to achieve the detection methods of the ions with high affinity and specificity. Metal ions usually coexist in some environment and foodstuff or clinical samples. Therefore, it is very necessary to develop a fast and simple method for simultaneous monitoring the amount of metal ions, especially when Hg2+ and Pb2+ coexist. DNAzyme-based biosensors and aptasensors have been highly regarded for this purpose as two main groups of the functional nucleic acid (FNA)-based biosensors. In this review, we summarize the recent achievements of functional nucleic acid-based biosensors for the simultaneous detection of Hg2+ and Pb2+ ions in two main optical and electrochemical groups. The tremendous interest in utilizing the various nanomaterials is also highlighted in the fabrication of the FNA-based biosensors. Finally, some results are presented based on the advantages and disadvantages of the studied FNA-based biosensors to compare their validation.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
8
|
Sivakumarasamy R, Hartkamp R, Siboulet B, Dufrêche JF, Nishiguchi K, Fujiwara A, Clément N. Selective layer-free blood serum ionogram based on ion-specific interactions with a nanotransistor. NATURE MATERIALS 2018; 17:464-470. [PMID: 29403057 DOI: 10.1038/s41563-017-0016-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Despite being ubiquitous in the fields of chemistry and biology, the ion-specific effects of electrolytes pose major challenges for researchers. A lack of understanding about ion-specific surface interactions has hampered the development and application of materials for (bio-)chemical sensor applications. Here, we show that scaling a silicon nanotransistor sensor down to ~25 nm provides a unique opportunity to understand and exploit ion-specific surface interactions, yielding a surface that is highly sensitive to cations and inert to pH. The unprecedented sensitivity of these devices to Na+ and divalent ions can be attributed to an overscreening effect via molecular dynamics. The surface potential of multi-ion solutions is well described by the sum of the electrochemical potentials of each cation, enabling selective measurements of a target ion concentration without requiring a selective organic layer. We use these features to construct a blood serum ionogram for Na+, K+, Ca2+ and Mg2+, in an important step towards the development of a versatile, durable and mobile chemical or blood diagnostic tool.
Collapse
Affiliation(s)
- R Sivakumarasamy
- Institute of Electronics, Microelectronics, and Nanotechnology, CNRS, University of Lille, Villeneuve d'Ascq, France
| | - R Hartkamp
- Process and Energy Department, Delft University of Technology, Delft, the Netherlands
| | - B Siboulet
- Institut de Chimie Separative de Marcoule ICSM, ICSM, CEA, CNRS, ENSCM, Montpellier University, Marcoule, Bagnols-sur-Ceze, France
| | - J-F Dufrêche
- Institut de Chimie Separative de Marcoule ICSM, ICSM, CEA, CNRS, ENSCM, Montpellier University, Marcoule, Bagnols-sur-Ceze, France
| | - K Nishiguchi
- NTT Basic Research Laboratories, NTT Corporation, Atsugi-shi, Japan
| | - A Fujiwara
- NTT Basic Research Laboratories, NTT Corporation, Atsugi-shi, Japan
| | - N Clément
- Institute of Electronics, Microelectronics, and Nanotechnology, CNRS, University of Lille, Villeneuve d'Ascq, France.
- NTT Basic Research Laboratories, NTT Corporation, Atsugi-shi, Japan.
| |
Collapse
|
9
|
Iskierko Z, Noworyta K, Sharma PS. Molecular recognition by synthetic receptors: Application in field-effect transistor based chemosensing. Biosens Bioelectron 2018. [PMID: 29525669 DOI: 10.1016/j.bios.2018.02.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Molecular recognition, i.e., ability of one molecule to recognize another through weak bonding interactions, is one of the bases of life. It is often implemented to sensing systems of high merits. Preferential recognition of the analyte (guest) by the receptor (host) induces changes in physicochemical properties of the sensing system. These changes are measured by using suitable signal transducers. Because of possibility of miniaturization, fast response, and high sensitivity, field-effect transistors (FETs) are more frequently being used for that purpose. A FET combined with a biological material offers the potential to overcome many challenges approached in sensing. However, low stability of biological materials under measurement conditions is a serious problem. To circumvent this problem, synthetic receptors were integrated with the gate surface of FETs to provide robust performance. In the present critical review, the approach utilized to devise chemosensors integrating synthetic receptors and FET transduction is discussed in detail. The progress in this field was summarized and important outcome was provided.
Collapse
Affiliation(s)
- Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
10
|
Choi J, Seong TW, Jeun M, Lee KH. Field-Effect Biosensors for On-Site Detection: Recent Advances and Promising Targets. Adv Healthc Mater 2017; 6. [PMID: 28885777 DOI: 10.1002/adhm.201700796] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Indexed: 12/21/2022]
Abstract
There is an explosive interest in the immediate and cost-effective analysis of field-collected biological samples, as many advanced biodetection tools are highly sensitive, yet immobile. On-site biosensors are portable and convenient sensors that provide detection results at the point of care. They are designed to secure precision in highly ionic and heterogeneous solutions with minimal hardware. Among various methods that are capable of such analysis, field-effect biosensors are promising candidates due to their unique sensitivity, manufacturing scalability, and integrability with computational circuitry. Recent developments in nanotechnological surface modification show promising results in sensing from blood, serum, and urine. This report gives a particular emphasis on the on-site efficacy of recently published field-effect biosensors, specifically, detection limits in physiological solutions, response times, and scalability. The survey of the properties and existing detection methods of four promising biotargets, exosomes, bacteria, viruses, and metabolites, aims at providing a roadmap for future field-effect and other on-site biosensors.
Collapse
Affiliation(s)
- Jaebin Choi
- Sensor System Research Center; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Tae Wha Seong
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Minhong Jeun
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Biomedical Engineering; Korea University of Science and Technology (UST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| |
Collapse
|
11
|
Cao A, Zhu W, Shang J, Klootwijk JH, Sudhölter EJR, Huskens J, de Smet LCPM. Metal-Organic Polyhedra-Coated Si Nanowires for the Sensitive Detection of Trace Explosives. NANO LETTERS 2017; 17:1-7. [PMID: 28073264 DOI: 10.1021/acs.nanolett.6b02360] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface-modified silicon nanowire-based field-effect transistors (SiNW-FETs) have proven to be a promising platform for molecular recognition in miniature sensors. In this work, we present a novel nanoFET device for the sensitive and selective detection of explosives based on affinity layers of metal-organic polyhedra (MOPs). The judicious selection of the geometric and electronic characteristics of the assembly units (organic ligands and unsaturated metal site) embedded within the MOP cage allowed for the formation of multiple charge-transfer (CT) interactions to facilitate the selective explosive inclusion. Meanwhile, the host-stabilized CT complex inside the cage acted as an effective molecular gating element to strongly modulate the electrical conductance of the silicon nanowires. By grafting the MOP cages onto a SiNW-FET device, the resulting sensor showed a good electrical sensing capability to various explosives, especially 2,4,6-trinitrotoluene (TNT), with a detection limit below the nanomolar level. Importantly, coupling MOPs-which have tunable structures and properties-to SiNW-based devices may open up new avenues for a wide range of sensing applications, addressing various target analytes.
Collapse
Affiliation(s)
- Anping Cao
- Department of Chemical Engineering, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wei Zhu
- Molecular NanoFabrication Group, MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong , Kowloon, Hong Kong SAR
- Department of Chemical and Biomolecular Engineering, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Johan H Klootwijk
- Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands
| | - Ernst J R Sudhölter
- Department of Chemical Engineering, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication Group, MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C P M de Smet
- Department of Chemical Engineering, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
12
|
Chandran GT, Li X, Ogata A, Penner RM. Electrically Transduced Sensors Based on Nanomaterials (2012-2016). Anal Chem 2016; 89:249-275. [PMID: 27936611 DOI: 10.1021/acs.analchem.6b04687] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Girija Thesma Chandran
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Xiaowei Li
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Alana Ogata
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
13
|
Affiliation(s)
- Eric Bakker
- Department of Inorganic and
Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
14
|
Bishnoi S, Milton MD. Tunable phenothiazine hydrazones as colour displaying, ratiometric and reversible pH sensors. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|