1
|
Takagi S, Suzuki N, Ishihama Y. Revisiting Protein Reversed-Phase Chromatography for Bottom-Up Proteomics. J Proteome Res 2024; 23:4704-4714. [PMID: 39293027 DOI: 10.1021/acs.jproteome.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
We revisited protein reversed-phase chromatography (RP), using state-of-the-art RP columns developed for biopharmaceuticals, such as monoclonal antibodies, in order to evaluate the suitability of this methodology as a prefractionation step for bottom-up proteomics. The protein RP prefractionation (Prot-RP) method was compared with two other widely used prefractionation methods, SDS-PAGE and high-pH peptide RP (Pept-RP) by using cell lysates as samples. The overlap between fractions of Prot-RP was comparable to that of SDS-PAGE, and the protein recovery was approximately 2-fold higher. On the other hand, the overlap between fractions of Prot-RP was slightly larger than that of Pept-RP, but Prot-RP was able to identify more protein termini and more isoform-specific peptides than Pept-RP. Our results indicate that the combination of highly efficient protein prefractionation with modern mass spectrometers is particularly effective for proteoform profiling from cellular samples.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa 254-0014, Japan
| | - Nobuyuki Suzuki
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa 254-0014, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
2
|
Proteomic Analysis of Exudates from Chronic Ulcer of Diabetic Foot Treated with Scorpion Antimicrobial Peptide. Mediators Inflamm 2022; 2022:5852786. [PMID: 36225537 PMCID: PMC9550419 DOI: 10.1155/2022/5852786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Scorpion peptides have good therapeutic effect on chronic ulcer of diabetic foot, but the related pharmacological mechanism has remained unclear. The different proteins and bacteria present in ulcer exudates from chronic diabetic foot patients, treated with scorpion antimicrobial peptide at different stages, were analyzed using isobaric tags for quantification-labeled proteomics and bacteriological methods. According to the mass spectrometry data, a total of 1865 proteins were identified qualitatively, and the number of the different proteins was 130 (mid/early), 401 (late/early), and 310 (mid, late/early). In addition, functional annotation, cluster analysis of effects and the analysis of signal pathway, transcription regulation, and protein-protein interaction network were carried out. The results showed that the biochemical changes of wound microenvironment during the treatment involved activated biological functions such as protein synthesis, cell proliferation, differentiation, migration, movement, and survival. Inhibited biological functions such as cell death, inflammatory response, immune diseases, and bacterial growth were also involved. Bacteriological analysis showed that Burkholderia cepacia was the main bacteria in the early and middle stage of ulcer exudate and Staphylococcus epidermidis in the late stage. This study provides basic data for further elucidation of the molecular mechanism of diabetic foot.
Collapse
|
3
|
Araújo MJ, Sousa ML, Felpeto AB, Turkina MV, Fonseca E, Martins JC, Vasconcelos V, Campos A. Comparison of Sample Preparation Methods for Shotgun Proteomic Studies in Aquaculture Species. Proteomes 2021; 9:proteomes9040046. [PMID: 34842808 PMCID: PMC8628934 DOI: 10.3390/proteomes9040046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Proteomics has been recently introduced in aquaculture research, and more methodological studies are needed to improve the quality of proteomics studies. Therefore, this work aims to compare three sample preparation methods for shotgun LC–MS/MS proteomics using tissues of two aquaculture species: liver of turbot Scophthalmus maximus and hepatopancreas of Mediterranean mussel Mytilus galloprovincialis. We compared the three most common sample preparation workflows for shotgun analysis: filter-aided sample preparation (FASP), suspension-trapping (S-Trap), and solid-phase-enhanced sample preparations (SP3). FASP showed the highest number of protein identifications for turbot samples, and S-Trap outperformed other methods for mussel samples. Subsequent functional analysis revealed a large number of Gene Ontology (GO) terms in turbot liver proteins (nearly 300 GO terms), while fewer GOs were found in mussel proteins (nearly 150 GO terms for FASP and S-Trap and 107 for SP3). This result may reflect the poor annotation of the genomic information in this specific group of animals. FASP was confirmed as the most consistent method for shotgun proteomic studies; however, the use of the other two methods might be important in specific experimental conditions (e.g., when samples have a very low amount of protein).
Collapse
Affiliation(s)
- Mário Jorge Araújo
- CIIMAR-UP-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (M.J.A.); (M.L.S.); (A.B.F.); (E.F.); (J.C.M.); (V.V.)
| | - Maria Lígia Sousa
- CIIMAR-UP-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (M.J.A.); (M.L.S.); (A.B.F.); (E.F.); (J.C.M.); (V.V.)
| | - Aldo Barreiro Felpeto
- CIIMAR-UP-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (M.J.A.); (M.L.S.); (A.B.F.); (E.F.); (J.C.M.); (V.V.)
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Elza Fonseca
- CIIMAR-UP-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (M.J.A.); (M.L.S.); (A.B.F.); (E.F.); (J.C.M.); (V.V.)
| | - José Carlos Martins
- CIIMAR-UP-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (M.J.A.); (M.L.S.); (A.B.F.); (E.F.); (J.C.M.); (V.V.)
| | - Vítor Vasconcelos
- CIIMAR-UP-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (M.J.A.); (M.L.S.); (A.B.F.); (E.F.); (J.C.M.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Alexandre Campos
- CIIMAR-UP-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (M.J.A.); (M.L.S.); (A.B.F.); (E.F.); (J.C.M.); (V.V.)
- Correspondence:
| |
Collapse
|
4
|
Shi J, Xiao J, Li J, Wang X, Her L, Sorensen MJ, Zhu HJ. FRACPRED-2D-PRM: A Fraction Prediction Algorithm-Assisted 2D Liquid Chromatography-Based Parallel Reaction Monitoring-Mass Spectrometry Approach for Measuring Low-Abundance Proteins in Human Plasma. Proteomics 2020; 20:e2000175. [PMID: 33085175 DOI: 10.1002/pmic.202000175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Indexed: 11/09/2022]
Abstract
Multidimensional fractionation-based enrichment methods improve the sensitivity of proteomic analysis for low-abundance proteins. However, a major limitation of conventional multidimensional proteomics is the extensive labor and instrument time required for analyzing many fractions obtained from the first dimension separation. Here, a fraction prediction algorithm-assisted 2D LC-based parallel reaction monitoring-mass spectrometry (FRACPRED-2D-PRM) approach for measuring low-abundance proteins in human plasma is presented. Plasma digests are separated by the first dimension high-pH RP-LC with data-dependent acquisition (DDA). The FRACPRED algorithm is then usedto predict the retention times of undetectable target peptides according to those of other abundant plasma peptides during the first dimension separation. Fractions predicted to contain target peptides are analyzed by the second dimension low-pH nano RP-LC PRM. The accuracy and robustness of fraction prediction with the FRACPRED algorithm are demonstrated by measuring two low-abundance proteins, aldolase B and carboxylesterase 1, in human plasma. The FRACPRED-2D-PRM proteomics approach demonstrates markedly improved efficiency and sensitivity over conventional 2D-LC proteomics assays. It is expected that this approach will be widely used in the study of low-abundance proteins in plasma and other complex biological samples.
Collapse
Affiliation(s)
- Jian Shi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| | - Jingcheng Xiao
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| | - Jiapeng Li
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| | - Xinwen Wang
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| | - Lucy Her
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| | - Matthew J Sorensen
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| |
Collapse
|
5
|
Baeza J, Lawton AJ, Fan J, Smallegan MJ, Lienert I, Gandhi T, Bernhardt OM, Reiter L, Denu JM. Revealing Dynamic Protein Acetylation across Subcellular Compartments. J Proteome Res 2020; 19:2404-2418. [PMID: 32290654 DOI: 10.1021/acs.jproteome.0c00088] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein acetylation is a widespread post-translational modification implicated in many cellular processes. Recent advances in mass spectrometry have enabled the cataloging of thousands of sites throughout the cell; however, identifying regulatory acetylation marks have proven to be a daunting task. Knowledge of the kinetics and stoichiometry of site-specific acetylation is an important factor to uncover function. Here, an improved method of quantifying acetylation stoichiometry was developed and validated, providing a detailed landscape of dynamic acetylation stoichiometry within cellular compartments. The dynamic nature of site-specific acetylation in response to serum stimulation was revealed. In two distinct human cell lines, growth factor stimulation led to site-specific, temporal acetylation changes, revealing diverse kinetic profiles that clustered into several groups. Overlap of dynamic acetylation sites among two different human cell lines suggested similar regulatory control points across major cellular pathways that include splicing, translation, and protein homeostasis. Rapid increases in acetylation on protein translational machinery suggest a positive regulatory role under progrowth conditions. Finally, higher median stoichiometry was observed in cellular compartments where active acetyltransferases are well described. Data sets can be accessed through ProteomExchange via the MassIVE repository (ProteomExchange: PXD014453; MassIVE: MSV000084029).
Collapse
Affiliation(s)
- Josue Baeza
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, 53706 Madison, Wisconsin, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States
| | - Alexis J Lawton
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, 53706 Madison, Wisconsin, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States
| | - Jing Fan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States
| | - Michael J Smallegan
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, 53706 Madison, Wisconsin, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States
| | - Ian Lienert
- Biognosys AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | - Tejas Gandhi
- Biognosys AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | | | - Lukas Reiter
- Biognosys AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | - John M Denu
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, 53706 Madison, Wisconsin, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States
| |
Collapse
|
6
|
Wang X, Shen S, Rasam SS, Qu J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. MASS SPECTROMETRY REVIEWS 2019; 38:461-482. [PMID: 30920002 PMCID: PMC6849792 DOI: 10.1002/mas.21595] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/04/2023]
Abstract
The rapidly-advancing field of pharmaceutical and clinical research calls for systematic, molecular-level characterization of complex biological systems. To this end, quantitative proteomics represents a powerful tool but an optimal solution for reliable large-cohort proteomics analysis, as frequently involved in pharmaceutical/clinical investigations, is urgently needed. Large-cohort analysis remains challenging owing to the deteriorating quantitative quality and snowballing missing data and false-positive discovery of altered proteins when sample size increases. MS1 ion current-based methods, which have become an important class of label-free quantification techniques during the past decade, show considerable potential to achieve reproducible protein measurements in large cohorts with high quantitative accuracy/precision. Nonetheless, in order to fully unleash this potential, several critical prerequisites should be met. Here we provide an overview of the rationale of MS1-based strategies and then important considerations for experimental and data processing techniques, with the emphasis on (i) efficient and reproducible sample preparation and LC separation; (ii) sensitive, selective and high-resolution MS detection; iii)accurate chromatographic alignment; (iv) sensitive and selective generation of quantitative features; and (v) optimal post-feature-generation data quality control. Prominent technical developments in these aspects are discussed. Finally, we reviewed applications of MS1-based strategy in disease mechanism studies, biomarker discovery, and pharmaceutical investigations.
Collapse
Affiliation(s)
- Xue Wang
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Shichen Shen
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
| | - Sailee Suryakant Rasam
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| | - Jun Qu
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| |
Collapse
|
7
|
Simplifying the Proteome: Analytical Strategies for Improving Peak Capacity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:501-513. [PMID: 31347067 DOI: 10.1007/978-3-030-15950-4_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The diversity of biological samples and dynamic range of analytes being analyzed can prove to be an analytical challenge and is particularly prevalent to proteomic studies. Maximizing the peak capacity of the workflow employed can extend the dynamic range and increase identification rates. The focus of this chapter is to present means of achieving this for various analytical techniques such as liquid chromatography, mass spectrometry and ion mobility. A combination of these methods can be used as part of a data independent acquisition strategy, thereby limiting issues such as chimericy when analyzing regions of extreme analyte density.
Collapse
|
8
|
Chen R, Stupak J, Williamson S, Twine SM, Li J. Online porous graphic carbon chromatography coupled with tandem mass spectrometry for post-translational modification analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1240-1247. [PMID: 31034685 DOI: 10.1002/rcm.8459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Porous graphic carbon chromatography (PGC) has a different mechanism in the retention of tryptic peptides compared with reversed-phase chromatography and in this study we show that coupling PGC with tandem mass spectrometry offer advantages for the quantitation of phosphorylation stoichiometry and characterization of site-specific glycosylation. METHODS Digests of protein standards (horse myoglobin, bovine fetuin and β-casein) were analyzed with a capillary liquid chromatography/tandem mass spectrometry (LC/MS/MS) system by coupling an Agilent 1100 HPLC system to a Synapt G2-Si HDMS (Waters). Peptides were separated using a HyperCarb PGC column (300 μm i.d. × 100 mm) packed with 3 μm particles. MS/MS data were collected in data-dependent mode and three MS/MS scans were acquired after the full MS scan. RAW data were transformed to .mgf by PLGS (Waters) and searched against the Swissprot database by Mascot. Chromatograms and MS/MS spectra of identified compounds were extracted with Masslynx (Waters) and imported to Origin for analysis. Glycan composition and peptide sequence were manually annotated. RESULTS PGC/MS/MS enabled accurate quantitation of the stoichiometry of specific phosphorylation sites from β-casein by efficient separation of the phosphopeptide and its non-phosphorylated counterpart, which cannot be achieved by reversed-phase chromatography. PGC/MS/MS also enabled comprehensive characterization of protein sialoglycosylation as isomeric glycopeptides with different combinations of α2-3- and α2-6-linked sialic acids can be separated and the ratios of each combination were verified by exoglycosidase digestion. CONCLUSIONS PGC has demonstrated superior separation of peptides with phosphorylation and glycosylation and can be used as an alternative in the proteomic characterization of post-translational modifications (PTMs) by polar groups.
Collapse
Affiliation(s)
- Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jacek Stupak
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Sam Williamson
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Kunath BJ, Minniti G, Skaugen M, Hagen LH, Vaaje-Kolstad G, Eijsink VGH, Pope PB, Arntzen MØ. Metaproteomics: Sample Preparation and Methodological Considerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:187-215. [DOI: 10.1007/978-3-030-12298-0_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Abstract
Posttranslational modifications of proteins control many complex biological processes, including genome expression, chromatin dynamics, metabolism, and cell division through a language of chemical modifications. Improvements in mass spectrometry-based proteomics have demonstrated protein acetylation is a widespread and dynamic modification in the cell; however, many questions remain on the regulation and downstream effects, and an assessment of the overall acetylation stoichiometry is needed. In this chapter, we describe the determination of acetylation stoichiometry using data-independent acquisition mass spectrometry to expand the number of acetylation sites quantified. However, the increased depth of data-independent acquisition is limited by the spectral library used to deconvolute fragmentation spectra. We describe a powerful approach of subcellular fractionation in conjunction with offline prefractionation to increase the depth of the spectral library. This deep interrogation of subcellular compartments provides essential insights into the compartment-specific regulation and downstream functions of protein acetylation.
Collapse
|
11
|
Yang G, Hu Y, Sun S, Ouyang C, Yang W, Wang Q, Betenbaugh M, Zhang H. Comprehensive Glycoproteomic Analysis of Chinese Hamster Ovary Cells. Anal Chem 2018; 90:14294-14302. [PMID: 30457839 PMCID: PMC6440468 DOI: 10.1021/acs.analchem.8b03520] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Chinese hamster ovary (CHO) cell line is a major expression system for the production of therapeutic proteins, the majority of which are glycoproteins, such as antibodies and erythropoietin (EPO). The characterization glycosylation profile of therapeutic proteins produced from engineered CHO cells and therapeutic functions, as well as side effects, are critical to understand the important roles of glycosylation. In this study, a large scale glycoproteomic workflow was established and applied to CHO-K1 cells expressing EPO. The workflow includes enrichment of intact glycopeptides from CHO-K1 cell lysate and medium using hydrophilic enrichment, fractionation of the obtained intact glycopeptides (IGPs) by basic reversed phase liquid chromatography (bRPLC), analyzing the glycopeptides using LC-MS/MS, and annotating the results by GPQuest 2.0. A total of 10 338 N-linked glycosite-containing IGPs were identified, representing 1162 unique glycosites in 530 glycoproteins, including 71 unique atypical N-linked IGPs on 18 atypical N-glycosylation sequons with an overrepresentation of the N-X-C motifs. Moreover, we compared the glycoproteins from CHO cell lysate with those from medium using the in-depth N-linked glycoproteome data. The obtained large scale glycoproteomic data from intact N-linked glycopeptides in this study is complementary to the genomic, proteomic, and N-linked glycomic data previously reported for CHO cells. Our method has the potential to monitor the production of recombinant therapeutic glycoproteins.
Collapse
Affiliation(s)
- Ganglong Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Shisheng Sun
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Chuanzi Ouyang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Qiong Wang
- Department of Chemical and Molecular Engineering, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Michael Betenbaugh
- Department of Chemical and Molecular Engineering, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, United States
| |
Collapse
|
12
|
Choi SB, Lombard-Banek C, Muñoz-LLancao P, Manzini MC, Nemes P. Enhanced Peptide Detection Toward Single-Neuron Proteomics by Reversed-Phase Fractionation Capillary Electrophoresis Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:913-922. [PMID: 29147852 DOI: 10.1007/s13361-017-1838-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An ~1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates ~274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to ~57%. From 1 ng of protein digest (<5 neurons), CE with RP fractionation identified 737 protein groups (1,753 peptides), or ~480 protein groups (~1,650 peptides) on average per analysis. The approach was scalable to 500 pg of protein digest (~a single neuron), identifying 225 protein groups (623 peptides) in technical triplicates, or 141 protein groups on average per analysis. Among identified proteins, 101 proteins were products of genes that are known to be transcriptionally active in single neurons during early development of the brain, including those involved in synaptic transmission and plasticity and cytoskeletal organization. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sam B Choi
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Camille Lombard-Banek
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Pablo Muñoz-LLancao
- Institute for Neuroscience, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20052, USA
| | - M Chiara Manzini
- Institute for Neuroscience, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20052, USA
| | - Peter Nemes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA.
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
13
|
Giese SH, Ishihama Y, Rappsilber J. Peptide Retention in Hydrophilic Strong Anion Exchange Chromatography Is Driven by Charged and Aromatic Residues. Anal Chem 2018. [PMID: 29528219 PMCID: PMC5937359 DOI: 10.1021/acs.analchem.7b05157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrophilic strong anion exchange chromatography (hSAX) is becoming a popular method for the prefractionation of proteomic samples. However, the use and further development of this approach is affected by the limited understanding of its retention mechanism and the absence of elution time prediction. Using a set of 59 297 confidentially identified peptides, we performed an explorative analysis and built a predictive deep learning model. As expected, charged residues are the major contributors to the retention time through electrostatic interactions. Aspartic acid and glutamic acid have a strong retaining effect and lysine and arginine have a strong repulsion effect. In addition, we also find the involvement of aromatic amino acids. This suggests a substantial contribution of cation-π interactions to the retention mechanism. The deep learning approach was validated using 5-fold cross-validation (CV) yielding a mean prediction accuracy of 70% during CV and 68% on a hold-out validation set. The results of this study emphasize that not only electrostatic interactions but rather diverse types of interactions must be integrated to build a reliable hSAX retention time predictor.
Collapse
Affiliation(s)
- Sven H Giese
- Bioanalytics, Institute of Biotechnology , Technische Universität Berlin , 13355 Berlin , Germany
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences , Kyoto University , Kyoto 606-8501 , Japan
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology , Technische Universität Berlin , 13355 Berlin , Germany.,Graduate School of Pharmaceutical Sciences , Kyoto University , Kyoto 606-8501 , Japan.,Wellcome Centre for Cell Biology, School of Biological Sciences , University of Edinburgh , Edinburgh EH9 3BF , United Kingdom
| |
Collapse
|
14
|
Lewandowska AE, Macur K, Czaplewska P, Liss J, Łukaszuk K, Ołdziej S. Human follicular fluid proteomic and peptidomic composition quantitative studies by SWATH-MS methodology. Applicability of high pH RP-HPLC fractionation. J Proteomics 2018. [PMID: 29530678 DOI: 10.1016/j.jprot.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Analysis of proteomic composition of human follicular fluid (hFF) has been previously proposed as a potential tool of oocyte quality evaluation. In order to develop an efficient method to investigate the hFF proteome and peptidome components, we applied and tested a few prefractionation schemes of hFF material consisting of ultrafiltration, optional immunodepletion, and high pH RP-HPLC separation by building spectral libraries and comparing their quantification capabilities of unfractionated samples. Low Molecular-Weight Fraction peptides (LMWF, <10 kDa) and High Molecular-Weight Fraction proteins (HMWF, >10 kDa) resulting from ultrafiltration were analyzed separately. We identified 302 proteins in HMWF and 161 proteins in LMWF in all qualitative experiments. All LMWF peptidomic libraries turned out to be of poor quantification quality, however they enabled measurement of higher numbers of peptides with increasing input of experiment data, in contrast to HMWF proteomic libraries. We were able to quantify a total of 108 HMWF proteins and 250 LMWF peptides (from 84 proteins) in all experiments. Employment of high RP-HPLC fractionation allowed for identification of a much broader set of proteins, however did not significantly improve the quantification capabilities of the applied method. Data are available via ProteomeXchange with identifier PXD008073. SIGNIFICANCE: In the search of biomarkers for assessment of oocyte quality in assisted reproductive technology, many studies are devoted to analysis of follicular fluid composition. Candidates for such biomarkers can be located in both the proteome and the recently investigated peptidome of hFF. Reliable qualitative and especially quantitative analysis of complex mixtures such as hFF, requires development of a fast and preferably inexpensive analytical procedure. The powerful SWATH-MS technique is well suited for quantitative label-free analysis of complex protein and peptide mixtures. However, for efficient usage it needs well designed and constructed MS-spectral libraries as well as a proper protocol for sample preparation. We investigated the influence of the size and quality of MS-spectral libraries (different spectral libraries are constructed using various sample prefractionation protocols) on SWATH experiments on hFF proteome and peptidome. In the case of peptidome investigation, increasing the size of spectral libraries led to quantification of more peptides in a single experiment. For the proteome, increasing the size of spectral libraries improved quantification only to a limited extend, and further extension of spectral libraries even worsened results. Nevertheless, using the best selected prefractionation schemes and spectral libraries we were able to quantify as many as 79 proteins of hFF proteome and 106 peptides (from 53 proteins) of hFF peptidome in single experiments. The spectral libraries and prefractionation protocols we developed allow for a large scale fast scan of hundreds of clinical hFF samples in the search for biomarkers for evaluation of oocyte quality.
Collapse
Affiliation(s)
- Aleksandra E Lewandowska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, Gdańsk 80-307, Poland.
| | - Katarzyna Macur
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, Gdańsk 80-307, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, Gdańsk 80-307, Poland
| | - Joanna Liss
- INVICTA Fertility and Reproductive Center, Trzy Lipy 3, Gdańsk 80-172, Poland
| | - Krzysztof Łukaszuk
- INVICTA Fertility and Reproductive Center, Trzy Lipy 3, Gdańsk 80-172, Poland; Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdańsk, Dębinki 7, Gdańsk 80-211, Poland; Department of Gynaecological Endocrinology, Medical University of Warsaw, Karowa 2, Warsaw 00-315, Poland
| | - Stanisław Ołdziej
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, Gdańsk 80-307, Poland.
| |
Collapse
|
15
|
Yu P, Petzoldt S, Wilhelm M, Zolg DP, Zheng R, Sun X, Liu X, Schneider G, Huhmer A, Kuster B. Trimodal Mixed Mode Chromatography That Enables Efficient Offline Two-Dimensional Peptide Fractionation for Proteome Analysis. Anal Chem 2017; 89:8884-8891. [DOI: 10.1021/acs.analchem.7b01356] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peng Yu
- Technical University of Munich, D-85354 Freising, Germany
| | - Svenja Petzoldt
- Technical University of Munich, D-85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), D-69120 Heidelberg, Germany
| | | | | | - Runsheng Zheng
- Technical University of Munich, D-85354 Freising, Germany
| | - Xuefei Sun
- Thermo Fisher Scientific, Sunnyvale, California 94085, United States
| | - Xiaodong Liu
- Thermo Fisher Scientific, Sunnyvale, California 94085, United States
| | - Günter Schneider
- Department
of Medicine II, Klinikum rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Andreas Huhmer
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Bernhard Kuster
- Technical University of Munich, D-85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), D-69120 Heidelberg, Germany
- Center for Integrated Protein Science Munich, 85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, 85354 Freising, Germany
| |
Collapse
|
16
|
Nie S, Shi T, Fillmore TL, Schepmoes AA, Brewer H, Gao Y, Song E, Wang H, Rodland KD, Qian WJ, Smith RD, Liu T. Deep-Dive Targeted Quantification for Ultrasensitive Analysis of Proteins in Nondepleted Human Blood Plasma/Serum and Tissues. Anal Chem 2017; 89:9139-9146. [PMID: 28724286 DOI: 10.1021/acs.analchem.7b01878] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low nanograms per milliliter to sub-naograms per milliliter level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundance proteins (e.g., ≤ 100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging, especially for these samples without available antibodies for enrichment. To address this need, we have developed an antibody-independent deep-dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide separation and enrichment combined with precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ∼5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue provides precise quantification of endogenous proteins at the ∼10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibodies are not available.
Collapse
Affiliation(s)
- Song Nie
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Thomas L Fillmore
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Athena A Schepmoes
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Heather Brewer
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Yuqian Gao
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ehwang Song
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Hui Wang
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Karin D Rodland
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|
17
|
Zheng X, Chen F, Zhang Q, Liu Y, You P, Sun S, Lin J, Chen N. Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease. Protein Cell 2017; 8:686-695. [PMID: 28523434 PMCID: PMC5563283 DOI: 10.1007/s13238-017-0413-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an intestinal immune-dysfunctional disease worldwide whose prevalence increasing in Asia including China. It is a chronic disease of the gastrointestinal tract with unknown cause. Exosomes are small vesicles in various body fluids. They have diameters of 40-120 nm, and one of their functions is long-distance transfer of various substances. In this study, we investigated the contents of salivary exosomes in patients with IBD and in healthy controls to explore a new biomarker in patients with IBD. In this study, whole saliva was obtained from patients with IBD (ulcerative colitis (UC), n = 37; Crohn's disease (CD), n = 11) and apparently healthy individuals (HC, n = 10). Salivary exosomes were extracted from samples, and the proteins within the exosomes were identified by liquid chromatograph-mass spectrometer (LC-MS/MS). The results showed that more than 2000 proteins were detected in salivary exosomes from patients with IBD. Through gene ontology analysis, we found that proteasome subunit alpha type 7 (PSMA7) showed especially marked differences between patients with IBD and the healthy controls, in that its expression level was much higher in the CD and UC groups. This exosomal protein is related to proteasome activity and inflammatory responses. So we conclude that in this research, salivary exosomal PSMA7 was present at high levels in salivary exosomes from subjects with IBD. It can be a very promising biomarker to release the patients from the pain of colonoscopy.
Collapse
Affiliation(s)
- Xiaowen Zheng
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yulan Liu
- The Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
| | - Peng You
- The Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
| | - Shan Sun
- The School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiuxiang Lin
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Ning Chen
- The Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
18
|
Chen W, Adhikari S, Chen L, Lin L, Li H, Luo S, Yang P, Tian R. 3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling. J Chromatogr A 2017; 1498:207-214. [PMID: 28126229 DOI: 10.1016/j.chroma.2017.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/08/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Multidimensional peptide fractionation strategies have been approved as the efficient approaches to significantly improve the depth of proteome coverage. In this study, a simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology (3D-SISPROT) was developed for the deep proteome profiling from low microgram of proteins as starting materials. All the sample preparation steps, including protein digestion, strong anion exchange (SAX)-based fractionation, and high-pH reversed phase (RP) fractionation were integrated into one pipette tip packed with SAX and C18 membranes for the first time. The SAX plus C18 membranes design minimizes the sample loss and ensures high efficient SAX-based digestion. 4275 proteins were identified with 1.4h of MS time when 6μg cell lysates was processed. More importantly, the SAX-based digestion procedure did not influence the SAX-based peptide fractionation efficiency which was done in the same SAX membrane. The 3D-SISPROT was exemplified by the analysis of 30μg of HEK 293T cell lysates with 20.4h of MS time, which resulted in the identification of 8222 proteins including 3215 annotated membrane proteins. Gene Ontology annotations indicated that the 3D-SISPROT was unbiased for the proteins from major cellular components. Taking advantages of the efficient SAX-based and high-pH RP-based fractionation strategies, we expect that the 3D-SISPROT can be applied for the deep proteome profiling with limited starting material.
Collapse
Affiliation(s)
- Wendong Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China; Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Subash Adhikari
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lan Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Lin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hua Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shusheng Luo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengyuan Yang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
19
|
Park HS, Chow EWL, Fu C, Soderblom EJ, Moseley MA, Heitman J, Cardenas ME. Calcineurin Targets Involved in Stress Survival and Fungal Virulence. PLoS Pathog 2016; 12:e1005873. [PMID: 27611567 PMCID: PMC5017699 DOI: 10.1371/journal.ppat.1005873] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/15/2016] [Indexed: 12/26/2022] Open
Abstract
Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Calcineurin is activated by increased Ca2+ levels caused by stress, and transduces signals by dephosphorylating protein substrates. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic TiO2 enrichment and quantitative mass spectrometry. The identified targets include the transactivator Crz1 as well as novel substrates whose functions are linked to P-bodies/stress granules (PBs/SGs) and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and Crz1 localization and transcriptional activity are controlled by calcineurin. We previously demonstrated that thermal and other stresses trigger calcineurin localization to PBs/SGs. Several calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, contribute to stress resistance and virulence individually or in conjunction with Crz1. Moreover, Pbp1 is also required for sexual development. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings support a model whereby calcineurin controls stress and virulence, at the transcriptional level via Crz1, and post-transcriptionally by localizing to PBs/SGs and acting on targets involved in mRNA metabolism. The calcineurin targets identified in this study share little overlap with known calcineurin substrates, with the exception of Crz1. In particular, the mRNA binding proteins and PBs/SGs residents comprise a cohort of novel calcineurin targets that have not been previously linked to calcineurin in mammals or in Saccharomyces cerevisiae. This study suggests either extensive evolutionary rewiring of the calcineurin pathway, or alternatively that these novel calcineurin targets have yet to be characterized as calcineurin targets in other organisms. These findings further highlight C. neoformans as an outstanding model to define calcineurin-responsive virulence networks as targets for antifungal therapy. Calcineurin is a Ca2+/calmodulin-dependent protein phosphatase essential for stress survival, sexual development, and virulence of the human fungal pathogen Cryptococcus neoformans and other major pathogenic fungi of global human health relevance. However, no calcineurin substrates are known in pathogenic fungi. Employing state-of-the-art phosphoproteomic approaches we identified calcineurin substrates, including calcineurin itself and the conserved Crz1 transcriptional activator known to function in calcium signaling and stress survival. Remarkably, our study also identified novel calcineurin targets involved in RNA processing, stability, and translation, which colocalize together with calcineurin in stress granules/P-bodies upon thermal stress. These findings support a model whereby calcineurin functions in a branched pathway, via Crz1 and several of the identified novel targets, that governs transcriptional and posttranscriptional circuits to drive stress survival, sexual development, and fungal virulence. Our study underscores C. neoformans as an experimental model to define basic paradigms of calcineurin signaling in global thermostress responsive virulence networks that can be targeted for fungal therapy.
Collapse
Affiliation(s)
- Hee-Soo Park
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eve W. L. Chow
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (MEC)
| | - Maria E. Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (MEC)
| |
Collapse
|
20
|
Guillot A, Boulay M, Chambellon É, Gitton C, Monnet V, Juillard V. Mass Spectrometry Analysis of the Extracellular Peptidome of Lactococcus lactis: Lines of Evidence for the Coexistence of Extracellular Protein Hydrolysis and Intracellular Peptide Excretion. J Proteome Res 2016; 15:3214-24. [DOI: 10.1021/acs.jproteome.6b00424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alain Guillot
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Mylène Boulay
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Émilie Chambellon
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Christophe Gitton
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Véronique Monnet
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Vincent Juillard
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| |
Collapse
|
21
|
Brioschi M, Baetta R, Ghilardi S, Gianazza E, Guarino A, Parolari A, Polvani G, Tremoli E, Banfi C. Normal human mitral valve proteome: A preliminary investigation by gel-based and gel-free proteomic approaches. Electrophoresis 2016; 37:2633-2643. [PMID: 27450324 DOI: 10.1002/elps.201600081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
The mitral valve is a highly complex structure which regulates blood flow from the left atrium to the left ventricle (LV) avoiding a significant forward gradient during diastole or regurgitation during systole. The integrity of the mitral valve is also essential for the maintenance of normal LV size, geometry, and function. Significant advances in the comprehension of the biological, functional, and mechanical behavior of the mitral valve have recently been made. However, current knowledge of protein components in the normal human mitral valve is still limited and complicated by the low cellularity of this tissue and the presence of high abundant proteins from the extracellular matrix. We employed here an integrated proteomic approach to analyse the protein composition of the normal human mitral valve and reported confident identification of 422 proteins, some of which have not been previously described in this tissue. In particular, we described the ability of pre-MS separation technique based on liquid-phase IEF and SDS-PAGE to identify the largest number of proteins. We also demonstrated that some of these proteins, e.g. αB-Crystallin, septin-11, four-and-a-half LIM domains protein 1, and dermatopontin, are synthesised by interstitial cells isolated from human mitral valves. These initial results provide a valuable basis for future studies aimed at analysing in depth the mitral valve protein composition and at investigating potential pathogenetic molecular mechanisms. Data are available via ProteomeXchange with identifier PXD004397.
Collapse
Affiliation(s)
| | | | | | | | - Anna Guarino
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Banca Tessuti Cardiovascolari Regione Lombardia, Centro Cardiologico Monzino IRCCS Milan, Milan, Italy
| | - Alessandro Parolari
- Dipartimento di Chirurgia cardiaca, IRCCS Policlinico San Donato, Milan, Italy
| | - Gianluca Polvani
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Università degli Studi di Milano, Dipartimento di Scienze Cliniche e di Comunità, Sezione Cardiovascolare, Milan, Italy
| | | | | |
Collapse
|
22
|
Kurono S, Kaneko Y, Matsuura N, Oishi H, Noguchi S, Kim SJ, Tamaki Y, Aikawa T, Kotsuma Y, Inaji H, Matsuura S. Identification of potential breast cancer markers in nipple discharge by protein profile analysis using two-dimensional nano-liquid chromatography/nanoelectrospray ionization-mass spectrometry. Proteomics Clin Appl 2016; 10:605-13. [PMID: 26970563 DOI: 10.1002/prca.201500016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 02/01/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE This research aimed to establish a diagnostic technique for breast cancer using nipple discharge (ND), with the objective of preventive diagnosis. ND has been proposed as a source of secreted proteomes that reflect early pathological changes in the ductal-lobular epithelial microenvironment, and could thus provide breast-specific cancer biomarkers that could be accessed noninvasively as a new clinical diagnostic technique. EXPERIMENTAL DESIGN Minute amounts of ND from patients with and without breast cancer (n = 19 and 12, respectively) were collected at the hospital and kept frozen until just before use. They were analyzed using high-pH RP peptide fractionations/low-pH RP 2D nano-LC/ESI-MS/MS. Biomarker candidates were also investigated using Western blot analysis and sandwich ELISA on ND and/or sera. RESULTS We found distinct tendencies in protein expression and three candidate breast cancer biomarkers (carbonic anhydrase 2, catalase, and peroxiredoxin-2) whose levels differed significantly between ND specimens from patients with and without breast cancer. CONCLUSIONS AND CLINICAL RELEVANCE These tendencies in protein expression and markers provide new ways to identify breast cancer patients. Therefore, RP/RP 2D LC/MS/MS analyses of ND and the above three markers are supported as a new breast cancer diagnostic technique.
Collapse
Affiliation(s)
- Sadamu Kurono
- Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Laboratory Chemicals Division, Wako Pure Chemical Industries, Ltd, Osaka, Japan
| | - Yuka Kaneko
- Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Laboratory Chemicals Division, Wako Pure Chemical Industries, Ltd, Osaka, Japan
| | - Nariaki Matsuura
- Department of Molecular Pathology, Osaka University Graduate School of Medicine and Health Science, Suita, Osaka, Japan.,Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Haruki Oishi
- Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinzaburo Noguchi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuhiro Tamaki
- Department of Breast Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Takao Aikawa
- Osaka Center for Cancer and Cardiovascular Diseases Prevention, Osaka, Japan
| | | | - Hideo Inaji
- Department of Breast Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Shuji Matsuura
- Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
23
|
Harrison A, Dubois LG, St John-Williams L, Moseley MA, Hardison RL, Heimlich DR, Stoddard A, Kerschner JE, Justice SS, Thompson JW, Mason KM. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment. Mol Cell Proteomics 2015; 15:1117-38. [PMID: 26711468 DOI: 10.1074/mcp.m115.052498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of novel protein targets and metabolic biomarkers will advance development of therapeutic and diagnostic options for treatment of disease.
Collapse
Affiliation(s)
- Alistair Harrison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Laura G Dubois
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Lisa St John-Williams
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - M Arthur Moseley
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Rachael L Hardison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Derek R Heimlich
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | | | - Joseph E Kerschner
- ‖Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; **Division of Pediatric Otolaryngology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226
| | - Sheryl S Justice
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210
| | - J Will Thompson
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Kevin M Mason
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
24
|
Quantitative determination of the antidepressant vortioxetine and its major human metabolite in plasma. Bioanalysis 2015; 7:2881-94. [DOI: 10.4155/bio.15.207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Vortioxetine is a novel antidepressant that has been developed in a joint partnership between H. Lundbeck A/S and the Takeda Pharmaceutical Company, Ltd. Results: A number of bioanalytical methods have been developed in order to support the nonclinical and clinical development of the drug. Method performance, long-term stability, urine analysis, unspecific binding and metabolites analysis are presented and discussed. Conclusion: Two different method applications for the quantification of vortioxetine and its major human metabolite in human plasma, an isocratic cation exchange HPLC–MS/MS method utilizing C8-SPE sample extracts and a reversed-phase UPLC–MS/MS method with gradient elution of protein precipitated sample extracts, have been validated according to current regulatory standards and applied in support to a large number of nonclinical as well as clinical studies.
Collapse
|
25
|
Gao HJ, Chen YJ, Zuo D, Xiao MM, Li Y, Guo H, Zhang N, Chen RB. Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum. Cancer Biol Med 2015; 12:246-54. [PMID: 26487969 PMCID: PMC4607824 DOI: 10.7497/j.issn.2095-3941.2015.0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. METHODS Lectin affinity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. RESULTS A total of 2,280 protein groups were identified in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1,6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. CONCLUSION A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC.
Collapse
Affiliation(s)
- Hua-Jun Gao
- 1 Research Center of Basic Medical Sciences & School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China ; 2 Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ya-Jing Chen
- 1 Research Center of Basic Medical Sciences & School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China ; 2 Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Duo Zuo
- 1 Research Center of Basic Medical Sciences & School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China ; 2 Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ming-Ming Xiao
- 1 Research Center of Basic Medical Sciences & School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China ; 2 Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ying Li
- 1 Research Center of Basic Medical Sciences & School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China ; 2 Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Hua Guo
- 1 Research Center of Basic Medical Sciences & School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China ; 2 Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ning Zhang
- 1 Research Center of Basic Medical Sciences & School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China ; 2 Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Rui-Bing Chen
- 1 Research Center of Basic Medical Sciences & School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China ; 2 Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
26
|
Shen Y, Zhang G, Yang J, Qiu Y, McCauley T, Pan L, Wu J. Online 2D-LC-MS/MS Assay To Quantify Therapeutic Protein in Human Serum in the Presence of Pre-existing Antidrug Antibodies. Anal Chem 2015; 87:8555-63. [DOI: 10.1021/acs.analchem.5b02293] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yinghua Shen
- Bioanalytical and
Biomarker
Development, Research and Nonclinical Development, Shire, Lexington, Massachusetts 02421, United States
| | - Guodong Zhang
- Bioanalytical and
Biomarker
Development, Research and Nonclinical Development, Shire, Lexington, Massachusetts 02421, United States
| | - Jinsong Yang
- Bioanalytical and
Biomarker
Development, Research and Nonclinical Development, Shire, Lexington, Massachusetts 02421, United States
| | - Yongchang Qiu
- Bioanalytical and
Biomarker
Development, Research and Nonclinical Development, Shire, Lexington, Massachusetts 02421, United States
| | - Thomas McCauley
- Bioanalytical and
Biomarker
Development, Research and Nonclinical Development, Shire, Lexington, Massachusetts 02421, United States
| | - Luying Pan
- Bioanalytical and
Biomarker
Development, Research and Nonclinical Development, Shire, Lexington, Massachusetts 02421, United States
| | - Jiang Wu
- Bioanalytical and
Biomarker
Development, Research and Nonclinical Development, Shire, Lexington, Massachusetts 02421, United States
| |
Collapse
|
27
|
Buchberger A, Yu Q, Li L. Advances in Mass Spectrometric Tools for Probing Neuropeptides. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:485-509. [PMID: 26070718 PMCID: PMC6314846 DOI: 10.1146/annurev-anchem-071114-040210] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.
Collapse
Affiliation(s)
- Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| |
Collapse
|
28
|
Williams KE, Miroshnychenko O, Johansen EB, Niles RK, Sundaram R, Kannan K, Albertolle M, Zhou Y, Prasad N, Drake PM, Giudice LC, Hall SC, Witkowska HE, Buck Louis GM, Fisher SJ. Urine, peritoneal fluid and omental fat proteomes of reproductive age women: Endometriosis-related changes and associations with endocrine disrupting chemicals. J Proteomics 2015; 113:194-205. [PMID: 25284053 PMCID: PMC4467531 DOI: 10.1016/j.jprot.2014.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 02/06/2023]
Abstract
Endometriosis, ectopic growth of the uterine lining (endometrium), which affects 6-11% of reproductive age women, is associated with pelvic pain and infertility. We investigated the peritoneal fluid (PF), urine and omental fat (OF) proteomes of women with endometriosis vs. individuals with no surgically visualized endometriosis. All participants were enrolled in the NICHD-funded ENDO Study. A two-step proteomic study was performed. The first, a broad survey, employed a semi-quantitative gel LC-mass spectrometry (MS) workflow: SDS PAGE fractionation, trypsin digestion and LC-MS/MS. The results showed sample integrity but failed to detect any differences between women with and without endometriosis. The second step was a quantitative analysis of OF samples. We employed another sample set (n=30) from women ± disease and isobaric mass-tag (iTRAQ) chemistry to label peptides and 2D LC-MS/MS for protein identification and quantification. Three proteins-matrix metalloproteinase-9, neutrophil elastase, and FAM49B-were significantly lower in abundance in samples from women with endometriosis. Interestingly, neutrophil elastase and FAM49B levels were associated with higher levels of a subset of endocrine disrupting chemicals (EDCs) that were previously measured in the same samples. The results of these experiments showed the feasibility of associating endometriosis with changes in the OF protein repertoire and EDC levels. BIOLOGICAL SIGNIFICANCE Endometriosis, pathological growth of the uterine lining, is associated with significant morbidities, including pain and infertility. However, the causes of this common condition are poorly understood. This study determined whether endometriosis was associated with changes in the protein composition of peritoneal fluid, urine and/or omental fat. A protein of unknown function (FAM49B) and two proteinases (metalloproteinase-9, neutrophil elastase) were down regulated in OF samples from women with versus without endometriosis. These findings suggested proteinase imbalances at sites that were distant from the endometriotic lesions. Additionally, FAM49B and neutrophil elastase levels were associated with higher levels of a subset of environmental chemicals that were quantified in the same samples, suggesting other possible associations. Thus, this work generated hypotheses that will be tested in further studies.
Collapse
Affiliation(s)
- Katherine E Williams
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA; Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Olga Miroshnychenko
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA
| | - Eric B Johansen
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA
| | - Richard K Niles
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA
| | - Rajeshwari Sundaram
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA
| | - Matthew Albertolle
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA
| | - Yan Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Namrata Prasad
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA; Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Penelope M Drake
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Steven C Hall
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA; Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - H Ewa Witkowska
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA; Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Germaine M Buck Louis
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Susan J Fisher
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA; Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA; Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA, USA; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
29
|
Yin X, Zhang Y, Liu X, Chen C, Lu H, Shen H, Yang P. Systematic comparison between SDS-PAGE/RPLC and high-/low-pH RPLC coupled tandem mass spectrometry strategies in a whole proteome analysis. Analyst 2015; 140:1314-22. [DOI: 10.1039/c4an02119c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic comparison of two fractionation methods, which are SDS-PAGE in the protein level and high-pH RPLC in the peptide level.
Collapse
Affiliation(s)
- Xuefei Yin
- Department of Chemistry and Institutes of Biomedical Science Shanghai Medical School
- Fudan University
- Shanghai 200032
- China
| | - Yang Zhang
- Department of Chemistry and Institutes of Biomedical Science Shanghai Medical School
- Fudan University
- Shanghai 200032
- China
| | - Xiaohui Liu
- Department of Chemistry and Institutes of Biomedical Science Shanghai Medical School
- Fudan University
- Shanghai 200032
- China
| | - Chen Chen
- Department of Chemistry and Institutes of Biomedical Science Shanghai Medical School
- Fudan University
- Shanghai 200032
- China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Science Shanghai Medical School
- Fudan University
- Shanghai 200032
- China
| | - Huali Shen
- Department of Chemistry and Institutes of Biomedical Science Shanghai Medical School
- Fudan University
- Shanghai 200032
- China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Science Shanghai Medical School
- Fudan University
- Shanghai 200032
- China
| |
Collapse
|
30
|
Calderan-Rodrigues MJ, Jamet E, Bonassi MBCR, Guidetti-Gonzalez S, Begossi AC, Setem LV, Franceschini LM, Fonseca JG, Labate CA. Cell wall proteomics of sugarcane cell suspension cultures. Proteomics 2014; 14:738-49. [PMID: 24436144 DOI: 10.1002/pmic.201300132] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 11/10/2013] [Accepted: 12/01/2013] [Indexed: 12/21/2022]
Abstract
The use of cell walls to produce cellulosic ethanol from sugarcane bagasse is a new challenge. A better knowledge of proteins involved in cell wall remodelling is essential to improve the saccharification processes. Cell suspension cultures were used for this first cell wall proteomics study of sugarcane. Proteins extracted from cell walls were identified using an adapted protocol. They were extracted using 0.2 M CaCl2 and 2 M LiCl after purification of cell walls. The proteins were then identified by the innovative nanoACQUITY UPLC MS/MS technology and bioinformatics using the translated SUCEST EST cluster database of sugarcane. The experiments were reproduced three times. Since Sorghum bicolor is the closest plant with a fully sequenced genome, homologous proteins were searched for to complete the annotation of proteins, that is, prediction of subcellular localization and functional domains. Altogether, 69 different proteins predicted to be secreted were identified among 377 proteins. The reproducibility of the experiments is discussed. These proteins were distributed into eight functional classes. Oxidoreductases such as peroxidases were well represented, whereas glycoside hydrolases were scarce. This work provides information about the proteins that could be manipulated through genetic transformation, to increase second-generation ethanol production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba-SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jagannathan S, Hsu JCC, Reid DW, Chen Q, Thompson WJ, Moseley AM, Nicchitta CV. Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum. J Biol Chem 2014; 289:25907-24. [PMID: 25063809 DOI: 10.1074/jbc.m114.580688] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signal sequence-encoding mRNAs undergo translation-dependent localization to the endoplasmic reticulum (ER) and at the ER are anchored via translation on Sec61-bound ribosomes. Recent investigations into the composition and membrane association characteristics of ER-associated mRNAs have, however, revealed both ribosome-dependent (indirect) and ribosome-independent (direct) modes of mRNA association with the ER. These findings raise important questions regarding our understanding of how mRNAs are selected, localized, and anchored to the ER. Using semi-intact tissue culture cells, we performed a polysome solubilization screen and identified conditions that distinguish polysomes engaged in the translation of distinct cohorts of mRNAs. To gain insight into the molecular basis of direct mRNA anchoring to the ER, we performed RNA-protein UV photocross-linking studies in rough microsomes and demonstrate that numerous ER integral membrane proteins display RNA binding activity. Quantitative proteomic analyses of HeLa cytosolic and ER-bound polysome fractions identified translocon components as selective polysome-interacting proteins. Notably, the Sec61 complex was highly enriched in polysomes engaged in the translation of endomembrane organelle proteins, whereas translocon accessory proteins, such as ribophorin I, were present in all subpopulations of ER-associated polysomes. Analyses of the protein composition of oligo(dT)-selected UV photocross-linked ER protein-RNA adducts identified Sec61α,β and ribophorin I as ER-poly(A) mRNA-binding proteins, suggesting unexpected roles for the protein translocation and modification machinery in mRNA anchoring to the ER. In summary, we propose that multiple mechanisms of mRNA and ribosome association with ER operate to enable an mRNA transcriptome-wide function for the ER in protein synthesis.
Collapse
Affiliation(s)
| | | | | | - Qiang Chen
- From the Departments of Cell Biology and
| | - Will J Thompson
- the Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina 27710
| | - Arthur M Moseley
- the Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
32
|
Little D, Thompson JW, Dubois LG, Ruch DS, Moseley MA, Guilak F. Proteomic differences between male and female anterior cruciate ligament and patellar tendon. PLoS One 2014; 9:e96526. [PMID: 24818782 PMCID: PMC4018326 DOI: 10.1371/journal.pone.0096526] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/08/2014] [Indexed: 12/30/2022] Open
Abstract
The risk of anterior cruciate ligament (ACL) injury and re-injury is greater for women than men. Among other factors, compositional differences may play a role in this differential risk. Patellar tendon (PT) autografts are commonly used during reconstruction. The aim of the study was to compare protein expression in male and female ACL and PT. We hypothesized that there would be differences in key structural components between PT and ACL, and that components of the proteome critical for response to mechanical loading and response to injury would demonstrate significant differences between male and female. Two-dimensional liquid chromatography-tandem mass spectrometry and a label-free quantitative approach was used to identify proteomic differences between male and female PT and ACL. ACL contained less type I and more type III collagen than PT. There were tissue-specific differences in expression of proteoglycans, and ACL was enriched in elastin, tenascin C and X, cartilage oligomeric matrix protein, thrombospondin 4 and periostin. Between male and female donors, alcohol dehydrogenase 1B and complement component 9 were enriched in female compared to male. Myocilin was the major protein enriched in males compared to females. Important compositional differences between PT and ACL were identified, and we identified differences in pathways related to extracellular matrix regulation, complement, apoptosis, metabolism of advanced glycation end-products and response to mechanical loading between males and females. Identification of proteomic differences between male and female PT and ACL has identified novel pathways which may lead to improved understanding of differential ACL injury and re-injury risk between males and females.
Collapse
Affiliation(s)
- Dianne Little
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - J. Will Thompson
- Proteomics Core Facility, Institute for Genome Science & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura G. Dubois
- Proteomics Core Facility, Institute for Genome Science & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David S. Ruch
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - M. Arthur Moseley
- Proteomics Core Facility, Institute for Genome Science & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
33
|
Oliveira BM, Coorssen JR, Martins-de-Souza D. 2DE: the phoenix of proteomics. J Proteomics 2014; 104:140-50. [PMID: 24704856 DOI: 10.1016/j.jprot.2014.03.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Given the rapid developments in mass spectrometry (MS) in terms of sensitivity, mass accuracy, and throughput, some have suggested that two-dimensional gel electrophoresis (2DE) may no longer be a method of choice for proteomic analyses. However, as recognition of issues with these newer shotgun-MS approaches grows, there is a fresh and growing regard for the maturity of 2DE-MS as a genuine top-down analytical approach, particularly as it resolves thousands of intact protein species in a single run, enabling the simultaneous analysis of total protein complement, including isoforms and post-translational modifications. Given the strengths of both, it is most appropriate to view these as complementary or at least parallel approaches: as proteins encompass a myriad of physico-chemical properties, and the real aim is to explore proteomes as deeply as possible, all available resolving strategies must be considered in terms of the complexity encountered. It is time to critically and constructively focus on the optimization and integration of existing techniques rather than simplistically suggesting that one should replace the other. Our intention here is thus to present an overview of protein resolving techniques, focusing on milestones associated with 2DE, including pros, cons, advances and variations, in particular relative to shotgun proteomic approaches. BIOLOGICAL SIGNIFICANCE Proteomic researchers recognize the importance of 2DE in the history of proteomics. But the latest developments in mass spectrometry-based techniques have led some researchers to retire 2DE in their labs. However, we argue here that 2DE-MS is a genuine top-down analytical approach. The significance of this discussion is to make proteomic researchers aware of the importance of this technique in a proteomic pipeline. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Bruno M Oliveira
- Catarinense Federal Institute, Videira Campus, Videira, SC, Brazil
| | - Jens R Coorssen
- Dept. of Molecular Physiology, School of Medicine, University of Western Sydney, Australia; UWS Molecular Medicine Research Group, University of Western Sydney, Australia.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil; Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil; Dept. of Psychiatry and Psychotherapy, Ludwig Maximilians University (LMU), Munich, Germany.
| |
Collapse
|
34
|
Zhang J, Zhou S, Zhang Q, Feng S, Chen Y, Zheng H, Wang X, Zhao W, Zhang T, Zhou Y, Deng H, Lin J, Chen F. Proteomic Analysis of RBP4/Vitamin A in Children with Cleft Lip and/or Palate. J Dent Res 2014; 93:547-52. [PMID: 24695672 DOI: 10.1177/0022034514530397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/12/2014] [Indexed: 01/29/2023] Open
Abstract
Cleft of the lip and/or palate (CLP) is one of the most common congenital craniofacial defects. Non-syndromic CLP (NSCLP) is a multifactorial disease influenced by the interaction of genetic and environmental factors. However, there are few studies reporting on the developmental or metabolic status of babies with NSCLP after birth. In our study, we sought to identify and evaluate the differential expression of serum protein profiles in NSCLP children and unaffected babies. Thus, a 'shotgun proteomics' approach was first used to analyze the plasma proteome of 13 children with NSCLP and 10 control children, aged 2 to 3.5 years. In total, more than 300 proteins were identified in the serum sample. With gene ontology (GO) analysis, we detected many differentially expressed proteins that could be related to NSCLP, including those involved in lipoprotein metabolism, insulin-like growth-factor-related processes, and so on, especially the proteins involved in retinol transport. Retinol binding protein 4 (RBP4), one protein of the retinol transport category, was significantly decreased in the NSCLP group. Thus, serum vitamin A levels were further determined by high-performance liquid chromatography (HPLC). A significant difference (p < .01) was also found in vitamin A concentrations, consistent with the trend of RBP4. Our results indicated that reduced levels of RBP4 and vitamin A were related to newborns with NSCLP and should thus receive more attention. These results also suggest that vitamin A supplementation might be necessary at an early stage.
Collapse
Affiliation(s)
- J Zhang
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - S Zhou
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Q Zhang
- The Center of Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - S Feng
- The School of Life Sciences, Tsinghua University, Beijing, China
| | - Y Chen
- The School of Life Sciences, Tsinghua University, Beijing, China
| | - H Zheng
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Wang
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - W Zhao
- The Department of Orthodontics, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - T Zhang
- Yantai Stomatology Hospital, Shandong, China
| | - Y Zhou
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - H Deng
- The School of Life Sciences, Tsinghua University, Beijing, China
| | - J Lin
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - F Chen
- The Center of Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
35
|
Manadas B, Mendes VM, English J, Dunn MJ. Peptide fractionation in proteomics approaches. Expert Rev Proteomics 2014; 7:655-63. [DOI: 10.1586/epr.10.46] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Gao M, Qi D, Zhang P, Deng C, Zhang X. Development of multidimensional liquid chromatography and application in proteomic analysis. Expert Rev Proteomics 2014; 7:665-78. [DOI: 10.1586/epr.10.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
Gethings LA, Connolly JB. Simplifying the Proteome: Analytical Strategies for Improving Peak Capacity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:59-77. [DOI: 10.1007/978-3-319-06068-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
38
|
Mandalakis M, Panikov N, Dai S, Ray S, Karger BL. Comparative proteomic analysis reveals mechanistic insights into Pseudomonas putida F1 growth on benzoate and citrate. AMB Express 2013; 3:64. [PMID: 24156539 PMCID: PMC3827995 DOI: 10.1186/2191-0855-3-64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas species are capable to proliferate under diverse environmental conditions and thus have a significant bioremediation potential. To enhance our understanding of their metabolic versatility, this study explores the changes in the proteome and physiology of Pseudomonas putida F1 resulting from its growth on benzoate, a moderate toxic compound that can be catabolized, and citrate, a carbon source that is assimilated through central metabolic pathways. A series of repetitive batch cultivations were performed to ensure a complete adaptation of the bacteria to each of these contrasting carbon sources. After several growth cycles, cell growth stabilized at the maximum level and exhibited a reproducible growth profile. The specific growth rates measured for benzoate (1.01 ± 0.11 h-1) and citrate (1.11 ± 0.12 h-1) were similar, while a higher yield was observed for benzoate (0.6 and 0.3 g cell mass per g of benzoate and citrate, respectively), reflecting the different degrees of carbon reduction in the two substrates. Comparative proteomic analysis revealed an enrichment of several oxygenases/dehydrogenases in benzoate-grown cells, indicative of the higher carbon reduction of benzoate. Moreover, the upregulation of all 14 proteins implicated in benzoate degradation via the catechol ortho-cleavage pathway was observed, while several stress-response proteins were increased to aid cells to cope with benzoate toxicity. Unexpectedly, citrate posed more challenges than benzoate in the maintenance of pH homeostasis, as indicated by the enhancement of the Na+/H+ antiporter and carbonic anhydrase. The study provides important mechanistic insights into Pseudomonas adaptation to varying carbon sources that are of great relevance to bioremediation efforts.
Collapse
|
39
|
Hoos MD, Richardson BM, Foster MW, Everhart A, Thompson JW, Moseley MA, Colton CA. Longitudinal study of differential protein expression in an Alzheimer's mouse model lacking inducible nitric oxide synthase. J Proteome Res 2013; 12:4462-77. [PMID: 24006891 DOI: 10.1021/pr4005103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative process that involves altered brain immune, neuronal and metabolic functions. Understanding the underlying mechanisms has relied on mouse models that mimic components of AD pathology. We used gel-free, label-free LC-MS/MS to quantify protein and phosphopeptide levels in brains of APPSwDI/NOS2-/- (CVN-AD) mice. CVN-AD mice show a full spectrum of AD-like pathology, including amyloid deposition, hyperphosphorylated and aggregated tau, and neuronal loss that worsens with age. Tryptic digests, with or without phosphopeptide enrichment on an automated titanium dioxide LC system, were separated by online two-dimensional LC and analyzed on a Waters Synapt G2 HDMS, yielding relative expression for >950 proteins and >1100 phosphopeptides. Among differentially expressed proteins were known markers found in humans with AD, including GFAP and C1Q. Phosphorylation of connexin 43, not previously described in AD, was increased at 42 weeks, consistent with dysregulation of gap junctions and activation of astrocytes. Additional alterations in phosphoproteins suggests dysregulation of mitochondria, synaptic transmission, vesicle trafficking, and innate immune pathways. These data validate the CVN-AD mouse model of AD, identify novel disease and age-related changes in the brain during disease progression, and demonstrate the utility of integrating unbiased and phosphoproteomics for understanding disease processes in AD.
Collapse
Affiliation(s)
- Michael D Hoos
- Department of Medicine/Neurology, ‡Institute for Genome Sciences & Policy, School of Medicine, and §Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Duke University , Durham, North Carolina 27710, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Kalli A, Smith GT, Sweredoski MJ, Hess S. Evaluation and optimization of mass spectrometric settings during data-dependent acquisition mode: focus on LTQ-Orbitrap mass analyzers. J Proteome Res 2013; 12:3071-86. [PMID: 23642296 DOI: 10.1021/pr3011588] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass-spectrometry-based proteomics has evolved as the preferred method for the analysis of complex proteomes. Undoubtedly, recent advances in mass spectrometry instrumentation have greatly enhanced proteomic analysis. A popular instrument platform in proteomics research is the LTQ-Orbitrap mass analyzer. In this tutorial, we discuss the significance of evaluating and optimizing mass spectrometric settings on the LTQ-Orbitrap during CID data-dependent acquisition (DDA) mode to improve protein and peptide identification rates. We focus on those MS and MS/MS parameters that have been systematically examined and evaluated by several researchers and are commonly used during DDA. More specifically, we discuss the effect of mass resolving power, preview mode for FTMS scan, monoisotopic precursor selection, signal threshold for triggering MS/MS events, number of microscans per MS/MS scan, number of MS/MS events, automatic gain control target value (ion population) for MS and MS/MS, maximum ion injection time for MS/MS, rapid and normal scan rate, and prediction of ion injection time. We furthermore present data from the latest generation LTQ-Orbitrap system, the Orbitrap Elite, along with recommended MS and MS/MS parameters. The Orbitrap Elite outperforms the Orbitrap Classic in terms of scan speed, sensitivity, dynamic range, and resolving power and results in higher identification rates. Several of the optimized MS parameters determined on the LTQ-Orbitrap Classic and XL were easily transferable to the Orbitrap Elite, whereas others needed to be reevaluated. Finally, the Q Exactive and HCD are briefly discussed, as well as sample preparation, LC-optimization, and bioinformatics analysis. We hope this tutorial will serve as guidance for researchers new to the field of proteomics and assist in achieving optimal results.
Collapse
Affiliation(s)
- Anastasia Kalli
- Proteome Exploration Laboratory, Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
41
|
Bartlett JA, Albertolle ME, Wohlford-Lenane C, Pezzulo AA, Zabner J, Niles RK, Fisher SJ, McCray PB, Williams KE. Protein composition of bronchoalveolar lavage fluid and airway surface liquid from newborn pigs. Am J Physiol Lung Cell Mol Physiol 2013; 305:L256-66. [PMID: 23709621 DOI: 10.1152/ajplung.00056.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The airway mucosa and the alveolar surface form dynamic interfaces between the lung and the external environment. The epithelial cells lining these barriers elaborate a thin liquid layer containing secreted peptides and proteins that contribute to host defense and other functions. The goal of this study was to develop and apply methods to define the proteome of porcine lung lining liquid, in part, by leveraging the wealth of information in the Sus scrofa database of Ensembl gene, transcript, and protein model predictions. We developed an optimized workflow for detection of secreted proteins in porcine bronchoalveolar lavage (BAL) fluid and in methacholine-induced tracheal secretions [airway surface liquid (ASL)]. We detected 674 and 3,858 unique porcine-specific proteins in BAL and ASL, respectively. This proteome was composed of proteins representing a diverse range of molecular classes and biological processes, including host defense, molecular transport, cell communication, cytoskeletal, and metabolic functions. Specifically, we detected a significant number of secreted proteins with known or predicted roles in innate and adaptive immunity, microbial killing, or other aspects of host defense. In greatly expanding the known proteome of the lung lining fluid in the pig, this study provides a valuable resource for future studies using this important animal model of pulmonary physiology and disease.
Collapse
Affiliation(s)
- Jennifer A Bartlett
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics. Appl Microbiol Biotechnol 2013; 97:4749-62. [DOI: 10.1007/s00253-013-4897-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
43
|
Vincent CE, Potts GK, Ulbrich A, Westphall MS, Atwood JA, Coon JJ, Weatherly DB. Segmentation of precursor mass range using "tiling" approach increases peptide identifications for MS1-based label-free quantification. Anal Chem 2013; 85:2825-32. [PMID: 23350991 DOI: 10.1021/ac303352n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Label-free quantification is a powerful tool for the measurement of protein abundances by mass spectrometric methods. To maximize quantifiable identifications, MS(1)-based methods must balance the collection of survey scans and fragmentation spectra while maintaining reproducible extracted ion chromatograms (XIC). Here we present a method which increases the depth of proteome coverage over replicate data-dependent experiments without the requirement of additional instrument time or sample prefractionation. Sampling depth is increased by restricting precursor selection to a fraction of the full MS(1) mass range for each replicate; collectively, the m/z segments of all replicates encompass the full MS(1) range. Although selection windows are narrowed, full MS(1) spectra are obtained throughout the method, enabling the collection of full mass range MS(1) chromatograms such that label-free quantitation can be performed for any peptide in any experiment. We term this approach "binning" or "tiling" depending on the type of m/z window utilized. By combining the data obtained from each segment, we find that this approach increases the number of quantifiable yeast peptides and proteins by 31% and 52%, respectively, when compared to normal data-dependent experiments performed in replicate.
Collapse
Affiliation(s)
- Catherine E Vincent
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | |
Collapse
|
44
|
Kawashima Y, Satoh M, Saito T, Matsui T, Nomura F, Matsumoto H, Kodera Y. Cyclic sample pooling using two-dimensional liquid chromatography system enhances coverage in shotgun proteomics. Biomed Chromatogr 2013; 27:691-4. [PMID: 23390086 DOI: 10.1002/bmc.2864] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 11/09/2022]
Abstract
We report a cyclic sample pooling technique devised in two-dimensional liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) shotgun proteomics that renders deeper proteome coverage; we combined low pH reversed-phase (RP) LC in trifluoroacetic acid in the first dimension, followed by cyclic sample pooling of the eluate and low-pH RP-LC in formic acid in the second dimension. The new protocol has a significantly higher resolving power suitable for LC-ESI-MS/MS shotgun proteomics.
Collapse
Affiliation(s)
- Yusuke Kawashima
- Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Characterization of zebrafish cardiac proteome using online pH gradient SCX-RP HPLC-MS/MS platform. Methods Mol Biol 2013; 1005:119-27. [PMID: 23606253 DOI: 10.1007/978-1-62703-386-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional HPLC coupled with tandem MS (MS/MS) has become a mainstream technique in the shotgun proteomics for large-scale identification of proteins from biological samples. This powerful technology provides speed, sensitivity, and dynamic range which are essential to probe complex peptide mixtures from proteomic samples. Herein we present a pH gradient SCX-RP 2D HPLC-MS/MS method designed to improve the peptide resolution and protein identification from complex proteomic samples. The comparison between the pH gradient SCX-RP 2D HPLC method and traditional salt gradient SCX-RP method was presented. A two-step sample prefractionation method utilizing microwave-assisted tryptic digestion to improve the identification of insoluble proteins was also introduced. This novel 2D HPLC-MS/MS method was applied to the heart proteomic sample of the zebrafish, Danio rerio, to provide comprehensive cardiac proteomic profiling of this important model organism for cardiovascular and environmental toxicology studies.
Collapse
|
46
|
Fan Y, Thompson JW, Dubois LG, Moseley MA, Wernegreen JJ. Proteomic analysis of an unculturable bacterial endosymbiont (Blochmannia) reveals high abundance of chaperonins and biosynthetic enzymes. J Proteome Res 2012. [PMID: 23205679 DOI: 10.1021/pr3007842] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many insect groups have coevolved with bacterial endosymbionts that live within specialized host cells. As a salient example, ants in the tribe Camponotini rely on Blochmannia, an intracellular bacterial mutualist that synthesizes amino acids and recycles nitrogen for the host. We performed a shotgun, label-free, LC/MS/MS quantitative proteomic analysis to investigate the proteome of Blochmannia associated with Camponotus chromaiodes. We identified more than 330 Blochmannia proteins, or 54% coverage of the predicted proteome, as well as 244 Camponotus proteins. Using the average intensity of the top 3 "best flier" peptides along with spiking of a surrogate standard at a known concentration, we estimated the concentration (fmol/μg) of those proteins with confident identification. The estimated dynamic range of Blochmannia protein abundance spanned 3 orders of magnitude and covered diverse functional categories, with particularly high representation of metabolism, information transfer, and chaperones. GroEL, the most abundant protein, totaled 6% of Blochmannia protein abundance. Biosynthesis of essential amino acids, fatty acids, and nucleotides, and sulfate assimilation had disproportionately high coverage in the proteome, further supporting a nutritional role of the symbiosis. This first quantitative proteomic analysis of an ant endosymbiont illustrates a promising approach to study the functional basis of intimate symbioses.
Collapse
Affiliation(s)
- Yongliang Fan
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
47
|
Stobaugh JT, Fague KM, Jorgenson JW. Prefractionation of Intact Proteins by Reversed-Phase and Anion-Exchange Chromatography for the Differential Proteomic Analysis of Saccharomyces cerevisiae. J Proteome Res 2012. [DOI: 10.1021/pr300701x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jordan T. Stobaugh
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kaitlin M. Fague
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James W. Jorgenson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
48
|
Abstract
New analytical platforms have been developed in response to the need for attaining increased peak capacity for multicomponent complex analysis with higher sensitivity and characterization of the analytes, and high-throughput capabilities. This review outlines the fundamental principles of target and comprehensive 2D LC method development and encompasses applications of LC–LC and LC × LC coupled to MS in bioanalysis using a variety of online analytical procedures. It also provides a rationale for the usage of the most employed mass analyzers and ionization sources on these platforms.
Collapse
|
49
|
Walian PJ, Allen S, Shatsky M, Zeng L, Szakal ED, Liu H, Hall SC, Fisher SJ, Lam BR, Singer ME, Geller JT, Brenner SE, Chandonia JM, Hazen TC, Witkowska HE, Biggin MD, Jap BK. High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris. J Proteome Res 2012; 11:5720-35. [PMID: 23098413 PMCID: PMC3516867 DOI: 10.1021/pr300548d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cell membranes represent the “front line”
of cellular defense and the interface between a cell and its environment.
To determine the range of proteins and protein complexes that are
present in the cell membranes of a target organism, we have utilized
a “tagless” process for the system-wide isolation and
identification of native membrane protein complexes. As an initial
subject for study, we have chosen the Gram-negative sulfate-reducing
bacterium Desulfovibrio vulgaris. With this tagless
methodology, we have identified about two-thirds of the outer membrane-
associated proteins anticipated. Approximately three-fourths of these
appear to form homomeric complexes. Statistical and machine-learning
methods used to analyze data compiled over multiple experiments revealed
networks of additional protein–protein interactions providing
insight into heteromeric contacts made between proteins across this
region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be
essential for the detection and characterization of environment-driven
changes in the outer membrane proteome and in the modeling of stress
response pathways. The workflow utilized here should be effective
for the global characterization of membrane protein complexes in a
wide range of organisms.
Collapse
Affiliation(s)
- Peter J Walian
- Lawrence Berkeley National Laboratory, Berkeley, California, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Baker ES, Liu T, Petyuk VA, Burnum-Johnson KE, Ibrahim YM, Anderson GA, Smith RD. Mass spectrometry for translational proteomics: progress and clinical implications. Genome Med 2012; 4:63. [PMID: 22943415 PMCID: PMC3580401 DOI: 10.1186/gm364] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The utility of mass spectrometry (MS)-based proteomic analyses and their clinical applications have been increasingly recognized over the past decade due to their high sensitivity, specificity and throughput. MS-based proteomic measurements have been used in a wide range of biological and biomedical investigations, including analysis of cellular responses and disease-specific post-translational modifications. These studies greatly enhance our understanding of the complex and dynamic nature of the proteome in biology and disease. Some MS techniques, such as those for targeted analysis, are being successfully applied for biomarker verification, whereas others, including global quantitative analysis (for example, for biomarker discovery), are more challenging and require further development. However, recent technological improvements in sample processing, instrumental platforms, data acquisition approaches and informatics capabilities continue to advance MS-based applications. Improving the detection of significant changes in proteins through these advances shows great promise for the discovery of improved biomarker candidates that can be verified pre-clinically using targeted measurements, and ultimately used in clinical studies - for example, for early disease diagnosis or as targets for drug development and therapeutic intervention. Here, we review the current state of MS-based proteomics with regard to its advantages and current limitations, and we highlight its translational applications in studies of protein biomarkers.
Collapse
Affiliation(s)
- Erin Shammel Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Gordon A Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|