1
|
Bai Z, Zhao Z, Wang S, Li H, Chen DDY. Ambient mass spectrometry imaging of food natural products by angled direct analysis in real time high-resolution mass spectrometry. Food Chem 2024; 454:139802. [PMID: 38797098 DOI: 10.1016/j.foodchem.2024.139802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Direct surface analysis in ambient conditions provides information on the position and chemical composition of an object at the time of investigation. An angled sampling probe is developed in this work for direct analysis in real time (DART) ionization high-resolution mass spectrometry. The DART ion source and the interface were modified for improved surface resolution, increased ion transfer efficiency, as well as enabling two-dimensional surface scanning. The angled probe DART-MS system was used for investigating a variety of food samples including fruit peels, ginseng root, plant leaves and sections of radish. Abundant signals and distinct chemical profiles are obtained in seconds, and spatial distribution of different molecules across the sample surfaces can be observed. In addition, the developed system can quickly identify the chemical changes when the surfaces were treated. The method is capable of directly evaluating food sample surfaces with different shapes, hardness, and conditions, without any sample pretreatments.
Collapse
Affiliation(s)
- Zhiru Bai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhengyan Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saiting Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
2
|
Yang Y, Xie J, Wu Y, Liu N, Deng J, Luan T. Nanospray Laser-Induced Plasma Ionization Mass Spectrometry for Sensitive and High-Coverage Analysis of Broad Polarity Organic Pollutants. Anal Chem 2024; 96:14085-14089. [PMID: 39162322 DOI: 10.1021/acs.analchem.4c03319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Accurate, sensitive, and high-coverage analysis of various organic pollutants in complex samples and single cells is significant in investigating their environmental behaviors and toxic effects. Here we proposed a nanospray laser-induced plasma ionization mass spectrometry (nLIPI-MS) method for sensitive and high-coverage analysis of broad polarity organic pollutants under ambient and open-air conditions. The nLIPI-MS method combines nanospray with laser-induced plasma ionization, enabling direct analysis without sophisticated sample pretreatment. For the analysis of nonpolar and very weakly polar organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, the nLIPI-MS method showed desirable analytical performance, with limits of detection of as low as the μg/L level. For moderately polar organic pollutants such as p-phenylenediamine quinones (PPD-Qs), nLIPI-MS displayed significant enhanced sensitivity by 1 to 2 orders of magnitude in comparison to nanoelectrospray ionization (nESI)-MS. For more polar organic pollutants such as per- and polyfluoroalkyl substances (PFASs), nLIPI-MS also showed good analytical performance, with a sensitivity improvement of 1.3- to 2.7-fold over that of nESI-MS. The sensitivity of nLIPI-MS for the analysis of PPD-Qs and PFASs reached as low as the ng/L level, enabling the analysis of ultratrace levels of these pollutants in complex samples and even single cells. Our experimental results demonstrated that nLIPI-MS was an extensive ambient MS method, showing desirable analytical performance for the analysis of organic pollutants with broad polarity ranges.
Collapse
Affiliation(s)
- Yunyun Yang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jialiang Xie
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Jieyang Center, Jieyang 515200, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - YueHua Wu
- Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Ning Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Jieyang Center, Jieyang 515200, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Jieyang Center, Jieyang 515200, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
3
|
Fahy WD, Wania F, Abbatt JPD. When Does Multiphase Chemistry Influence Indoor Chemical Fate? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4257-4267. [PMID: 38380897 DOI: 10.1021/acs.est.3c08751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Human chemical exposure often occurs indoors, where large variability in contaminant concentrations and indoor chemical dynamics make assessments of these exposures challenging. A major source of uncertainty lies in the rates of chemical transformations which, due to high surface-to-volume ratios and rapid air change rates relative to rates of gas-phase reactions indoors, are largely gas-surface multiphase processes. It remains unclear how important such chemistry is in controlling indoor chemical lifetimes and, therefore, human exposure to both parent compounds and transformation products. We present a multimedia steady-state fugacity-based model to assess the importance of multiphase chemistry relative to cleaning and mass transfer losses, examine how the physicochemical properties of compounds and features of the indoor environment affect these processes, and investigate uncertainties pertaining to indoor multiphase chemistry and chemical lifetimes. We find that multiphase reactions can play an important role in chemical fate indoors for reactive compounds with low volatility, i.e., octanol-air equilibrium partitioning ratios (Koa) above 108, with the impact of this chemistry dependent on chemical identity, oxidant type and concentration, and other parameters. This work highlights the need for further research into indoor chemical dynamics and multiphase chemistry to constrain human exposure to chemicals in the built environment.
Collapse
Affiliation(s)
- William D Fahy
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
4
|
Jorga SD, Liu T, Wang Y, Hassan S, Huynh H, Abbatt JPD. Kinetics of hypochlorous acid reactions with organic and chloride-containing tropospheric aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1645-1656. [PMID: 37721367 DOI: 10.1039/d3em00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Chlorine plays an important role in tropospheric oxidation processes, in both marine and continental environments. Although modeling studies have explored the importance of halogen chemistry, uncertainty remains in associated chemical mechanisms and fundamental kinetics parameters. Prior kinetics measurements of multiphase halogen recycling reactions have been largely performed with dilute, bulk solutions, leaving unexplored more realistic chemical systems which have high solute concentrations and are internally mixed with both halide and organic components. Here, we address the multiphase kinetics of gaseous HOCl using an aerosol flow tube and aerosol mass spectrometer to study its reactions with particulate chloride, using atmospherically relevant particle acidity, solute concentrations, and ionic strength. We also investigate the chemistry that results when biomass burning (BB) aerosol components and chloride are internally mixed. Using pH-buffered deliquesced particles, we show that the rate constant for reaction of dissolved HOCl with H+ and Cl- at high relative humidity (RH) (80-85%) is within a factor of two of the literature value for bulk phase conditions. However, at lower RH values (60-70%) where the particles are considerably more concentrated, the rate constant for chloride loss from the particles is an order of magnitude higher. For pure organic compounds commonly found in biomass burning (BB) aerosol, such as coniferaldehyde, salicylic acid and furfural, an increase in the aerosol chlorine content occurs with HOCl exposure, indicating the formation of organochlorine species. Together, these independent findings explain results for internally mixed aerosol particles with both chloride and BB components present where we observed behavior consistent with both chloride loss and organochlorine formation occurring simultaneously upon HOCl exposure. Our results indicate that chlorine recycling via HOCl uptake by chloride-containing particles will occur in the atmosphere efficiently over a wide range of RH conditions, even when reactive organic compounds are present in the same particles as chloride. Simultaneously, formation of organochlorine compounds, which are commonly toxic, is likely occurring when reactive organic components are present.
Collapse
Affiliation(s)
- Spiro D Jorga
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Yutong Wang
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Sumaiya Hassan
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Han Huynh
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| |
Collapse
|
5
|
Mathias S, Sears P. Direct analysis in real-time mass spectrometry: Observations of helium, nitrogen and argon as ionisation gas for the detection of small molecules using a single quadrupole instrument. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9521. [PMID: 37055933 PMCID: PMC10909476 DOI: 10.1002/rcm.9521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
RATIONALE Direct analysis in real time is typically performed using helium as the ionisation gas for the detection of analytes by mass spectrometry (MS). Nitrogen and argon are found with abundance in the air and provide a cheaper and greener alternative to the use of helium as ionisation gas. This study explores the use of helium, nitrogen and argon as ionisation gas for the detection of organic compounds. METHODS Four illicit drugs, two amino acids and five explosives were chosen as target analytes to understand selectivity, sensitivity and linearity when helium, nitrogen or argon was used as the ionisation gas with the direct analysis in real time (DART) source. Analysis was carried out on a Waters Acquity QDa single quadrupole mass spectrometer. RESULTS Calibration curves over the range of 5-100 ng were produced for each analyte using the different ionisation gases to assess the instrument response. Nitrogen gave a higher response to concentration than helium or argon; however, the lowest limits of detection were observed when helium was used. CONCLUSIONS All the target analytes were detected using DART-MS with helium, nitrogen or argon as the ionisation gas. Whereas helium provided the highest sensitivity, nitrogen produced reasonable limits of detection and had good linearity across the concentration range explored, suggesting it provides a greener and cheaper alternative to helium.
Collapse
Affiliation(s)
- Simone Mathias
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordUK
| | - Patrick Sears
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordUK
| |
Collapse
|
6
|
Sun J, Yin Y, Li W, Jin O, Na N. CHEMICAL REACTION MONITORING BY AMBIENT MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:70-99. [PMID: 33259644 DOI: 10.1002/mas.21668] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Chemical reactions conducted in different media (liquid phase, gas phase, or surface) drive developments of versatile techniques for the detection of intermediates and prediction of reasonable reaction pathways. Without sample pretreatment, ambient mass spectrometry (AMS) has been applied to obtain structural information of reactive molecules that differ in polarity and molecular weight. Commercial ion sources (e.g., electrospray ionization, atmospheric pressure chemical ionization, and direct analysis in real-time) have been reported to monitor substrates and products by offline reaction examination. While the interception or characterization of reactive intermediates with short lifetime are still limited by the offline modes. Notably, online ionization technologies, with high tolerance to salt, buffer, and pH, can achieve direct sampling and ionization of on-going reactions conducted in different media (e.g., liquid phase, gas phase, or surface). Therefore, short-lived intermediates could be captured at unprecedented timescales, and the reaction dynamics could be studied for mechanism examinations without sample pretreatments. In this review, via various AMS methods, chemical reaction monitoring and mechanism elucidation for different classifications of reactions have been reviewed. The developments and advances of common ionization methods for offline reaction monitoring will also be highlighted.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Weixiang Li
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Ouyang Jin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
7
|
Gao Y, Li Y, Zhan B, He Q, Zhu H, Chen W, Yin Q, Feng H, Pan Y. Ambient electric arc ionization for versatile sample analysis using mass spectrometry. Analyst 2021; 146:5682-5690. [PMID: 34397059 DOI: 10.1039/d1an00872b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, convenient ambient electric arc ionization (AEAI) device was developed as a mass spectrometry ion source for versatile sample analysis. AEAI could be considered as a soft ionization technique in which the protonated ion ([M + H]+) is the main ion species with little or no in-source fragmentation for most analytes. Coupled with a high-resolution Orbitrap mass spectrometer, AEAI could be applied to the analysis of a variety of organic compounds having a wide range of polarities, ranging from non-polar species such as polybenzenoid aromatic hydrocarbons (PAHs) to highly polar species such as amino acids. With its versatile capabilities in the mass spectrometric analysis of small molecules, AEAI has the potential to be an alternative to traditional ionization methods such as electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and electron impact (EI) ionization. The limitations of AEAI are also discussed.
Collapse
Affiliation(s)
- Yuanji Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China. .,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, P.R. China
| | - Yuan Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
| | - Binpeng Zhan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
| | - Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
| | - Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
| | - Qi Yin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
| |
Collapse
|
8
|
Ault AP, Grassian VH, Carslaw N, Collins DB, Destaillats H, Donaldson DJ, Farmer DK, Jimenez JL, McNeill VF, Morrison GC, O'Brien RE, Shiraiwa M, Vance ME, Wells JR, Xiong W. Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. Chem 2020; 6:3203-3218. [PMID: 32984643 PMCID: PMC7501779 DOI: 10.1016/j.chempr.2020.08.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical reactions on indoor surfaces play an important role in air quality in indoor environments, where humans spend 90% of their time. We focus on the challenges of understanding the complex chemistry that takes place on indoor surfaces and identify crucial steps necessary to gain a molecular-level understanding of environmental indoor surface chemistry: (1) elucidate key surface reaction mechanisms and kinetics important to indoor air chemistry, (2) define a range of relevant and representative surfaces to probe, and (3) define the drivers of surface reactivity, particularly with respect to the surface composition, light, and temperature. Within the drivers of surface composition are the roles of adsorbed/absorbed water associated with indoor surfaces and the prevalence, inhomogeneity, and properties of secondary organic films that can impact surface reactivity. By combining laboratory studies, field measurements, and modeling we can gain insights into the molecular processes necessary to further our understanding of the indoor environment.
Collapse
Affiliation(s)
- Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA.,Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, North Yorkshire YO10 5NG, UK
| | - Douglas B Collins
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| | - Hugo Destaillats
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - D James Donaldson
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Jose L Jimenez
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel E O'Brien
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23185, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - J R Wells
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Lim CY, Abbatt JP. Chemical Composition, Spatial Homogeneity, and Growth of Indoor Surface Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14372-14379. [PMID: 33156609 DOI: 10.1021/acs.est.0c04163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic films on indoor surfaces are ubiquitous, but details about their composition and growth over timescales less than a month are not fully understood. To address these gaps in understanding, organic film samples in an apartment unit were collected over the course of 17 days using passive samplers and analyzed in a non-targeted manner using direct analysis in real-time mass spectrometry (DART-MS). Overall, the chemical composition observed across various locations within the apartment are very similar. Mass spectra also show clear evidence for the growth of semi-volatile compounds from natural sources and consumer products, such as carboxylic acids and plasticizers. Certain compounds show evidence for equilibration, mostly consistent with surface partitioning models based on octanol-air partition coefficients (Koa). Compounds which have higher molecular weight or larger Koa values tend to equilibrate later, leading to an overall shift in the composition of the film as a function of collection time. Growth rates of film thickness are at least 0.05 nm/day based on a limited number of individually calibrated ions.
Collapse
Affiliation(s)
- Christopher Y Lim
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan P Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
10
|
Abbatt JPD, Wang C. The atmospheric chemistry of indoor environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:25-48. [PMID: 31712796 DOI: 10.1039/c9em00386j] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Through air inhalation, dust ingestion and dermal exposure, the indoor environment plays an important role in controlling human chemical exposure. Indoor emissions and chemistry can also have direct impacts on the quality of outdoor air. And so, it is important to have a strong fundamental knowledge of the chemical processes that occur in indoor environments. This review article summarizes our understanding of the indoor chemistry field. Using a molecular perspective, it addresses primarily the new advances that have occurred in the past decade or so and upon developments in our understanding of multiphase partitioning and reactions. A primary goal of the article is to contrast indoor chemistry to that which occurs outdoors, which we know to be a strongly gas-phase, oxidant-driven system in which substantial oxidative aging of gases and aerosol particles occurs. By contrast, indoor environments are dark, gas-phase oxidant concentrations are relatively low, and due to air exchange, only short times are available for reactive processing of gaseous and particle constituents. However, important gas-surface partitioning and reactive multiphase chemistry occur in the large surface reservoirs that prevail in all indoor environments. These interactions not only play a crucial role in controlling the composition of indoor surfaces but also the surrounding gases and aerosol particles, thus affecting human chemical exposure. There are rich research opportunities available if the advanced measurement and modeling tools of the outdoor atmospheric chemistry community continue to be brought indoors.
Collapse
Affiliation(s)
- Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | - Chen Wang
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
11
|
Zhou Z, Zhou S, Abbatt JPD. Kinetics and Condensed-Phase Products in Multiphase Ozonolysis of an Unsaturated Triglyceride. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12467-12475. [PMID: 31600435 DOI: 10.1021/acs.est.9b04460] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ozone is an important oxidant in the environment. To study the nature of multiphase ozonolysis, an unsaturated triglyceride, triolein, of the type present in skin oil, biological membranes, and most cooking oils was oxidized by gas-phase ozone on a surface. A high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) method was developed for analyzing triolein and its oxidized products. Upon exposure to ozone, the decay of thin coatings of triolein was observed, accompanied by the formation of functionalized condensed-phase products including secondary ozonides (SOZ), acids, and aldehydes. By studying the reaction kinetics as a function of average coating thickness and ozone mixing ratio, we determined that the reactive uptake coefficient (γ) is on the order of 10-6 to 10-5. It is also concluded that the reaction occurs in the bulk without a major interfacial component, and the reacto-diffusive depth of ozone in the triolein coating is estimated to be between 8 and 40 nm. The specific nature of the reaction products is affected by the reactions of the Criegee intermediate formed during ozonolysis. In particular, although an increase in the relative humidity to 50% from dry conditions has no effect on the kinetics of triolein decay, the yield of SOZs is significantly depressed, indicating reactions of the Criegee intermediates to form hydroperoxides. Once formed, the SOZ products are thermally stable over periods of at least 48 h at room temperature but decomposition was observed under simulated outdoor sunlight, likely forming organic acids. From an environmental perspective, this chemistry indicates that SOZs and other oxygenates will form via ozonolysis of oily indoor surfaces and skin oil.
Collapse
Affiliation(s)
- Zilin Zhou
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Shouming Zhou
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Jonathan P D Abbatt
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| |
Collapse
|
12
|
Solvent-free high-throughput analysis of herbicides in environmental water. Anal Chim Acta 2019; 1071:8-16. [DOI: 10.1016/j.aca.2019.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
|
13
|
Thermal decomposition tandem mass spectrometry for rapid detection of tetrabromobisphenol A bis(allyl ether) in soils. Talanta 2019; 200:373-377. [DOI: 10.1016/j.talanta.2019.03.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 11/18/2022]
|
14
|
Nagato EG, Hayakawa K. The presence of nitroarenes formed by secondary atmospheric processes in the Japanese freshwater environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:554-558. [PMID: 31026703 DOI: 10.1016/j.envpol.2019.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
In this study, the concentrations and distributions of nitrated polycyclic aromatic hydrocarbons (NPAHs) were characterized in the freshwater environment of a Japanese city. While the NPAHs were few in number, they were found in pg/L concentrations and the specific isomers suggested the deposition of NPAHs formed via the atmospheric transformation of PAHs. The absence of NPAHs formed via primary combustion processes such as automobile exhaust, suggests that improvements in emission standards are being reflected in the environment, though the NPAHs formed by secondary atmospheric processes are still a significant ecotoxicological threat. The stability of the NPAHs was also examined in spiked freshwater matrices. There was a significant decrease in spiked NPAHs over this period, suggesting that they were either being sorbed or transformed and are therefore not long lived in the freshwater environment. This indicates that the NPAHs found in freshwater samples are from recent deposition.
Collapse
Affiliation(s)
- Edward G Nagato
- Institute of Nature and Environmental Technology, Kanazawa University, 〒923-1224, Ishikawa, Nomi, Wakemachi O-24, Japan.
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, 〒923-1224, Ishikawa, Nomi, Wakemachi O-24, Japan
| |
Collapse
|
15
|
Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations. Proc Natl Acad Sci U S A 2019; 116:11658-11663. [PMID: 31142653 PMCID: PMC6575172 DOI: 10.1073/pnas.1902517116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most prominent toxic compounds in the air. Heterogeneous reactions involving O3 can change the toxicity of PAHs, but the reaction mechanism and kinetics remain to be elucidated. Based on new experiments combined with state-of-the-art kinetic and thermodynamic models, we show that phase separation plays a critical role in the ozonolysis of PAHs mixed with secondary organic aerosols and organic oils. Ozonolysis products of PAHs phase separate to form viscous surface crusts, which protect underlying PAHs from ozonolysis to prolong their chemical lifetime. These results have significant implications for outdoor and indoor air quality by affecting PAH long-range transport and fate in indoor environments. Benzo[a]pyrene (BaP), a key polycyclic aromatic hydrocarbon (PAH) often associated with soot particles coated by organic compounds, is a known carcinogen and mutagen. When mixed with organics, the kinetics and mechanisms of chemical transformations of BaP by ozone in indoor and outdoor environments are still not fully elucidated. Using direct analysis in real-time mass spectrometry (DART-MS), kinetics studies of the ozonolysis of BaP in thin films exhibited fast initial loss of BaP followed by a slower decay at long exposure times. Kinetic multilayer modeling demonstrates that the slow decay of BaP over long times can be simulated if there is slow diffusion of BaP from the film interior to the surface, resolving long-standing unresolved observations of incomplete PAH decay upon prolonged ozone exposure. Phase separation drives the slow diffusion time scales in multicomponent systems. Specifically, thermodynamic modeling predicts that BaP phase separates from secondary organic aerosol material so that the BaP-rich layer at the surface shields the inner BaP from ozone. Also, BaP is miscible with organic oils such as squalane, linoleic acid, and cooking oil, but its oxidation products are virtually immiscible, resulting in the formation of a viscous surface crust that hinders diffusion of BaP from the film interior to the surface. These findings imply that phase separation and slow diffusion significantly prolong the chemical lifetime of PAHs, affecting long-range transport of PAHs in the atmosphere and their fates in indoor environments.
Collapse
|
16
|
Farmer DK. Analytical Challenges and Opportunities For Indoor Air Chemistry Field Studies. Anal Chem 2019; 91:3761-3767. [DOI: 10.1021/acs.analchem.9b00277] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
17
|
Schwartz-Narbonne H, Wang C, Zhou S, Abbatt JPD, Faust J. Heterogeneous Chlorination of Squalene and Oleic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1217-1224. [PMID: 30387352 DOI: 10.1021/acs.est.8b04248] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Washing with chlorine bleach leads to high mixing ratios of gas-phase HOCl. Using two methods that are sensitive to surface film composition-attenuated total reflection fourier transform infrared (ATR-FTIR) spectroscopy and direct analysis in real time mass spectrometry (DART-MS)-we present the first study of the chlorination chemistry that occurs when gaseous HOCl reacts with thin films of squalene and oleic acid. At mixing ratios of 600 ppbv, HOCl forms chlorohydrins by adding across carbon-carbon double bonds without breaking the carbon backbone. The initial uptake of one HOCl molecule occurs on the time scale of a few minutes at these mixing ratios. For oleic acid, ester formation proceeds immediately thereafter, leading to dimeric and trimeric chlorinated products. For squalene, subsequent HOCl uptake occurs until all six of its carbon-carbon double bonds become chlorinated within 1-2 h. These results indicate that chlorination of skin oil, which contains substantial carbon unsaturation, is likely to occur rapidly under common cleaning conditions, potentially leading to the irritation associated with chlorinated bleach. This chemistry will likely also proceed with cooking oils, in the human respiratory system which has unsaturated surfactants as important components of lung fluid, and with organic components of the sea surface microlayer.
Collapse
Affiliation(s)
| | - Chen Wang
- Department of Chemistry , University of Toronto , Toronto , ON Canada M5S 3H6
| | - Shouming Zhou
- Department of Chemistry , University of Toronto , Toronto , ON Canada M5S 3H6
| | - Jonathan P D Abbatt
- Department of Chemistry , University of Toronto , Toronto , ON Canada M5S 3H6
| | - Jennifer Faust
- Department of Chemistry , University of Toronto , Toronto , ON Canada M5S 3H6
- Department of Chemistry , College of Wooster , Wooster , Ohio 44691 , United States
| |
Collapse
|
18
|
Gahtory D, Sen R, Pujari S, Li S, Zheng Q, Moses JE, Sharpless KB, Zuilhof H. Quantitative and Orthogonal Formation and Reactivity of SuFEx Platforms. Chemistry 2018; 24:10550-10556. [PMID: 29949211 PMCID: PMC6099289 DOI: 10.1002/chem.201802356] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 01/14/2023]
Abstract
The constraints of minute reactant amounts and the impossibility to remove any undesired surface‐bound products during monolayer functionalization of a surface necessitate the selection of efficient, modular and orthogonal reactions that lead to quantitative conversions. Herein, we explore the character of sulfur–fluoride exchange (SuFEx) reactions on a surface, and explore the applicability for quantitative and orthogonal surface functionalization. To this end, we demonstrate the use of ethenesulfonyl fluoride (ESF) as an efficient SuFEx linker for creating “SuFEx‐able” monolayer surfaces, enabling three distinct approaches to utilize SuFEx chemistry on a surface. The first approach relies on a di‐SuFEx loading allowing dual functionalization with a nucleophile, while the two latter approaches focus on dual (CuAAC–SuFEx/SPOCQ–SuFEx) click platforms. The resultant strategies allow facile attachment of two different substrates sequentially on the same platform. Along the way we also demonstrate the Michael addition of ethenesulfonyl fluoride to be a quantitative surface‐bound reaction, indicating significant promise in materials science for this reaction.
Collapse
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Rickdeb Sen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Sidharam Pujari
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Suhua Li
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,School of Chemistry, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, 510275, P.R. China
| | - Qinheng Zheng
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - John E Moses
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Victoria, 3086, Australia
| | - K Barry Sharpless
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, P.R. China.,Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Alwarda R, Zhou S, Abbatt JPD. Heterogeneous oxidation of indoor surfaces by gas-phase hydroxyl radicals. INDOOR AIR 2018; 28:655-664. [PMID: 29873111 DOI: 10.1111/ina.12476] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
We investigate heterogeneous oxidation kinetics of monolayer-thick, surface-sorbed organics, namely di-n-octyl phthalate (DnOP) and palmitic acid (PA), with gas-phase OH. The pseudo-first order rate constants for organic loss at OH concentrations of 1.6 × 108 molecules/cm3 are: (2.3 ± 0.1) × 10-4 to (4.8 ± 0.8) × 10-4 s-1 , and (1.3 ± 0.5) × 10-4 s-1 for DnOP and PA, respectively. Films developed in indoor office environments over a few weeks are also oxidized using the same OH concentration. Heterogeneous decay rate constants of mass signals from these films, attributed to phthalates (MW = 390.6) and to PA, are similar to those for the single-component films, ie, (1.9 ± 0.4) × 10-4 to (3.4 ± 0.5) × 10-4 s-1 , and (1.1 ± 0.4) × 10-4 s-1 , respectively. These results suggest that the lifetimes for OH heterogeneous oxidation of monolayer-thick indoor organic films will be on the timescale of weeks to months. To support this argument, we present the first analysis of the mass transfer processes that occur when short-lived gas-phase molecules, such as OH, are taken up by reactive indoor surfaces. Due to rapid chemical production, the diffusion limitation to mass transfer is less important for short-lived molecules than for molecules with little chemical production, such as ozone.
Collapse
Affiliation(s)
- R Alwarda
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - S Zhou
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - J P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Wells JR, Schoemaecker C, Carslaw N, Waring MS, Ham JE, Nelissen I, Wolkoff P. Reactive indoor air chemistry and health-A workshop summary. Int J Hyg Environ Health 2017; 220:1222-1229. [PMID: 28964679 PMCID: PMC6388628 DOI: 10.1016/j.ijheh.2017.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022]
Abstract
The chemical composition of indoor air changes due to the reactive nature of the indoor environment. Historically, only the stable parent compounds were investigated due to their ease of measurement by conventional methods. Today, however, scientists can better characterize oxidation products (gas and particulate-phase) formed by indoor chemistry. An understanding of occupant exposure can be developed through the investigation of indoor oxidants, the use of derivatization techniques, atmospheric pressure detection, the development of real-time technologies, and improved complex modeling techniques. Moreover, the connection between exposure and health effects is now receiving more attention from the research community. Nevertheless, a need still exists for improved understanding of the possible link between indoor air chemistry and observed acute or chronic health effects and long-term effects such as work-related asthma.
Collapse
Affiliation(s)
- J R Wells
- NIOSH/HELD/EAB, Morgantown, WV, USA.
| | | | - N Carslaw
- Environment Department, University of York, York, UK
| | - M S Waring
- Drexel University, Philadelphia, PA, USA
| | - J E Ham
- NIOSH/HELD/EAB, Morgantown, WV, USA
| | - I Nelissen
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - P Wolkoff
- National Research Center for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
21
|
Nahan KS, Alvarez N, Shanov V, Vonderheide A. Carbon Nanotube Fiber Ionization Mass Spectrometry: A Fundamental Study of a Multi-Walled Carbon Nanotube Functionalized Corona Discharge Pin for Polycyclic Aromatic Hydrocarbons Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2408-2413. [PMID: 28884369 DOI: 10.1007/s13361-017-1774-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/16/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Mass spectrometry continues to tackle many complicated tasks, and ongoing research seeks to simplify its instrumentation as well as sampling. The desorption electrospray ionization (DESI) source was the first ambient ionization source to function without extensive gas requirements and chromatography. Electrospray techniques generally have low efficiency for ionization of nonpolar analytes and some researchers have resorted to methods such as direct analysis in real time (DART) or desorption atmospheric pressure chemical ionization (DAPCI) for their analysis. In this work, a carbon nanotube fiber ionization (nanoCFI) source was developed and was found to be capable of solid phase microextraction (SPME) of nonpolar analytes as well as ionization and sampling similar to that of direct probe atmospheric pressure chemical ionization (DP-APCI). Conductivity and adsorption were maintained by utilizing a corona pin functionalized with a multi-walled carbon nanotube (MWCNT) thread. Quantitative work with the nanoCFI source with a designed corona discharge pin insert demonstrated linearity up to 0.97 (R2) of three target PAHs with phenanthrene internal standard. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Keaton S Nahan
- Department of Chemistry, University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, University of Cincinnati, Mail Location 0172, Cincinnati, OH, 45221, USA.
| | - Noe Alvarez
- Nanoworld Laboratories, Department of Biomedical, Chemical and Environmental Engineering, Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Vesselin Shanov
- Nanoworld Laboratories, Department of Biomedical, Chemical and Environmental Engineering, Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Anne Vonderheide
- Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
22
|
Zhou S, Yeung LWY, Forbes MW, Mabury S, Abbatt JPD. Epoxide formation from heterogeneous oxidation of benzo[a]pyrene with gas-phase ozone and indoor air. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1292-1299. [PMID: 28848957 DOI: 10.1039/c7em00181a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of two classes of epoxide products from the heterogeneous reaction of benzo[a]pyrene (BaP) with gas-phase ozone was demonstrated. BaP was coated on a Pyrex glass tube and oxidized with different concentrations of ozone. After oxidation, the epoxide products were derivatized by N-acetylcystein (NAC) and then analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that in addition to mono-epoxides, diol-epoxides were also formed. BaP exposed to genuine indoor air also produces mono- and diol-epoxides, having similar chromatograms to those produced by oxidation of BaP by low concentrations of ozone. Although it is well recognized that diol-epoxides are formed from BaP oxidation in the human body and that they exhibit carcinogenicity via formation of adducts with DNA, this is the first demonstration that such classes of compounds can be formed by abiotic heterogeneous oxidation.
Collapse
Affiliation(s)
- Shouming Zhou
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | | | | | | | | |
Collapse
|
23
|
Kumbhani SR, Wingen LM, Perraud V, Finlayson-Pitts BJ. A cautionary note on the effects of laboratory air contaminants on ambient ionization mass spectrometry measurements. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1659-1668. [PMID: 28782138 DOI: 10.1002/rcm.7951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Ambient ionization mass spectrometry methods are convenient, sensitive and require little sample preparation. However, they are susceptible to species present in air surrounding the mass spectrometer. This study identifies some challenges associated with the potential impacts of indoor air contaminants on ionization and analysis involving open-air methods. METHODS Unexpected effects of volatile organic compounds (VOCs) from floor maintenance activities on ambient ionization mass spectrometry were studied using three different ambient ionization techniques. Extractive electrospray ionization (EESI), direct analysis in real time (DART) and ionization by piezoelectric direct discharge (PDD) plasma were demonstrated in this study to be affected by indoor air contaminants. Identification of contaminant vapors was verified by comparison with standards using EESI-MS/MS product ion scans. RESULTS Emissions of diethylene glycol monoethyl ether and ethylene glycol monobutyl ether are identified from floor stripping and waxing solutions using three ambient ionization mass spectrometry techniques. These unexpected indoor air contaminants are capable of more than 75% ion suppression of target analytes due to their high volatility, proton affinity and solubility compared with the target analytes. The contaminant vapors are also shown to form adducts with one of the target analytes. CONCLUSIONS The common practice in MS analysis of subtracting a background air spectrum may not be appropriate if the presence of ionizable air contaminants alters the spectrum in unexpected ways. For example, VOCs released into air from floor stripping and waxing are capable of causing ion suppression of target analytes.
Collapse
Affiliation(s)
- Sambhav R Kumbhani
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Lisa M Wingen
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Véronique Perraud
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | | |
Collapse
|
24
|
Li X, Wang X, Ma W, Ai W, Bai Y, Ding L, Liu H. Fast analysis of glycosides based on HKUST-1-coated monolith solid-phase microextraction and direct analysis in real-time mass spectrometry. J Sep Sci 2017; 40:1589-1596. [DOI: 10.1002/jssc.201601115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Xianjiang Li
- Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P.R. China
- Division of Metrology in Chemistry; National Institute of Metrology; Beijing P.R. China
| | - Xin Wang
- Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P.R. China
| | - Wen Ma
- Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P.R. China
| | - Wanpeng Ai
- Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P.R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P.R. China
| | - Li Ding
- Key Laboratory of Tobacco Chemistry; Zhengzhou Tobacco Research Institute of CNTC; Zhengzhou P.R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P.R. China
| |
Collapse
|
25
|
Zhou S, Forbes MW, Abbatt JPD. Kinetics and Products from Heterogeneous Oxidation of Squalene with Ozone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11688-11697. [PMID: 27668450 DOI: 10.1021/acs.est.6b03270] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Motivated by the importance of the heterogeneous chemistry of squalene contained within skin oil to indoor air chemistry, the surface reaction of squalene with gas-phase ozone has been investigated. Using direct analysis in real time mass spectrometry (DART-MS) to monitor squalene, the reactive uptake coefficients were determined to be (4.3 ± 2.2) × 10-4 and (4.0 ± 2.2) × 10-4 for ozone mixing ratios (MRO3) of 50 and 25 ppb, respectively, on squalene films deposited on glass surfaces. At an MRO3 of 25 ppb, the lifetime for oxidation was the same as that in an indoor office with an MRO3 between 22 and 32 ppb, suggesting that O3 was the dominant oxidant in this indoor setting. While the heterogeneous kinetics of squalene and O3 were independent of relative humidity (RH), the RH significantly affected the reaction products. Under dry conditions (<5% RH), in addition to several products between m/z 300 and 350, the major condensed-phase end products were levulinic acid (LLA) and succinic acid (SCA). Under humid conditions (50% RH), the major end products were 4-oxopentanal, 4-oxobutanoic acid, and LLA. The molar yields of LLA and SCA were quantified as 230 ± 43% and 110 ± 31%, respectively, under dry conditions and 91 ± 15% and <5%, respectively, at 50% RH. Moreover, high-molecular weight (molecular weight of >450 Da) products were observed under dry conditions with indications that LLA was involved in their formation. The mechanism of squalene oxidation is discussed in light of these observations, with indications of an important role played by Criegee intermediates.
Collapse
Affiliation(s)
- Shouming Zhou
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | - Matthew W Forbes
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON, Canada M5S 3H6
| |
Collapse
|
26
|
Affiliation(s)
- Zhenpeng Zhou
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jae Kyoo Lee
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Samuel C. Kim
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
27
|
Sen R, Escorihuela J, Smulders MMJ, Zuilhof H. Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3412-9. [PMID: 27028705 DOI: 10.1021/acs.langmuir.6b00427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In contrast to homogeneous systems, studying the kinetics of organic reactions on solid surfaces remains a difficult task due to the limited availability of appropriate analysis techniques that are general, high-throughput, and capable of offering quantitative, structural surface information. Here, we demonstrate how direct analysis in real time mass spectrometry (DART-MS) complies with above considerations and can be used for determining interfacial kinetic parameters. The presented approach is based on the use of a MS tag that--in principle--allows application to other reactions. To show the potential of DART-MS, we selected the widely applied strain-promoted alkyne-azide cycloaddition (SPAAC) as a model reaction to elucidate the effects of the nanoenvironment on the interfacial reaction rate.
Collapse
Affiliation(s)
- Rickdeb Sen
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Jorge Escorihuela
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
- Department of Chemical and Materials Engineering, King Abdulaziz University , Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Li X, Li Z, Wang X, Nie H, Zhang Y, Bai Y, Liu H. Monolith dip-it: a bifunctional device for improving the sensitivity of direct analysis in real time mass spectrometry. Analyst 2016; 141:4947-52. [DOI: 10.1039/c6an00839a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A bifunctional monolith dip-it was fabricated and applied for improving the sensitivity of direct analysis in real time mass spectrometry (DART-MS).
Collapse
Affiliation(s)
- Xianjiang Li
- Beijing National Laboratory for Molecular Sciences
- the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ze Li
- Beijing National Laboratory for Molecular Sciences
- the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xin Wang
- Beijing National Laboratory for Molecular Sciences
- the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Honggang Nie
- Analytical Instrumentation Center
- Peking University
- Beijing
- China
| | - Yiding Zhang
- Beijing National Laboratory for Molecular Sciences
- the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences
- the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences
- the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|