1
|
Wang D, Wang Y. Identification of protein partners for small molecules reshapes the understanding of nonalcoholic steatohepatitis and drug discovery. Life Sci 2024; 356:123031. [PMID: 39226989 DOI: 10.1016/j.lfs.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
AIMS Nonalcoholic steatohepatitis (NASH) is the severe subtype of nonalcoholic fatty diseases (NAFLD) with few options for treatment. Patients with NASH exhibit partial responses to the current therapeutics and adverse effects. Identification of the binding proteins for the drugs is essential to understanding the mechanism and adverse effects of the drugs and fuels the discovery of potent and safe drugs. This paper aims to critically discuss recent advances in covalent and noncovalent approaches for identifying binding proteins that mediate NASH progression, along with an in-depth analysis of the mechanisms by which these targets regulate NASH. MATERIALS AND METHODS A literature search was conducted to identify the relevant studies in the database of PubMed and the American Chemical Society. The search covered articles published from January 1990 to July 2024, using the search terms with keywords such as NASH, benzophenone, diazirine, photo-affinity labeling, thermal protein profiling, CETSA, target identification. KEY FINDINGS The covalent approaches utilize drugs modified with diazirine and benzophenone to covalently crosslink with the target proteins, which facilitates the purification and identification of target proteins. In addition, they map the binding sites in the target proteins. By contrast, noncovalent approaches identify the binding targets of unmodified drugs in the intact cell proteome. The advantages and limitations of both approaches have been compared, along with a comprehensive analysis of recent innovations that further enhance the efficiency and specificity. SIGNIFICANCE The analyses of the applicability of these approaches provide novel tools to delineate NASH pathogenesis and promote drug discovery.
Collapse
Affiliation(s)
- Danyi Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
2
|
Wang S, Zhang Y, Yu R, Chai Y, Liu R, Yu J, Qu Z, Zhang W, Zhuang C. Labeled and Label-Free Target Identifications of Natural Products. J Med Chem 2024; 67:17980-17996. [PMID: 39360958 DOI: 10.1021/acs.jmedchem.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Target identification, employing chemical proteomics, constitutes a continuous challenging endeavor in the drug development of natural products (NPs). Understanding their targets is crucial for deciphering their mechanisms and developing potential probes or drugs. Identifications fall into two main categories: labeled and label-free techniques. Labeled methods use the molecules tagged with markers such as biotin or fluorescent labels to easily detect interactions with target proteins. Thorough structure-activity relationships are essential before labeling to avoid changes in the biological activity or binding specificity. In contrast, label-free technologies identify target proteins without modifying natural products, relying on changes in the stability, thermal properties, or precipitation in the presence or absence of these products. Each approach has its advantages and disadvantages, offering a comprehensive understanding of the mechanisms and therapeutic potential of the NPs. Here, we summarize target identification techniques for natural molecules, highlight case studies of notable NPs, and explore future applications and directions.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yu Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruizhi Yu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yue Chai
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ruyun Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Zhang L, Wang Y, Zheng C, Zhou Z, Chen Z. Cellular thermal shift assay: an approach to identify and assess protein target engagement. Expert Rev Proteomics 2024:1-14. [PMID: 39317941 DOI: 10.1080/14789450.2024.2406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.
Collapse
Affiliation(s)
- Liying Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chang Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zihan Zhou
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhe Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
4
|
Emery-Corbin SJ, Yousef JM, Adhikari S, Sumardy F, Nhu D, van Delft MF, Lessene G, Dziekan J, Webb AI, Dagley LF. Improved drug target deconvolution with PISA-DIA using an extended, overlapping temperature gradient. Proteomics 2024; 24:e2300644. [PMID: 38766901 DOI: 10.1002/pmic.202300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Thermal proteome profiling (TPP) is a powerful tool for drug target deconvolution. Recently, data-independent acquisition mass spectrometry (DIA-MS) approaches have demonstrated significant improvements to depth and missingness in proteome data, but traditional TPP (a.k.a. CEllular Thermal Shift Assay "CETSA") workflows typically employ multiplexing reagents reliant on data-dependent acquisition (DDA). Herein, we introduce a new experimental design for the Proteome Integral Solubility Alteration via label-free DIA approach (PISA-DIA). We highlight the proteome coverage and sensitivity achieved by using multiple overlapping thermal gradients alongside DIA-MS, which maximizes efficiencies in PISA sample concatenation and safeguards against missing protein targets that exist at high melting temperatures. We demonstrate our extended PISA-DIA design has superior proteome coverage as compared to using tandem-mass tags (TMT) necessitating DDA-MS analysis. Importantly, we demonstrate our PISA-DIA approach has the quantitative and statistical rigor using A-1331852, a specific inhibitor of BCL-xL. Due to the high melt temperature of this protein target, we utilized our extended multiple gradient PISA-DIA workflow to identify BCL-xL. We assert our novel overlapping gradient PISA-DIA-MS approach is ideal for unbiased drug target deconvolution, spanning a large temperature range whilst minimizing target dropout between gradients, increasing the likelihood of resolving the protein targets of novel compounds.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jumana M Yousef
- Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Subash Adhikari
- Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Fransisca Sumardy
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- ACRF Chemical Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Duong Nhu
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- ACRF Chemical Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Mark F van Delft
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Blood Cells and Blood Cancer Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Guillaume Lessene
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- ACRF Chemical Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jerzy Dziekan
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Infection and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Andrew I Webb
- Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Laura F Dagley
- Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Zou M, Zhou H, Gu L, Zhang J, Fang L. Therapeutic Target Identification and Drug Discovery Driven by Chemical Proteomics. BIOLOGY 2024; 13:555. [PMID: 39194493 DOI: 10.3390/biology13080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Throughout the human lifespan, from conception to the end of life, small molecules have an intrinsic relationship with numerous physiological processes. The investigation into small-molecule targets holds significant implications for pharmacological discovery. The determination of the action sites of small molecules provide clarity into the pharmacodynamics and toxicological mechanisms of small-molecule drugs, assisting in the elucidation of drug off-target effects and resistance mechanisms. Consequently, innovative methods to study small-molecule targets have proliferated in recent years, with chemical proteomics standing out as a vanguard development in chemical biology in the post-genomic age. Chemical proteomics can non-selectively identify unknown targets of compounds within complex biological matrices, with both probe and non-probe modalities enabling effective target identification. This review attempts to summarize methods and illustrative examples of small-molecule target identification via chemical proteomics. It delves deeply into the interactions between small molecules and human biology to provide pivotal directions and strategies for the discovery and comprehension of novel pharmaceuticals, as well as to improve the evaluation of drug safety.
Collapse
Affiliation(s)
- Mingjie Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haiyuan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Letian Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Jingzi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Jiang X, Shon K, Li X, Cui G, Wu Y, Wei Z, Wang A, Li X, Lu Y. Recent advances in identifying protein targets of bioactive natural products. Heliyon 2024; 10:e33917. [PMID: 39091937 PMCID: PMC11292521 DOI: 10.1016/j.heliyon.2024.e33917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
Background Natural products exhibit structural complexity, diversity, and historical therapeutic significance, boasting attractive functions and biological activities that have significantly influenced drug discovery endeavors. The identification of target proteins of active natural compounds is crucial for advancing novel drug innovation. Currently, methods for identifying targets of natural products can be categorized into labeling and label-free approaches based on whether the natural bioactive constituents are modified into active probes. In addition, there is a new avenue for rapidly exploring the targets of natural products based on their innate functions. Aim This review aimed to summarize recent advancements in both labeling and label-free approaches to the identification of targets for natural products, as well as the novel target identification method based on the natural functions of natural products. Methods We systematically collected relevant articles published in recent years from PubMed, Web of Science, and ScienceDirect, focusing on methods employed for identifying protein targets of bioactive natural products. Furthermore, we systematically summarized the principles, procedures, and successful cases, as well as the advantages and limitations of each method. Results Labeling methods allow for the direct labeling of target proteins and the exclusion of indirectly targeted proteins. However, these methods are not suitable for studying post-modified compounds with abolished activity, chemically challenging synthesis, or trace amounts of natural active compounds. Label-free methods can be employed to identify targets of any natural active compounds, including trace amounts and multicomponent mixtures, but their reliability is not as high as labeling methods. The structural complementarity between natural products and their innate receptors significantly increase the opportunities for finding more promising structural analogues of the natural products, and natural products may interact with several structural analogues of receptors in humans. Conclusion Each approach presents benefits and drawbacks. In practice, a combination of methods is employed to identify targets of natural products. And natural products' innate functions-based approach is a rapid and selective strategy for target identification. This review provides valuable references for future research in this field, offering insights into techniques and methodologies.
Collapse
Affiliation(s)
- Xuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kinyu Shon
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaofeng Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
7
|
Stincone P, Naimi A, Saviola AJ, Reher R, Petras D. Decoding the molecular interplay in the central dogma: An overview of mass spectrometry-based methods to investigate protein-metabolite interactions. Proteomics 2024; 24:e2200533. [PMID: 37929699 DOI: 10.1002/pmic.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level. At the same time, new tools are emerging that enable the investigation of molecular interactions throughout the central dogma of molecular biology. In this review, we provide an overview of established and recently developed mass spectrometry-based tools to probe metabolite-protein interactions-from individual interaction pairs to interactions at the proteome-metabolome scale.
Collapse
Affiliation(s)
- Paolo Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - Amira Naimi
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | | | - Raphael Reher
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| |
Collapse
|
8
|
Mouysset B, Le Grand M, Camoin L, Pasquier E. Poly-pharmacology of existing drugs: How to crack the code? Cancer Lett 2024; 588:216800. [PMID: 38492768 DOI: 10.1016/j.canlet.2024.216800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Drug development in oncology is highly challenging, with less than 5% success rate in clinical trials. This alarming figure points out the need to study in more details the multiple biological effects of drugs in specific contexts. Indeed, the comprehensive assessment of drug poly-pharmacology can provide insights into their therapeutic and adverse effects, to optimize their utilization and maximize the success rate of clinical trials. Recent technological advances have made possible in-depth investigation of drug poly-pharmacology. This review first highlights high-throughput methodologies that have been used to unveil new mechanisms of action of existing drugs. Then, we discuss how emerging chemo-proteomics strategies allow effectively dissecting the poly-pharmacology of drugs in an unsupervised manner.
Collapse
Affiliation(s)
- Baptiste Mouysset
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Marion Le Grand
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Luc Camoin
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille Inserm U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France.
| |
Collapse
|
9
|
George AL, Dueñas ME, Marín-Rubio JL, Trost M. Stability-based approaches in chemoproteomics. Expert Rev Mol Med 2024; 26:e6. [PMID: 38604802 PMCID: PMC11062140 DOI: 10.1017/erm.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Target deconvolution can help understand how compounds exert therapeutic effects and can accelerate drug discovery by helping optimise safety and efficacy, revealing mechanisms of action, anticipate off-target effects and identifying opportunities for therapeutic expansion. Chemoproteomics, a combination of chemical biology with mass spectrometry has transformed target deconvolution. This review discusses modification-free chemoproteomic approaches that leverage the change in protein thermodynamics induced by small molecule ligand binding. Unlike modification-based methods relying on enriching specific protein targets, these approaches offer proteome-wide evaluations, driven by advancements in mass spectrometry sensitivity, increasing proteome coverage and quantitation methods. Advances in methods based on denaturation/precipitation by thermal or chemical denaturation, or by protease degradation are evaluated, emphasising the evolving landscape of chemoproteomics and its potential impact on future drug-development strategies.
Collapse
Affiliation(s)
- Amy L. George
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - José Luis Marín-Rubio
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Matthias Trost
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| |
Collapse
|
10
|
Bailey MA, Martyr JG, Hargrove AE, Fitzgerald MC. Stability-Based Proteomics for Investigation of Structured RNA-Protein Interactions. Anal Chem 2024:10.1021/acs.analchem.3c04978. [PMID: 38341805 PMCID: PMC11316846 DOI: 10.1021/acs.analchem.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
RNA-protein interactions are essential to RNA function throughout biology. Identifying the protein interactions associated with a specific RNA, however, is currently hindered by the need for RNA labeling or costly tiling-based approaches. Conventional strategies, which commonly rely on affinity pull-down approaches, are also skewed to the detection of high affinity interactions and frequently miss weaker interactions that may be biologically important. Reported here is the first adaptation of stability-based mass spectrometry methods for the global analysis of RNA-protein interactions. The stability of proteins from rates of oxidation (SPROX) and thermal protein profiling (TPP) methods are used to identify the protein targets of three RNA ligands, the MALAT1 triple helix (TH), a viral stem loop (SL), and an unstructured RNA (PolyU), in LNCaP nuclear lysate. The 315 protein hits with RNA-induced conformational and stability changes detected by TPP and/or SPROX were enriched in previously annotated RNA-binding proteins and included new proteins for hypothesis generation. Also demonstrated are the orthogonality of the SPROX and TPP approaches and the utility of the domain-specific information available with SPROX. This work establishes a novel platform for the global discovery and interrogation of RNA-protein interactions that is generalizable to numerous biological contexts and RNA targets.
Collapse
Affiliation(s)
- Morgan A Bailey
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Justin G Martyr
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
11
|
Gao Y, Ma M, Li W, Lei X. Chemoproteomics, A Broad Avenue to Target Deconvolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305608. [PMID: 38095542 PMCID: PMC10885659 DOI: 10.1002/advs.202305608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/29/2023] [Indexed: 12/22/2023]
Abstract
As a vital project of forward chemical genetic research, target deconvolution aims to identify the molecular targets of an active hit compound. Chemoproteomics, either with chemical probe-facilitated target enrichment or probe-free, provides a straightforward and effective approach to profile the target landscape and unravel the mechanisms of action. Canonical methods rely on chemical probes to enable target engagement, enrichment, and identification, whereas click chemistry and photoaffinity labeling techniques improve the efficiency, sensitivity, and spatial accuracy of target recognition. In comparison, recently developed probe-free methods detect protein-ligand interactions without the need to modify the ligand molecule. This review provides a comprehensive overview of different approaches and recent advancements for target identification and highlights the significance of chemoproteomics in investigating biological processes and advancing drug discovery processes.
Collapse
Affiliation(s)
- Yihui Gao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Mingzhe Ma
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Wenyang Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute for Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
12
|
Tian Y, Wan N, Zhang H, Shao C, Ding M, Bao Q, Hu H, Sun H, Liu C, Zhou K, Chen S, Wang G, Ye H, Hao H. Chemoproteomic mapping of the glycolytic targetome in cancer cells. Nat Chem Biol 2023; 19:1480-1491. [PMID: 37322158 DOI: 10.1038/s41589-023-01355-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Hyperactivated glycolysis is a metabolic hallmark of most cancer cells. Although sporadic information has revealed that glycolytic metabolites possess nonmetabolic functions as signaling molecules, how these metabolites interact with and functionally regulate their binding targets remains largely elusive. Here, we introduce a target-responsive accessibility profiling (TRAP) approach that measures changes in ligand binding-induced accessibility for target identification by globally labeling reactive proteinaceous lysines. With TRAP, we mapped 913 responsive target candidates and 2,487 interactions for 10 major glycolytic metabolites in a model cancer cell line. The wide targetome depicted by TRAP unveils diverse regulatory modalities of glycolytic metabolites, and these modalities involve direct perturbation of enzymes in carbohydrate metabolism, intervention of an orphan transcriptional protein's activity and modulation of targetome-level acetylation. These results further our knowledge of how glycolysis orchestrates signaling pathways in cancer cells to support their survival, and inspire exploitation of the glycolytic targetome for cancer therapy.
Collapse
Affiliation(s)
- Yang Tian
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ning Wan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hanqing Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chang Shao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ming Ding
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qiuyu Bao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiyang Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Huiyong Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chenguang Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Kun Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
13
|
Ji H, Lu X, Zhao S, Wang Q, Liao B, Bauer LG, Huber KVM, Luo R, Tian R, Tan CSH. Target deconvolution with matrix-augmented pooling strategy reveals cell-specific drug-protein interactions. Cell Chem Biol 2023; 30:1478-1487.e7. [PMID: 37652024 PMCID: PMC10840709 DOI: 10.1016/j.chembiol.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/18/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Target deconvolution is a crucial but costly and time-consuming task that hinders large-scale profiling for drug discovery. We present a matrix-augmented pooling strategy (MAPS) which mixes multiple drugs into samples with optimized permutation and delineates targets of each drug simultaneously with mathematical processing. We validated this strategy with thermal proteome profiling (TPP) testing of 15 drugs concurrently, increasing experimental throughput by 60x while maintaining high sensitivity and specificity. Benefiting from the lower cost and higher throughput of MAPS, we performed target deconvolution of the 15 drugs across 5 cell lines. Our profiling revealed that drug-target interactions can differ vastly in targets and binding affinity across cell lines. We further validated BRAF and CSNK2A2 as potential off-targets of bafetinib and abemaciclib, respectively. This work represents the largest thermal profiling of structurally diverse drugs across multiple cell lines to date.
Collapse
Affiliation(s)
- Hongchao Ji
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China PR; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xue Lu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China PR
| | - Shiji Zhao
- Department of Molecular Biology and Biochemistry, Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Qiqi Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China PR
| | - Bin Liao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China PR
| | - Ludwig G Bauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, OX3 7FZ Oxford, UK; Target Discovery Institute, Nuffield Department of Medicine, OX3 7FZ Oxford, UK
| | - Kilian V M Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, OX3 7FZ Oxford, UK; Target Discovery Institute, Nuffield Department of Medicine, OX3 7FZ Oxford, UK
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China PR
| | - Chris Soon Heng Tan
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China PR.
| |
Collapse
|
14
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
15
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
16
|
Behera RN, Bisht VS, Giri K, Ambatipudi K. Realm of proteomics in breast cancer management and drug repurposing to alleviate intricacies of treatment. Proteomics Clin Appl 2023; 17:e2300016. [PMID: 37259687 DOI: 10.1002/prca.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer, a multi-networking heterogeneous disease, has emerged as a serious impediment to progress in clinical oncology. Although technological advancements and emerging cancer research studies have mitigated breast cancer lethality, a precision cancer-oriented solution has not been achieved. Thus, this review will persuade the acquiescence of proteomics-based diagnostic and therapeutic options in breast cancer management. Recently, the evidence of breast cancer health surveillance through imaging proteomics, single-cell proteomics, interactomics, and post-translational modification (PTM) tracking, to construct proteome maps and proteotyping for stage-specific and sample-specific cancer subtyping have outperformed conventional ways of dealing with breast cancer by increasing diagnostic efficiency, prognostic value, and predictive response. Additionally, the paradigm shift in applied proteomics for designing a chemotherapy regimen to identify novel drug targets with minor adverse effects has been elaborated. Finally, the potential of proteomics in alleviating the occurrence of chemoresistance and enhancing reprofiled drugs' effectiveness to combat therapeutic obstacles has been discussed. Owing to the enormous potential of proteomics techniques, the clinical recognition of proteomics in breast cancer management can be achievable and therapeutic intricacies can be surmountable.
Collapse
Affiliation(s)
- Rama N Behera
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
17
|
Tabana Y, Babu D, Fahlman R, Siraki AG, Barakat K. Target identification of small molecules: an overview of the current applications in drug discovery. BMC Biotechnol 2023; 23:44. [PMID: 37817108 PMCID: PMC10566111 DOI: 10.1186/s12896-023-00815-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Target identification is an essential part of the drug discovery and development process, and its efficacy plays a crucial role in the success of any given therapy. Although protein target identification research can be challenging, two main approaches can help researchers make significant discoveries: affinity-based pull-down and label-free methods. Affinity-based pull-down methods use small molecules conjugated with tags to selectively isolate target proteins, while label-free methods utilize small molecules in their natural state to identify targets. Target identification strategy selection is essential to the success of any drug discovery process and must be carefully considered when determining how to best pursue a specific project. This paper provides an overview of the current target identification approaches in drug discovery related to experimental biological assays, focusing primarily on affinity-based pull-down and label-free approaches, and discusses their main limitations and advantages.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Dinesh Babu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Dey AK, Banarjee R, Boroumand M, Rutherford DV, Strassheim Q, Nyunt T, Olinger B, Basisty N. Translating Senotherapeutic Interventions into the Clinic with Emerging Proteomic Technologies. BIOLOGY 2023; 12:1301. [PMID: 37887011 PMCID: PMC10604147 DOI: 10.3390/biology12101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Cellular senescence is a state of irreversible growth arrest with profound phenotypic changes, including the senescence-associated secretory phenotype (SASP). Senescent cell accumulation contributes to aging and many pathologies including chronic inflammation, type 2 diabetes, cancer, and neurodegeneration. Targeted removal of senescent cells in preclinical models promotes health and longevity, suggesting that the selective elimination of senescent cells is a promising therapeutic approach for mitigating a myriad of age-related pathologies in humans. However, moving senescence-targeting drugs (senotherapeutics) into the clinic will require therapeutic targets and biomarkers, fueled by an improved understanding of the complex and dynamic biology of senescent cell populations and their molecular profiles, as well as the mechanisms underlying the emergence and maintenance of senescence cells and the SASP. Advances in mass spectrometry-based proteomic technologies and workflows have the potential to address these needs. Here, we review the state of translational senescence research and how proteomic approaches have added to our knowledge of senescence biology to date. Further, we lay out a roadmap from fundamental biological discovery to the clinical translation of senotherapeutic approaches through the development and application of emerging proteomic technologies, including targeted and untargeted proteomic approaches, bottom-up and top-down methods, stability proteomics, and surfaceomics. These technologies are integral for probing the cellular composition and dynamics of senescent cells and, ultimately, the development of senotype-specific biomarkers and senotherapeutics (senolytics and senomorphics). This review aims to highlight emerging areas and applications of proteomics that will aid in exploring new senescent cell biology and the future translation of senotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nathan Basisty
- Translational Geroproteomics Unit, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (A.K.D.); (R.B.); (M.B.); (D.V.R.); (Q.S.); (T.N.); (B.O.)
| |
Collapse
|
19
|
Minkoff BB, Burch HL, Wolfer JD, Sussman MR. Radical-Mediated Covalent Azidylation of Hydrophobic Microdomains in Water-Soluble Proteins. ACS Chem Biol 2023; 18:1786-1796. [PMID: 37463134 DOI: 10.1021/acschembio.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Hydrophobic microdomains, also known as hydrophobic patches, are essential for many important biological functions of water-soluble proteins. These include ligand or substrate binding, protein-protein interactions, proper folding after translation, and aggregation during denaturation. Unlike transmembrane domains, which are easily recognized from stretches of contiguous hydrophobic sidechains in amino acids via primary protein sequence, these three-dimensional hydrophobic patches cannot be easily predicted. The lack of experimental strategies for directly determining their locations hinders further understanding of their structure and function. Here, we posit that the small triatomic anion N3- (azide) is attracted to these patches and, in the presence of an oxidant, forms a radical that covalently modifies C-H bonds of nearby amino acids. Using two model proteins (BSA and lysozyme) and a cell-free lysate from the model higher plant Arabidopsis thaliana, we find that radical-mediated covalent azidylation occurs within buried catalytic active sites and ligand binding sites and exhibits similar behavior to established hydrophobic probes. The results herein suggest a model in which the azido radical is acting as an "affinity reagent" for nonaqueous three-dimensional protein microenvironments and is consistent with both the nonlocalized electron density of the azide moiety and the known high reactivity of azido radicals widely used in organic chemistry syntheses. We propose that the azido radical is a facile means of identifying hydrophobic microenvironments in soluble proteins and, in addition, provides a simple new method for attaching chemical handles to proteins without the need for genetic manipulation or specialized reagents.
Collapse
Affiliation(s)
- Benjamin B Minkoff
- Center for Genomic Science Innovation, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Heather L Burch
- Center for Genomic Science Innovation, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jamison D Wolfer
- Center for Genomic Science Innovation, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Michael R Sussman
- Center for Genomic Science Innovation, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Pan S, Ding A, Li Y, Sun Y, Zhan Y, Ye Z, Song N, Peng B, Li L, Huang W, Shao H. Small-molecule probes from bench to bedside: advancing molecular analysis of drug-target interactions toward precision medicine. Chem Soc Rev 2023; 52:5706-5743. [PMID: 37525607 DOI: 10.1039/d3cs00056g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.
Collapse
Affiliation(s)
- Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yisi Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaxin Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yueqin Zhan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Zhenkun Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Ning Song
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
21
|
Mathay M, Keller A, Bruce JE. Studying Protein-Ligand Interactions by Protein Denaturation and Quantitative Cross-Linking Mass Spectrometry. Anal Chem 2023; 95:9432-9436. [PMID: 37307416 PMCID: PMC10848897 DOI: 10.1021/acs.analchem.2c04501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, several mass spectrometry methods have utilized protein structural stability for the quantitative study of protein-ligand engagement. These protein-denaturation approaches, which include thermal proteome profiling (TPP) and stability of proteins from rates of oxidation (SPROX), evaluate ligand-induced denaturation susceptibility changes with a MS-based readout. The different techniques of bottom-up protein-denaturation methods each have their own advantages and challenges. Here, we report the combination of protein-denaturation principles with quantitative cross-linking mass spectrometry using isobaric quantitative protein interaction reporter technologies. This method enables the evaluation of ligand-induced protein engagement through analysis of cross-link relative ratios across chemical denaturation. As a proof of concept, we found ligand-stabilized cross-linked lysine pairs in well-studied bovine serum albumin and ligand bilirubin. These links map to the known binding sites Sudlow Site I and subdomain IB. We propose that protein denaturation and qXL-MS can be combined with similar peptide-level quantification approaches, like SPROX, to increase the coverage information profiled for facilitating protein-ligand engagement efforts.
Collapse
Affiliation(s)
- Martin Mathay
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
22
|
Kang J, Seshadri M, Cupp-Sutton KA, Wu S. Toward the analysis of functional proteoforms using mass spectrometry-based stability proteomics. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1186623. [PMID: 39072225 PMCID: PMC11281393 DOI: 10.3389/frans.2023.1186623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional proteomics aims to elucidate biological functions, mechanisms, and pathways of proteins and proteoforms at the molecular level to examine complex cellular systems and disease states. A series of stability proteomics methods have been developed to examine protein functionality by measuring the resistance of a protein to chemical or thermal denaturation or proteolysis. These methods can be applied to measure the thermal stability of thousands of proteins in complex biological samples such as cell lysate, intact cells, tissues, and other biological fluids to measure proteome stability. Stability proteomics methods have been popularly applied to observe stability shifts upon ligand binding for drug target identification. More recently, these methods have been applied to characterize the effect of structural changes in proteins such as those caused by post-translational modifications (PTMs) and mutations, which can affect protein structures or interactions and diversify protein functions. Here, we discussed the current application of a suite of stability proteomics methods, including thermal proteome profiling (TPP), stability of proteomics from rates of oxidation (SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced structural changes on protein stability. We also discuss future perspectives highlighting the integration of top-down mass spectrometry and stability proteomics methods to characterize intact proteoform stability and understand the function of variable protein modifications.
Collapse
Affiliation(s)
- Ji Kang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Meena Seshadri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
23
|
Ribeiro GDJG, Rei Yan SL, Palmisano G, Wrenger C. Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022. Pharmaceutics 2023; 15:1638. [PMID: 37376086 DOI: 10.3390/pharmaceutics15061638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Malaria kills more than 500,000 people yearly, mainly affecting Africa and Southeast Asia. The disease is caused by the protozoan parasite from the genus Plasmodium, with Plasmodium vivax and Plasmodium falciparum being the main species that cause the disease in humans. Although substantial progress has been observed in malaria research in the last years, the threat of the spread of Plasmodium parasites persists. Artemisinin-resistant strains of this parasite have been reported mainly in Southeast Asia, highlighting the urgent need to develop more effective and safe antimalarial drugs. In this context, natural sources, mainly from flora, remain underexplored antimalarial spaces. The present mini-review explores this space focusing on plant extracts and some of their isolated natural products with at least in vitro antiplasmodial effects reported in the literature comprising the last five years (2018-2022).
Collapse
Affiliation(s)
- Giovane de Jesus Gomes Ribeiro
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
24
|
Challenges and Perspectives in Target Identification and Mechanism Illustration for Chinese Medicine. Chin J Integr Med 2023:10.1007/s11655-023-3629-9. [PMID: 36809500 DOI: 10.1007/s11655-023-3629-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 02/23/2023]
Abstract
Chinese medicine (CM) is an important resource for human life understanding and discovery of drugs. However, due to the unclear pharmacological mechanism caused by unclear target, research and international promotion of many active components have made little progress in the past decades of years. CM is mainly composed of multi-ingredients with multi-targets. The identification of targets of multiple active components and the weight analysis of multiple targets in a specific pathological environment, that is, the determination of the most important target is the main obstacle to the mechanism clarification and thus hinders its internationalization. In this review, the main approach to target identification and network pharmacology were summarized. And BIBm (Bayesian inference modeling), a powerful method for drug target identification and key pathway determination was introduced. We aim to provide a new scientific basis and ideas for the development and international promotion of new drugs based on CM.
Collapse
|
25
|
Kurbatov I, Dolgalev G, Arzumanian V, Kiseleva O, Poverennaya E. The Knowns and Unknowns in Protein-Metabolite Interactions. Int J Mol Sci 2023; 24:4155. [PMID: 36835565 PMCID: PMC9964805 DOI: 10.3390/ijms24044155] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Increasing attention has been focused on the study of protein-metabolite interactions (PMI), which play a key role in regulating protein functions and directing an orchestra of cellular processes. The investigation of PMIs is complicated by the fact that many such interactions are extremely short-lived, which requires very high resolution in order to detect them. As in the case of protein-protein interactions, protein-metabolite interactions are still not clearly defined. Existing assays for detecting protein-metabolite interactions have an additional limitation in the form of a limited capacity to identify interacting metabolites. Thus, although recent advances in mass spectrometry allow the routine identification and quantification of thousands of proteins and metabolites today, they still need to be improved to provide a complete inventory of biological molecules, as well as all interactions between them. Multiomic studies aimed at deciphering the implementation of genetic information often end with the analysis of changes in metabolic pathways, as they constitute one of the most informative phenotypic layers. In this approach, the quantity and quality of knowledge about PMIs become vital to establishing the full scope of crosstalk between the proteome and the metabolome in a biological object of interest. In this review, we analyze the current state of investigation into the detection and annotation of protein-metabolite interactions, describe the recent progress in developing associated research methods, and attempt to deconstruct the very term "interaction" to advance the field of interactomics further.
Collapse
Affiliation(s)
| | | | | | - Olga Kiseleva
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | |
Collapse
|
26
|
Scott KA, Zhang TL, Xi SY, Ngo B, Vinogradova EV. Protein State‐Dependent Chemical Biology. Isr J Chem 2023. [DOI: 10.1002/ijch.202200101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kevin A. Scott
- Department of Chemical Immunology and Proteomics Rockefeller University 1230 York Ave New York NY 10065 USA
| | - Tiffany L. Zhang
- Department of Chemical Immunology and Proteomics Rockefeller University 1230 York Ave New York NY 10065 USA
| | - Sarah Y. Xi
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Bryan Ngo
- Department of Chemical Immunology and Proteomics Rockefeller University 1230 York Ave New York NY 10065 USA
- Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Ekaterina V. Vinogradova
- Department of Chemical Immunology and Proteomics Rockefeller University 1230 York Ave New York NY 10065 USA
| |
Collapse
|
27
|
Abstract
Environmental agents of exposure can damage proteins, affecting protein function and cellular protein homeostasis. Specific residues are inherently chemically susceptible to damage from individual types of exposure. Amino acid content is not completely predictive of protein susceptibility, as secondary, tertiary, and quaternary structures of proteins strongly influence the reactivity of the proteome to individual exposures. Because we cannot readily predict which proteins will be affected by which chemical exposures, mass spectrometry-based proteomic strategies are necessary to determine the protein targets of environmental toxins and toxicants. This review describes the mechanisms by which environmental exposure to toxins and toxicants can damage proteins and affect their function, and emerging omic methodologies that can be used to identify the protein targets of a given agent. These methods include target identification strategies that have recently revolutionized the drug discovery field, such as activity-based protein profiling, protein footprinting, and protein stability profiling technologies. In particular, we highlight the necessity of multiple, complementary approaches to fully interrogate how protein integrity is challenged by individual exposures.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
28
|
de Souza LP, Fernie AR. Databases and Tools to Investigate Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:231-249. [PMID: 36178629 DOI: 10.1007/978-1-0716-2624-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein-metabolite interactions (PMIs) are directly responsible for the regulation of numerous processes. From the direct regulation of enzymes to complex developmental processes intermediated by hormones, PMIs are central to understanding the molecular mechanisms of important physiological phenomena. Still, proving such interactions experimentally has proven an arduous task. We discuss here some of the current technologies contributing to expand our knowledge on PMIs, with particular emphasis on platforms and databases to explore the highly heterogenous nature of characterized PMIs, which is likely to be an essential resource on the development of new computational approaches to predict and validate interactions based on large-scale PMI screenings.
Collapse
Affiliation(s)
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
29
|
Feng F, Zhang W, Chai Y, Guo D, Chen X. Label-free target protein characterization for small molecule drugs: recent advances in methods and applications. J Pharm Biomed Anal 2023; 223:115107. [DOI: 10.1016/j.jpba.2022.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
30
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
31
|
Lin HJ, James I, Hyer CD, Haderlie CT, Zackrison MJ, Bateman TM, Berg M, Park JS, Daley SA, Zuniga Pina NR, Tseng YJJ, Moody JD, Price JC. Quantifying In Situ Structural Stabilities of Human Blood Plasma Proteins Using a Novel Iodination Protein Stability Assay. J Proteome Res 2022; 21:2920-2935. [PMID: 36356215 PMCID: PMC9724711 DOI: 10.1021/acs.jproteome.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/12/2022]
Abstract
Many of the diseases that plague society today are driven by a loss of protein quality. One method to quantify protein quality is to measure the protein folding stability (PFS). Here, we present a novel mass spectrometry (MS)-based approach for PFS measurement, iodination protein stability assay (IPSA). IPSA quantifies the PFS by tracking the surface-accessibility differences of tyrosine, histidine, methionine, and cysteine under denaturing conditions. Relative to current methods, IPSA increases protein coverage and granularity to track the PFS changes of a protein along its sequence. To our knowledge, this study is the first time the PFS of human serum proteins has been measured in the context of the blood serum (in situ). We show that IPSA can quantify the PFS differences between different transferrin iron-binding states in near in vivo conditions. We also show that the direction of the denaturation curve reflects the in vivo surface accessibility of the amino acid residue and reproducibly reports a residue-specific PFS. Along with IPSA, we introduce an analysis tool Chalf that provides a simple workflow to calculate the residue-specific PFS. The introduction of IPSA increases the potential to use protein structural stability as a structural quality metric in understanding the etiology and progression of human disease. Data is openly available at Chorusproject.org (project ID 1771).
Collapse
Affiliation(s)
- Hsien-Jung
L. Lin
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Isabella James
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Chad D. Hyer
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Connor T. Haderlie
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Michael J. Zackrison
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Tyler M. Bateman
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Monica Berg
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Ji-Sun Park
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - S. Anisha Daley
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Nathan R. Zuniga Pina
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Yi-Jie J. Tseng
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - James D. Moody
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - John C. Price
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| |
Collapse
|
32
|
Le Sueur C, Hammarén HM, Sridharan S, Savitski MM. Thermal proteome profiling: Insights into protein modifications, associations, and functions. Curr Opin Chem Biol 2022; 71:102225. [PMID: 36368297 DOI: 10.1016/j.cbpa.2022.102225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022]
Abstract
Tracking proteins' biophysical characteristics on a proteome-wide scale can provide valuable information on their functions and interactions. Thermal proteome profiling (TPP) is a multiplexed quantitative proteomics approach that measures changes in protein thermal stability-a key biophysical property-across different cellular states. Developed in 2014, as a target-deconvolution assay for drugs and other small molecules, TPP has since evolved to a system-level biochemical omics technique providing insights into context-dependent changes in protein states. In this review, we summarise key advances in the experimental and data analysis pipeline that have aided this transformation and discuss the recent developments and applications of TPP.
Collapse
Affiliation(s)
- Cecile Le Sueur
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Henrik M Hammarén
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sindhuja Sridharan
- Barts Brain Tumour Center, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
33
|
Cox D, Ormsby AR, Reid GE, Hatters DM. Protein painting reveals pervasive remodeling of conserved proteostasis machinery in response to pharmacological stimuli. NPJ Syst Biol Appl 2022; 8:46. [DOI: 10.1038/s41540-022-00256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractThe correct spatio-temporal organization of the proteome is essential for cellular homeostasis. However, a detailed mechanistic understanding of this organization and how it is altered in response to external stimuli in the intact cellular environment is as-yet unrealized. ‘Protein painting methods provide a means to address this gap in knowledge by monitoring the conformational status of proteins within cells at the proteome-wide scale. Here, we demonstrate the ability of a protein painting method employing tetraphenylethene maleimide (TPE-MI) to reveal proteome network remodeling in whole cells in response to a cohort of commonly used pharmacological stimuli of varying specificity. We report specific, albeit heterogeneous, responses to individual stimuli that coalesce on a conserved set of core cellular machineries. This work expands our understanding of proteome conformational remodeling in response to cellular stimuli, and provides a blueprint for assessing how these conformational changes may contribute to disorders characterized by proteostasis imbalance.
Collapse
|
34
|
Prokofeva P, Höfer S, Hornisch M, Abele M, Kuster B, Médard G. Merits of Diazirine Photo-Immobilization for Target Profiling of Natural Products and Cofactors. ACS Chem Biol 2022; 17:3100-3109. [PMID: 36302507 PMCID: PMC9680877 DOI: 10.1021/acschembio.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 01/20/2023]
Abstract
Finding the targets of natural products is of key importance in both chemical biology and drug discovery, and deconvolution of cofactor interactomes contributes to the functional annotation of the proteome. Identifying the proteins that underlie natural compound activity in phenotypic screens helps to validate the respective targets and, potentially, expand the druggable proteome. Here, we present a generally applicable protocol for the photoactivated immobilization of unmodified and microgram quantities of natural products on diazirine-decorated beads and their use for systematic affinity-based proteome profiling. We show that among 31 molecules of very diverse reported activity and biosynthetic origin, 25 could indeed be immobilized. Dose-response competition binding experiments using lysates of human or bacterial cells followed by quantitative mass spectrometry recapitulated targets of 9 molecules with <100 μM affinity. Among them, immobilization of coenzyme A produced a tool to interrogate proteins containing a HotDog domain. Surprisingly, immobilization of the cofactor flavin adenine dinucleotide (FAD) led to the identification of nanomolar interactions with dozens of RNA-binding proteins.
Collapse
Affiliation(s)
- Polina Prokofeva
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Stefanie Höfer
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Maximilian Hornisch
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Miriam Abele
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354 Freising, Germany
| | - Bernhard Kuster
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354 Freising, Germany
| | - Guillaume Médard
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
35
|
Yin K, Tong M, Sun F, Wu R. Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress. Anal Chem 2022; 94:13250-13260. [PMID: 36108266 PMCID: PMC9789690 DOI: 10.1021/acs.analchem.2c03076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein structures are decisive for their activities and interactions with other molecules. Global analysis of protein structures and conformational changes cannot be achieved by commonly used abundance-based proteomics. Here, we integrated cysteine covalent labeling, selective enrichment, and quantitative proteomics to study protein structures and structural changes on a large scale. This method was applied to globally investigate protein structures in HEK293T cells and protein structural changes in the cells with the tunicamycin (Tm)-induced endoplasmic reticulum (ER) stress. We quantified several thousand cysteine residues, which contain unprecedented and valuable information of protein structures. Combining this method with pulsed stable isotope labeling by amino acids in cell culture, we further analyzed the folding state differences between pre-existing and newly synthesized proteins in cells under the Tm treatment. Besides newly synthesized proteins, unexpectedly, many pre-existing proteins were found to become unfolded upon ER stress, especially those related to gene transcription and protein translation. Furthermore, the current results reveal that N-glycosylation plays a more important role in the folding process of the tertiary and quaternary structures than the secondary structures for newly synthesized proteins. Considering the importance of cysteine in protein structures, this method can be extensively applied in the biological and biomedical research fields.
Collapse
Affiliation(s)
- Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
36
|
Lu D, Pan R, Wu W, Zhang Y, Li S, Xu H, Huang J, Xia J, Wang Q, Luan X, Lv C, Zhang W, Meng G. FL-DTD: an integrated pipeline to predict the drug interacting targets by feedback loop-based network analysis. Brief Bioinform 2022; 23:6632928. [PMID: 35794722 DOI: 10.1093/bib/bbac263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
Drug target discovery is an essential step to reveal the mechanism of action (MoA) underlying drug therapeutic effects and/or side effects. Most of the approaches are usually labor-intensive while unable to identify the tissue-specific interacting targets, especially the targets with weaker drug binding affinity. In this work, we proposed an integrated pipeline, FL-DTD, to predict the drug interacting targets of novel compounds in a tissue-specific manner. This method was built based on a hypothesis that cells under a status of homeostasis would take responses to drug perturbation by activating feedback loops. Therefore, the drug interacting targets can be predicted by analyzing the network responses after drug perturbation. We evaluated this method using the expression data of estrogen stimulation, gene manipulation and drug perturbation and validated its good performance to identify the annotated drug targets. Using STAT3 as a target protein, we applied this method to drug perturbation data of 500 natural compounds and predicted five compounds with STAT3 interacting activities. Experimental assay validated the STAT3-interacting activities of four compounds. Overall, our evaluation suggests that FL-DTD predicts the drug interacting targets with good accuracy and can be used for drug target discovery.
Collapse
Affiliation(s)
- Dong Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Rongrong Pan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Wenxuan Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Yanyan Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Shensuo Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Hong Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Jialan Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Jianhua Xia
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Qun Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Chao Lv
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| | - Guofeng Meng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun 1200, 201203, Shanghai, China
| |
Collapse
|
37
|
Cui Z, Chen P, Li C, Deng S, Yang H. Chip-DSF: A rapid screening strategy for drug protein targets. Pharmacol Res 2022; 182:106346. [PMID: 35809766 DOI: 10.1016/j.phrs.2022.106346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Identification of the drug target of lead compounds is an important means for rapid and efficient drug discovery. Protein chips are a high-throughput protein function analysis technology that has been widely used in screening drug protein targets in recent years. However, the verification of the results after high-throughput protein chip screening is still cumbersome. Based on our mature protein chip preparation platform, we prepared a protein chip containing 150 important high-frequency protein targets and used antibodies to prove the availability of the protein chip. To improve the accuracy of target screening, we combined the label-free differential scanning fluorimetry (DSF) with the protein chip, proposing the Chip-DSF strategy. Subsequently, we tested the method with small molecular ginsenoside-Rg2 (Rg2). The Chip-DSF strategy was used to successfully screen the potential target protein KRAS(G12C) of Rg2. Consistently, we found that Rg2 could inhibit NCI-H23 cell proliferation by inducing cell cycle arrest. Also, we found that Rg2 could reduce the amount of KRAS protein and inhibit the phosphorylation of KRAS downstream key signaling protein ERK1, RPS6, and P70S6K in NCI-H23 cells. Collectively, our Chip-DSF strategy could achieve rapid target verification which improved the accuracy and efficiency of target screening of protein chips.
Collapse
Affiliation(s)
- Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
38
|
Abstract
Knowing that the drug candidate binds to its intended target is a vital part of drug discovery. Thus, several labeled and label-free methods have been developed to study target engagement. In recent years, the cellular thermal shift assay (CETSA) with its variations has been widely adapted to drug discovery workflows. Western blot–based CETSA is used primarily to validate the target binding of a molecule to its target protein whereas CETSA based on bead chemistry detection methods (CETSA HT) has been used to screen molecular libraries to find novel molecules binding to a pre-determined target. Mass spectrometry–based CETSA also known as thermal proteome profiling (TPP) has emerged as a powerful tool for target deconvolution and finding novel binding partners for old and novel molecules. With this technology, it is possible to probe thermal shifts among over 7,000 proteins from one sample and to identify the wanted target binding but also binding to unwanted off-targets known to cause adverse effects. In addition, this proteome-wide method can provide information on the biological process initiated by the ligand binding. The continued development of mass spectrometry labeling reagents, such as isobaric tandem mass tag technology (TMT) continues to increase the throughput of CETSA MS, allowing its use for structure–activity relationship (SAR) studies with a limited number of molecules. In this review, we discussed the differences between different label-free methods to study target engagement, but our focus was on CETSA and recent advances in the CETSA method.
Collapse
Affiliation(s)
- Tuomas Aleksi Tolvanen
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden.,Pelago Bioscience AB, Solna, Sweden
| |
Collapse
|
39
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
40
|
You cannot oxidize what you cannot reach: Oxidative susceptibility of buried methionine residues. J Biol Chem 2022; 298:101973. [PMID: 35461810 PMCID: PMC9118910 DOI: 10.1016/j.jbc.2022.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Oxidation of protein methionines to methionine sulfoxides can result in protein structural alterations with a wide variety of biological implications. Factors that determine susceptibility to oxidation are not well understood. The recent JBC Editors Pick by Walker et al. applied proteomic methodologies to show that the oxidative susceptibility of buried methionine residues is strongly correlated with folding stability of the contextual peptide. Proteome-wide analysis of oxidation-susceptible methionines promises to answer open questions about the biological functions of reversible methionine oxidation.
Collapse
|
41
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
42
|
Gui Y, Wong CS, Zhao G, Xie C, Hou R, Li Y, Li G, Li X. Converting Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded Libraries for More Versatile Selections. ACS OMEGA 2022; 7:11491-11500. [PMID: 35415338 PMCID: PMC8992267 DOI: 10.1021/acsomega.2c01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is an efficient high-throughput screening technology platform in drug discovery and is also gaining momentum in academic research. Today, the majority of DELs are assembled and encoded with double-stranded DNA tags (dsDELs) and has been selected against numerous biological targets; however, dsDELs are not amendable to some of the recently developed selection methods, such as the cross-linking-based selection against immobilized targets and live-cell-based selections, which require DELs encoded with single-stranded DNAs (ssDELs). Herein, we present a simple method to convert dsDELs to ssDELs using exonuclease digestion without library redesign and resynthesis. We show that dsDELs could be efficiently converted to ssDELs and used for affinity-based selections either with purified proteins or on live cells.
Collapse
Affiliation(s)
- Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Clara Shania Wong
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| |
Collapse
|
43
|
Unmodified methodologies in target discovery for small molecule drugs: A rising star. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Vu V, Szewczyk MM, Nie DY, Arrowsmith CH, Barsyte-Lovejoy D. Validating Small Molecule Chemical Probes for Biological Discovery. Annu Rev Biochem 2022; 91:61-87. [PMID: 35363509 DOI: 10.1146/annurev-biochem-032620-105344] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada;
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Bamberger C, Diedrich J, Martìnez-Bartholomé S, Yates JR. Cancer Conformational Landscape Shapes Tumorigenesis. J Proteome Res 2022; 21:1017-1028. [PMID: 35271278 PMCID: PMC9653087 DOI: 10.1021/acs.jproteome.1c00906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During tumorigenesis, DNA mutations in protein coding sequences can alter amino acid sequences which can change the structures of proteins. While the 3D structure of mutated proteins has been studied with atomic resolution, the precise impact of somatic mutations on the 3D proteome during malignant transformation remains unknown because methods to reveal in vivo protein structures in high throughput are limited. Here, we measured the accessibility of the lysine ε-amine for chemical modification across proteomes using covalent protein painting (CPP) to indirectly determine alterations in the 3D proteome. CPP is a novel, high-throughput quantitative mass spectrometric method that surveyed a total of 8052 lysine sites across the 60 cell lines of the well-studied anticancer cell line panel (NCI60). Overall, 5.2 structural alterations differentiated any cancer cell line from the other 59. Structural aberrations in 98 effector proteins correlated with the selected presence of 90 commonly mutated proteins in the NCI60 cell line panel, suggesting that different tumor genotypes reshape a limited set of effector proteins. We searched our dataset for druggable conformational aberrations and identified 49 changes in the cancer conformational landscape that correlated with the growth inhibition profiles of 300 drug candidates out of 50,000 small molecules. We found that alterations in heat shock proteins are key predictors of anticancer drug efficacy, which implies that the proteostasis network may have a general but hitherto unrecognized role in maintaining malignancy. Individual lysine sites may serve as biomarkers to guide drug selection or may be directly targeted for anticancer drug development.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jolene Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Salvador Martìnez-Bartholomé
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
46
|
The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 2022; 21:637-654. [PMID: 35351998 DOI: 10.1038/s41573-022-00409-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Proteins are the main targets of most drugs; however, system-wide methods to monitor protein activity and function are still underused in drug discovery. Novel biochemical approaches, in combination with recent developments in mass spectrometry-based proteomics instrumentation and data analysis pipelines, have now enabled the dissection of disease phenotypes and their modulation by bioactive molecules at unprecedented resolution and dimensionality. In this Review, we describe proteomics and chemoproteomics approaches for target identification and validation, as well as for identification of safety hazards. We discuss innovative strategies in early-stage drug discovery in which proteomics approaches generate unique insights, such as targeted protein degradation and the use of reactive fragments, and provide guidance for experimental strategies crucial for success.
Collapse
|
47
|
Protein folding stabilities are a major determinant of oxidation rates for buried methionine residues. J Biol Chem 2022; 298:101872. [PMID: 35346688 PMCID: PMC9062257 DOI: 10.1016/j.jbc.2022.101872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
The oxidation of protein-bound methionines to form methionine sulfoxides has a broad range of biological ramifications, making it important to delineate factors that influence methionine oxidation rates within a given protein. This is especially important for biopharmaceuticals, where oxidation can lead to deactivation and degradation. Previously, neighboring residue effects and solvent accessibility have been shown to impact the susceptibility of methionine residues to oxidation. In this study, we provide proteome-wide evidence that oxidation rates of buried methionine residues are also strongly influenced by the thermodynamic folding stability of proteins. We surveyed the Escherichia coli proteome using several proteomic methodologies and globally measured oxidation rates of methionine residues in the presence and absence of tertiary structure, as well as the folding stabilities of methionine-containing domains. These data indicated that buried methionines have a wide range of protection factors against oxidation that correlate strongly with folding stabilities. Consistent with this, we show that in comparison to E. coli, the proteome of the thermophile Thermus thermophilus is significantly more stable and thus more resistant to methionine oxidation. To demonstrate the utility of this correlation, we used native methionine oxidation rates to survey the folding stabilities of E. coli and T. thermophilus proteomes at various temperatures and propose a model that relates the temperature dependence of the folding stabilities of these two species to their optimal growth temperatures. Overall, these results indicate that oxidation rates of buried methionines from the native state of proteins can be used as a metric of folding stability.
Collapse
|
48
|
Kluever V, Fornasiero EF. Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Res Rev 2021; 72:101465. [PMID: 34555542 DOI: 10.1016/j.arr.2021.101465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Due to the extension of human life expectancy, the prevalence of cognitive impairment is rising in the older portion of society. Developing new strategies to delay or attenuate cognitive decline is vital. For this purpose, it is imperative to understand the cellular and molecular events at the basis of brain aging. While several organs are directly accessible to molecular analysis through biopsies, the brain constitutes a notable exception. Most of the molecular studies are performed on postmortem tissues, where cell death and tissue damage have already occurred. Hence, the study of the molecular aspects of cognitive decline largely relies on animal models and in particular on small mammals such as mice. What have we learned from these models? Do these animals recapitulate the changes observed in humans? What should we expect from future mouse studies? In this review we answer these questions by summarizing the state of the research that has addressed cognitive decline in mice from several perspectives, including genetic manipulation and omics strategies. We conclude that, while extremely valuable, mouse models have limitations that can be addressed by the optimal design of future studies and by ensuring that results are cross-validated in the human context.
Collapse
|
49
|
Yang C, Zhu S, Chen Y, Liu Z, Zhang W, Zhao C, Luo C, Deng H. Flavonoid 4,4'-dimethoxychalcone suppresses cell proliferation via dehydrogenase inhibition and oxidative stress aggravation. Free Radic Biol Med 2021; 175:206-215. [PMID: 34506903 DOI: 10.1016/j.freeradbiomed.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022]
Abstract
Flavonoids are natural polyphenolic compounds with a diverse array of biological activities and health-promoting effects. Recent studies have found that 4,4'-dimethoxychalcone (DMC) promoted longevity via autophagy; however, its targets are currently unknown. Herein, we employed an unbiased thermal proteome profiling (TPP) method and identified multiple targets of DMC, including ALDH1A3, ALDH2, and PTGES2. We further determined the dissociation constant (Kd) of DMC and ALDH1A3 to be 2.8 μM using microscale thermophoresis (MST) analysis, which indicated that DMC inhibited ALDH1A3 activity and aggravated cellular oxidative stress. DMC treatment significantly increased cellular reactive oxygen species (ROS) production and inhibited cancer cell growth. Quantitative proteomic analysis showed that DMC upregulated proteins associated with stress-responses and downregulated proteins associated with cell cycle progression, and this was confirmed using cell cycle analysis. Taken together, we showed that TPP is an effective tool with which to identify flavonoid targets and set a precedent for deciphering flavonoid function in the future. We have demonstrated that DMC inhibited cell proliferation via ROS-induced cell cycle arrest and is an anti-proliferative agent in cancer treatment.
Collapse
Affiliation(s)
- Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Zongyuan Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Chongchong Zhao
- Protein Chemistry and Proteomics Facility, Tsinghua University Technology Center for Protein Research, Beijing, 100084, PR China
| | - Chengting Luo
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
50
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|