1
|
Ma CH, Chen CL, Hsu CC. Real-time bottom-up characterization of protein mixtures enabled by online microdroplet-assisted enzymatic digestion (MAED). Chem Commun (Camb) 2023; 59:12585-12588. [PMID: 37789821 DOI: 10.1039/d3cc03509c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Enzymatic digestion remains one of the "rate-determining steps" in the bottom-up analysis of proteins. However, by performing digestion in microdroplets generated from electrosonic spray, the reaction could be accelerated to a timescale lower than milliseconds. Here, we describe a simple and rapid online digestion platform named online microdroplet-assisted enzymatic digestion (MAED). It involves the integration of intact protein separation with enzymatic digestion in microdroplets. Via online MAED, various protein standards, including an antibody standard, were characterized in a bottom-up manner without prior digestion, and high sequence coverages were obtained. We further extended the application of online MAED to a more complex sample, mouse brain extract, where protein identifications were successfully yielded. Compared with the conventional bottom-up approach, a more comprehensive characterization could be obtained particularly for low molecular weight proteins. In short, we provide a rapid and alternative bottom-up analysis in a top-down fashion as well as a new possibility for microdroplet chemistry.
Collapse
Affiliation(s)
- Cheng-Hua Ma
- Department of Chemistry, National Taiwan University, Taipei, 106216, Taiwan.
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei, 106216, Taiwan.
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, 106216, Taiwan.
| |
Collapse
|
2
|
Vosáhlová-Kadlecová Z, Gilar M, Molnárová K, Kozlík P, Kalíková K. Mixed-mode column allows simple direct coupling with immobilized enzymatic reactor for on-line protein digestion. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123866. [PMID: 37657402 DOI: 10.1016/j.jchromb.2023.123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Liquid chromatography coupled with mass spectrometry is widely used in the field of proteomic analysis after off-line protein digestion. On-line digestion with chromatographic column connected in a series with immobilized enzymatic reactor is not often used approach. In this work we investigated the impact of chromatographic conditions on the protein digestion efficiency. The investigation of trypsin reactor activity was performed by on-line digestion of N-α-benzoyl-L-arginine 4-nitroanilide hydrochloride (BAPNA), followed by separation of the digests on the mixed-mode column. Two trypsin column reactors with the different trypsin coverage on the bridged ethylene hybrid particles were evaluated. To ensure optimal trypsin activity, the separation temperature was set at 37.0 °C and the pH of the mobile phase buffer was maintained at 8.5. The on-line digestion itself ongoing during the initial state of gradient was carried out at a low flow rate using a mobile phase that was free of organic modifiers. Proteins such as cytochrome C, enolase, and myoglobin were successfully digested on-line without prior reduction or alkylation, and the resulting peptides were separated using a mixed-mode column. Additionally, proteins that contain multiple cysteines, such as α-lactalbumin, albumin, β-lactoglobulin A, and conalbumin, were also successfully digested on-line (after reduction and alkylation). Moreover, trypsin immobilized enzymatic reactors were utilized for over 300 injections without any noticeable loss of digestion activity.
Collapse
Affiliation(s)
- Zuzana Vosáhlová-Kadlecová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Katarína Molnárová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic.
| |
Collapse
|
3
|
Advances in Mass Spectrometry-based Epitope Mapping of Protein Therapeutics. J Pharm Biomed Anal 2022; 215:114754. [DOI: 10.1016/j.jpba.2022.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
|
4
|
Zhu C, Yang S, Li H, Wang Y, Xiong Y, Shen F, Zhang L, Yang P, Liu X. Rapid sample preparation workflow based on enzymatic nanoreactors for potential serum biomarker discovery in pancreatic cancer. Talanta 2022; 238:123018. [PMID: 34808569 DOI: 10.1016/j.talanta.2021.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Mass spectrometry (MS)-based proteomics have been extensively applied in clinical practice to discover potential protein and peptide biomarkers. However, the traditional sample pretreatment workflow remains labor-intensive and time-consuming, which limits the application of MS-based proteomic biomarker discovery studies in a high throughput manner. In the current work, we improved the previously reported procedure of the simple and rapid sample preparation methods (RSP) by introducing macroporous ordered siliceous foams (MOSF), namely RSP-MOSF. With the aid of MOSF, we further reduced the digestion time to 10 min, facilitating the whole sample handling process within 30 min. Combining with 30 min direct data independent acquisition (DIA) of LC-MS/MS, we accomplished a serum sample analysis in 1 h. Comparing with the RSP method, the performance of protein and peptide identification, quantitation, as well as the reproducibility of RSP-MOSF is comparable or even outperformed the RSP method. We further applied this workflow to analyze serum samples for potential candidate biomarker discovery of pancreatic cancer. Overall, 576 serum proteins were detected with 41 proteins significantly changed, which could serve as potential biomarkers for pancreatic cancer. Additionally, we evaluated the performance of RSP-MOSF method in a 96-well plate format which demonstrated an excellent reproducibility of the analysis. These results indicated that RSP-MOSF method had the potential to be applied on an automatic platform for further scaled analysis.
Collapse
Affiliation(s)
- Chenxin Zhu
- The Fifth People Hospital, Fudan University, And the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Shuang Yang
- The Fifth People Hospital, Fudan University, And the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Hengchao Li
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuning Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yueting Xiong
- The Fifth People Hospital, Fudan University, And the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Fenglin Shen
- The Fifth People Hospital, Fudan University, And the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Lei Zhang
- The Fifth People Hospital, Fudan University, And the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Pengyuan Yang
- The Fifth People Hospital, Fudan University, And the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Xiaohui Liu
- The Fifth People Hospital, Fudan University, And the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institute of Biomedical Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
6
|
From proof of concept to the routine use of an automated and robust multi-dimensional liquid chromatography mass spectrometry workflow applied for the charge variant characterization of therapeutic antibodies. J Chromatogr A 2020; 1615:460740. [DOI: 10.1016/j.chroma.2019.460740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 11/24/2022]
|
7
|
Mao Y, Zhang L, Kleinberg A, Xia Q, Daly TJ, Li N. Fast protein sequencing of monoclonal antibody by real-time digestion on emitter during nanoelectrospray. MAbs 2019; 11:767-778. [PMID: 30919719 PMCID: PMC6601538 DOI: 10.1080/19420862.2019.1599633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Growth in the pharmaceutical industry has led to an increasing demand for rapid characterization of therapeutic monoclonal antibodies. The current methods for antibody sequence confirmation (e.g., N-terminal Edman sequencing and traditional peptide mapping methods) are not sufficient; thus, we developed a fast method for sequencing recombinant monoclonal antibodies using a novel digestion-on-emitter technology. Using this method, a monoclonal antibody can be denatured, reduced, digested, and sequenced in less than an hour. High throughput and satisfactory protein sequence coverage were achieved by using a non-specific protease from Aspergillus saitoi, protease XIII, to digest the denatured and reduced monoclonal antibody on an electrospray emitter, while electrospray high voltage was applied to the digestion mixture through the emitter. Tandem mass spectrometry data was acquired over the course of enzyme digestion, generating similar information compared to standard peptide mapping experiments in much less time. We demonstrated that this fast protein sequencing method provided sufficient sequence information for bovine serum albumin and two commercially available monoclonal antibodies, mouse IgG1 MOPC21 and humanized IgG1 NISTmAb. For two monoclonal antibodies, we obtained sequence coverage of 90.5–95.1% for the heavy chains and 98.6–99.1% for the light chains. We found that on-emitter digestion by protease XIII generated peptides of various lengths during the digestion process, which was critical for achieving sufficient sequence coverage. Moreover, we discovered that the enzyme-to-substrate ratio was an important parameter that affects protein sequence coverage. Due to its highly automatable and efficient design, our method offers a major advantage over N-terminal Edman sequencing and traditional peptide mapping methods in the identification of protein sequence, and is capable of meeting an ever-increasing demand for monoclonal antibody sequence confirmation in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Yuan Mao
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Lichao Zhang
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Andrew Kleinberg
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Qiangwei Xia
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Thomas J Daly
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Ning Li
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| |
Collapse
|
8
|
Lee SY, Lee S, Park SB, Kim KY, Hong J, Kang D. Development of a parallel microbore hollow fiber enzyme reactor platform for online 18O-labeling: Application to lectin-specific lung cancer N-glycoproteome. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:58-64. [PMID: 30292950 DOI: 10.1016/j.jchromb.2018.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022]
Abstract
We introduce a simple online 18O-labeling protocol for protein samples that uses a parallelizing microbore hollow fiber enzyme reactor (mHFER) as an alternative tool for online proteolytic digestion. Online 18O-labeling is performed by separately attaching two mHFERs in parallel to a 10-port switching valve with a high-pressure syringe pump and two syringes containing 16O- or 18O-water. 16O-/18O-labeled peptides are formed in this manner and simultaneously analyzed online using nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS) without any residual trypsin activity. The usefulness of a parallel mHFER platform (P-mHFER) in 18O-labeling was tested using both cytochrome C and alpha-1-acid-glycoprotein to verify the incorporation level of two 18O atoms into tryptic peptides and to provide a quantitative assessment with varied mixing ratios. Additionally, our 18O-labeling approach was used to study the serum N-glycoproteome from lung cancer patients and controls to evaluate the applicability of lectin-based quantitative N-glycoproteomics. We successfully quantified 76 peptides (from 62 N-glycoproteins). Nineteen of these peptides from lung cancer serum were up-/down-regulated at least 2.5-fold compared to controls. As a result, the P-mHFER-based online 18O-labeling platform presented here can be a simple and reproducible way to allow quantitative proteomic analysis of diverse proteome samples.
Collapse
Affiliation(s)
- Sun Young Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seonjeong Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Bum Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ki Young Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
9
|
Gstöttner C, Klemm D, Haberger M, Bathke A, Wegele H, Bell C, Kopf R. Fast and Automated Characterization of Antibody Variants with 4D HPLC/MS. Anal Chem 2018; 90:2119-2125. [DOI: 10.1021/acs.analchem.7b04372] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Denis Klemm
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus Haberger
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Anja Bathke
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Harald Wegele
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Christian Bell
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Robert Kopf
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
10
|
Ladner Y, Mas S, Coussot G, Bartley K, Montels J, Morel J, Perrin C. Integrated microreactor for enzymatic reaction automation: An easy step toward the quality control of monoclonal antibodies. J Chromatogr A 2017; 1528:83-90. [DOI: 10.1016/j.chroma.2017.10.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 01/22/2023]
|
11
|
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017; 1523:40-48. [PMID: 28765000 PMCID: PMC6042839 DOI: 10.1016/j.chroma.2017.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| |
Collapse
|
12
|
Jönsson A, Svejdal RR, Bøgelund N, Nguyen TTTN, Flindt H, Kutter JP, Rand KD, Lafleur JP. Thiol-ene Monolithic Pepsin Microreactor with a 3D-Printed Interface for Efficient UPLC-MS Peptide Mapping Analyses. Anal Chem 2017; 89:4573-4580. [PMID: 28322047 DOI: 10.1021/acs.analchem.6b05103] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To improve the sample handling, and reduce cost and preparation time, of peptide mapping LC-MS workflows in protein analytical research, we here investigate the possibility of replacing conventional enzymatic digestion methods with a polymer microfluidic chip based enzyme reactor. Off-stoichiometric thiol-ene is utilized as both bulk material and as a monolithic stationary phase for immobilization of the proteolytic enzyme pepsin. The digestion efficiency of the, thiol-ene based, immobilized enzyme reactor (IMER) is compared to that of a conventional, agarose packed bed, pepsin IMER column commonly used in LC-MS based protein analyses. The chip IMER is found to rival the conventional column in terms of digestion efficiency at comparable residence time and, using a 3D-printed interface, be directly interfaceable with LC-MS.
Collapse
Affiliation(s)
- Alexander Jönsson
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Rasmus R Svejdal
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Nanna Bøgelund
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Tam T T N Nguyen
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Henrik Flindt
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Kasper D Rand
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Josiane P Lafleur
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| |
Collapse
|
13
|
Piehowski PD, Zhao R, Moore RJ, Clair G, Ansong C. Quantitative Proteomic Analysis of Mass Limited Tissue Samples for Spatially Resolved Tissue Profiling. Methods Mol Biol 2017; 1788:269-277. [PMID: 28980276 DOI: 10.1007/7651_2017_78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Traditionally, proteomic studies have been carried out on whole tissues or organs enabling the profiling of thousands of proteins within a single LC-MS analysis. A disadvantage of this approach is that proteomes generated from whole tissues are an "average" that represents a blend of cell types and distinct anatomical regions which can obscure important biological phenomena. Laser capture microdissection (LCM) is an elegant method that allows tissue features of interest, as small as a single cell, to be identified and isolated for downstream analysis. Herein we describe an approach that utilizes an immobilized enzyme reactor (IMER) coupled directly to nanoLC-MS/MS for highly sensitive, automated, quantitative proteomic analysis of the microscopic tissue specimens generated by LCM.
Collapse
Affiliation(s)
- Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
14
|
Parr MK, Montacir O, Montacir H. Physicochemical characterization of biopharmaceuticals. J Pharm Biomed Anal 2016; 130:366-389. [DOI: 10.1016/j.jpba.2016.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
15
|
Wu S, Zhang H, Yang K, Ma J, Liang Z, Zhang L, Zhang Y. A rapid protein sample preparation method based on organic-aqueous microwave irradiation technique. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5163-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Nunes-Miranda JD, Núñez C, Santos HM, Vale G, Reboiro-Jato M, Fdez-Riverola F, Lodeiro C, Miró M, Capelo JL. A mesofluidic platform integrating on-chip probe ultrasonication for multiple sample pretreatment involving denaturation, reduction, and digestion in protein identification assays by mass spectrometry. Analyst 2014; 139:992-5. [DOI: 10.1039/c3an02178e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel mesofluidic platform integrating on-chip probe ultrasonication for automated high-throughput shotgun proteomic assays.
Collapse
Affiliation(s)
- J. D. Nunes-Miranda
- Department of Genetics and Biotechnology
- University of Trás-os-Montes and Alto Douro
- Vila Real, Portugal
- Institute for Biotechnology and Bioengineering
- Centre of Genomics and Biotechnology
| | - Cristina Núñez
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Hugo M. Santos
- Institute for Biotechnology and Bioengineering
- Centre of Genomics and Biotechnology
- University of Trás-os-Montes and Alto Douro
- Vila Real, Portugal
- REQUIMTE
| | - G. Vale
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Miguel Reboiro-Jato
- SING Group
- Informatics Department
- Higher Technical School of Computer Engineering
- University of Vigo
- Ourense, Spain
| | - Florentino Fdez-Riverola
- SING Group
- Informatics Department
- Higher Technical School of Computer Engineering
- University of Vigo
- Ourense, Spain
| | - Carlos Lodeiro
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Manuel Miró
- FI-TRACE Group
- Department of Chemistry
- University of the Balearic Islands
- Palma de Mallorca, Spain
| | - J. L. Capelo
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| |
Collapse
|
17
|
Pre-analytical and analytical variability in absolute quantitative MRM-based plasma proteomic studies. Bioanalysis 2013; 5:2837-56. [DOI: 10.4155/bio.13.245] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Quantitative plasma proteomics, through the use of targeted MRM-MS and isotopically labeled standards, is emerging as a popular technique to address biological- and biomedical-centered queries. High precision and accuracy are essential in such measurements, particularly in protein biomarker research where translation to the clinic is sought. Standardized procedures and routine performance evaluation of all stages of the workflow (both pre-analytical and analytical) are therefore imperative to satisfy these requisites and enable high inter-laboratory reproducibility and transferability. In this review, we first discuss the pre-analytical and analytical variables that can affect the precision and accuracy of ‘absolute’ quantitative plasma proteomic measurements. Proposed strategies to limit such variability will then be highlighted and unmet needs for future exploration will be noted. Although there is no way to conduct a truly comprehensive review on this broad, rapidly changing topic, we have highlighted key aspects and included references to review articles on various sub-topics.
Collapse
|
18
|
Analysis of biopharmaceutical proteins in biological matrices by LC-MS/MS I. Sample preparation. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Kim JY, Lee SY, Kim SK, Park SR, Kang D, Moon MH. Development of an Online Microbore Hollow Fiber Enzyme Reactor Coupled with Nanoflow Liquid Chromatography-Tandem Mass Spectrometry for Global Proteomics. Anal Chem 2013; 85:5506-13. [DOI: 10.1021/ac400625k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jin Yong Kim
- Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| | - Sun Young Lee
- Center for Bioanalysis, Division
of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 305-340, Korea
| | - Sook-Kyung Kim
- Center for Bioanalysis, Division
of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 305-340, Korea
| | - Sang Ryoul Park
- Center for Bioanalysis, Division
of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 305-340, Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division
of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 305-340, Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| |
Collapse
|
20
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 986] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Switzar L, Giera M, Niessen WMA. Protein Digestion: An Overview of the Available Techniques and Recent Developments. J Proteome Res 2013; 12:1067-77. [DOI: 10.1021/pr301201x] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linda Switzar
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Martin Giera
- Division of Molecular Cell Physiology,
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilfried M. A. Niessen
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
- hyphen MassSpec, de Wetstraat 8, 2332 XT Leiden, The Netherlands
| |
Collapse
|
22
|
Ahn J, Jung MC, Wyndham K, Yu YQ, Engen JR. Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10,000 psi. Anal Chem 2012; 84:7256-62. [PMID: 22856522 DOI: 10.1021/ac301749h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pepsin was immobilized on ethyl-bridged hybrid (BEH) particles, and digestion performance was evaluated in a completely online format, with the specific intent of using the particles for hydrogen-deuterium exchange mass spectrometry (HDX MS) experiments. Because the BEH particles are mechanically strong, they could withstand prolonged, continuous high-pressure at 10,000 psi. Online digestion was performed under isobaric conditions with continuous solvent flow, in contrast to other approaches where the pressure or flow is cycled. As expected, digestion efficiency at 10,000 psi was increased and reproducibly produced more peptic peptides versus digestion at 1000 psi. Prototype columns made with the BEH pepsin particles exhibited robust performance, and deuterium back-exchange was similar to that of other immobilized pepsin particles. These particles can be easily incorporated in existing HDX MS workflows to provide more peptide coverage in experiments where fast, efficient, and reproducible online pepsin digestion is desired.
Collapse
Affiliation(s)
- Joomi Ahn
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
23
|
Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 893-894:1-14. [DOI: 10.1016/j.jchromb.2012.02.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 02/05/2023]
|
24
|
Altelaar AFM, Heck AJR. Trends in ultrasensitive proteomics. Curr Opin Chem Biol 2012; 16:206-13. [DOI: 10.1016/j.cbpa.2011.12.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 11/27/2022]
|
25
|
Dufield DR, Radabaugh MR. Online immunoaffinity LC/MS/MS. A general method to increase sensitivity and specificity: How do you do it and what do you need? Methods 2012; 56:236-45. [DOI: 10.1016/j.ymeth.2011.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022] Open
|
26
|
Braakman RBH, Tilanus-Linthorst MMA, Liu NQ, Stingl C, Dekker LJM, Luider TM, Martens JWM, Foekens JA, Umar A. Optimized nLC-MS workflow for laser capture microdissected breast cancer tissue. J Proteomics 2012; 75:2844-54. [PMID: 22296676 DOI: 10.1016/j.jprot.2012.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 10/14/2022]
Abstract
Reliable sample preparation is of utmost importance for comparative proteome analysis, particularly when investigating minute amounts of clinical specimens, such as laser capture microdissected tumor tissue. In this study, we present an optimized nanoLC-MS workflow specifically for the analysis of laser capture microdissected breast cancer tissue. Analytical performance of different laser capture microdissection (LCM) functions available on the PALM system, time dependent trypsin digestion efficiency, effect of sample preparation and digestion time on peptide modification, semi-tryptic peptides and missed cleavages were evaluated. Our results show that microdissection from uncoated glass slides results in protein degradation; that protease and phosphatase inhibitors do not result in detectable improvement in number of peptides or semi-tryptic peptides; and that digestion time longer than four hours drastically reduces the number of missed cleavages, but also increases the number of unexpectedly modified peptides. Overalkylation was the most dominant side-reaction, which significantly increased overnight (P=0.05). The latter effect could almost completely be reverted by the use of a quenching agent (P=0.001). Taken together, our results show that it is of importance to carefully control sample handling steps so that reliable protein identification and quantitation can be performed within comparative proteomics studies using LCM. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- René B H Braakman
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Detection of infectious agents in the airways by ion mobility spectrometry of exhaled breath. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12127-011-0077-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Kool J, Jonker N, Irth H, Niessen WMA. Studying protein-protein affinity and immobilized ligand-protein affinity interactions using MS-based methods. Anal Bioanal Chem 2011; 401:1109-25. [PMID: 21755271 PMCID: PMC3151372 DOI: 10.1007/s00216-011-5207-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/12/2011] [Accepted: 06/24/2011] [Indexed: 12/31/2022]
Abstract
This review discusses the most important current methods employing mass spectrometry (MS) analysis for the study of protein affinity interactions. The methods are discussed in depth with particular reference to MS-based approaches for analyzing protein-protein and protein-immobilized ligand interactions, analyzed either directly or indirectly. First, we introduce MS methods for the study of intact protein complexes in the gas phase. Next, pull-down methods for affinity-based analysis of protein-protein and protein-immobilized ligand interactions are discussed. Presently, this field of research is often called interactomics or interaction proteomics. A slightly different approach that will be discussed, chemical proteomics, allows one to analyze selectivity profiles of ligands for multiple drug targets and off-targets. Additionally, of particular interest is the use of surface plasmon resonance technologies coupled with MS for the study of protein interactions. The review addresses the principle of each of the methods with a focus on recent developments and the applicability to lead compound generation in drug discovery as well as the elucidation of protein interactions involved in cellular processes. The review focuses on the analysis of bioaffinity interactions of proteins with other proteins and with ligands, where the proteins are considered as the bioactives analyzed by MS.
Collapse
Affiliation(s)
- Jeroen Kool
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Wall MJ, Crowell AMJ, Simms GA, Carey GH, Liu F, Doucette AA. Implications of partial tryptic digestion in organic-aqueous solvent systems for bottom-up proteome analysis. Anal Chim Acta 2011; 703:194-203. [PMID: 21889634 DOI: 10.1016/j.aca.2011.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 07/08/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022]
Abstract
For bottom-up MS, the digestion step is critical and is typically performed with trypsin. Solvent-assisted digestion in 80% acetonitrile has previously been shown to improve protein sequence coverage at shorter digestion times. This has been attributed to enhanced enzyme digestion efficiency in this solvent. However, our results demonstrate that tryptic digestion in 80% acetonitrile is less efficient than that of conventional (aqueous) digestion. This is a consequence of decreased enzyme activity beyond ~40% acetonitrile, increased enzyme autolysis and lower protein solubility in 80% acetonitrile. We observe multiple missed cleavages and reduced concentration of fully cleaved digestion products. Nonetheless we confirm, through room temperature solvent-assisted digestion, a consistent improvement in protein sequence coverage when analyzed by mass spectrometry. These results are explained through the increased number of unique digestion products available for detection. Thus, while solvent-assisted digestion has clear merits for proteome analysis, one should be aware of the inefficiency of protein digestion though this protocol, particularly with absolute protein quantitation experiments.
Collapse
Affiliation(s)
- Mark J Wall
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, Canada B3H 4J3
| | | | | | | | | | | |
Collapse
|
30
|
Jun SH, Chang MS, Kim BC, An HJ, Lopez-Ferrer D, Zhao R, Smith RD, Lee SW, Kim J. Trypsin coatings on electrospun and alcohol-dispersed polymer nanofibers for a trypsin digestion column. Anal Chem 2011; 82:7828-34. [PMID: 20718428 DOI: 10.1021/ac101633e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The construction of a trypsin column for rapid and efficient protein digestion in proteomics is described. Electrospun and alcohol-dispersed polymer nanofibers were used for the fabrication of highly stable trypsin coatings, which were prepared by a two-step process of covalent attachment and enzyme cross-linking. In a comparative study with the trypsin coatings on as-spun and nondispersed nanofibers, it has been observed that a simple step of alcohol dispersion improved not only the enzyme loading but also the performance of protein digestion. In-column digestion of enolase was successfully performed in less than 20 min. By applying the alcohol dispersion of polymer nanofibers, the bypass of samples was reduced by filling up the column with well-dispersed nanofibers, and subsequently, interactions between the protein and the trypsin coatings were improved, yielding more complete and reproducible digestions. Regardless of alcohol dispersion or not, trypsin coatings showed better digestion performance and improved performance stability under recycled uses than covalently attached trypsin, in-solution digestion, and commercial trypsin beads. The combination of highly stable trypsin coatings and alcohol dispersion of polymer nanofibers has opened up a new potential to develop a trypsin column for online and automated protein digestion.
Collapse
Affiliation(s)
- Seung-Hyun Jun
- Department of Chemical and Biological Engineering, Korea University, 1, 5-ka, Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee B, Lopez-Ferrer D, Kim BC, Na HB, Park YI, Weitz KK, Warner MG, Hyeon T, Lee SW, Smith RD, Kim J. Rapid and efficient protein digestion using trypsin-coated magnetic nanoparticles under pressure cycles. Proteomics 2010; 11:309-18. [PMID: 21204257 DOI: 10.1002/pmic.201000378] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/30/2010] [Accepted: 10/25/2010] [Indexed: 12/26/2022]
Abstract
Trypsin-coated magnetic nanoparticles (EC-TR/NPs), prepared via a simple multilayer random crosslinking of the trypsin molecules onto magnetic nanoparticles, were highly stable and could be easily captured using a magnet after the digestion was complete. EC-TR/NPs showed a negligible loss of trypsin activity after multiple uses and continuous shaking, whereas the conventional immobilization of covalently attached trypsin on NPs resulted in a rapid inactivation under the same conditions due to the denaturation and autolysis of trypsin. A single model protein, a five-protein mixture, and a whole mouse brain proteome were digested at atmospheric pressure and 37°C for 12 h or in combination with pressure cycling technology at room temperature for 1 min. In all cases, EC-TR/NPs performed equally to or better than free trypsin in terms of both the identified peptide/protein number and the digestion reproducibility. In addition, the concomitant use of EC-TR/NPs and pressure cycling technology resulted in very rapid (∼1 min) and efficient digestions with more reproducible digestion results.
Collapse
Affiliation(s)
- Byoungsoo Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
One-year time series of investigations of analytes within human breath using ion mobility spectrometry. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12127-010-0052-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Zhou J. Fast trypsin digestion of proteins on a cross-linked [Os(dmebpy)(2)Cl](+/2+)-derivatized copolymer of acrylamide and vinylimidazole column. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2236-2244. [PMID: 20607841 DOI: 10.1002/rcm.4635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fast digestion of proteins was observed when they were loaded together with trypsin onto the cross-linked [Os(dmebpy)(2)Cl](+/2+)-derivatized copolymer of acrylamide and vinylimidazole column. The insoluble Os-complexed polymer particles were packed into an electrospray tip to monitor peptides eluted during loading, washing and elution periods with a mass spectrometer. The proteolytic cleavage of proteins was observed immediately when the mixture of trypsin and substrates in 0.2 mM ammonium bicarbonate 50:50 H(2)O/acetonitrile reached the column tip, and continued through the loading period. Some tryptic peptides were released from the column during the loading and following washing periods. The others still stayed on the column until the low pH elution buffer reached the column. If a protein was first loaded onto the column, no tryptic peptides of the protein were observed when trypsin was loaded later for the on-column digestion. Only the autolysis peptides of trypsin were observed. On-column digestion of 100 fmol myoglobin was successfully detected with a low sensitivity quadrupole mass spectrometer. A hybrid Os-polymer/C(18) column tip was constructed for the online trypsin digestion of proteins in the aqueous buffers and the following trapping and elution of peptides from the C(18) column. The digestion of reduced and alkylated bovine serum albumin and human transferrin in 2.5 mM ammonium bicarbonate and 0.2 M urea buffer was observed on the column, with more peptide coverage than conventional 4 h in-solution digestion at 37 degrees C. Control experiments without the Os-polymer in the column tip excluded the spontaneous in-solution digestion of proteins in the short time window of buffer delivery onto the column, indirectly confirming the contribution of Os-polymer on the fast trypsin digestion.
Collapse
Affiliation(s)
- Jie Zhou
- The Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
34
|
Kim J, Kim BC, Lopez-Ferrer D, Petritis K, Smith RD. Nanobiocatalysis for protein digestion in proteomic analysis. Proteomics 2010; 10:687-99. [PMID: 19953546 DOI: 10.1002/pmic.200900519] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The process of protein digestion is a critical step for successful protein identification in bottom-up proteomic analyses. To substitute the present practice of in-solution protein digestion, which is long, tedious, and difficult to automate, many efforts have been dedicated for the development of a rapid, recyclable and automated digestion system. Recent advances of nanobiocatalytic approaches have improved the performance of protein digestion by using various nanomaterials such as nanoporous materials, magnetic nanoparticles, and polymer nanofibers. Especially, the unprecedented success of trypsin stabilization in the form of trypsin-coated nanofibers, showing no activity decrease under repeated uses for 1 year and retaining good resistance to proteolysis, has demonstrated its great potential to be employed in the development of automated, high-throughput, and on-line digestion systems. This review discusses recent developments of nanobiocatalytic approaches for the improved performance of protein digestion in speed, detection sensitivity, recyclability, and trypsin stability. In addition, we also introduce approaches for protein digestion under unconventional energy input for protein denaturation and the development of microfluidic enzyme reactors that can benefit from recent successes of these nanobiocatalytic approaches.
Collapse
Affiliation(s)
- Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|
35
|
López-Ferrer D, Petritis K, Robinson EW, Hixson KK, Tian Z, Lee JH, Lee SW, Tolić N, Weitz KK, Belov ME, Smith RD, Pasa-Tolić L. Pressurized pepsin digestion in proteomics: an automatable alternative to trypsin for integrated top-down bottom-up proteomics. Mol Cell Proteomics 2010; 10:M110.001479. [PMID: 20627868 PMCID: PMC3033671 DOI: 10.1074/mcp.m110.001479] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome.
Collapse
Affiliation(s)
- Daniel López-Ferrer
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jones LM, Zhang H, Vidavsky I, Gross ML. Online, high-pressure digestion system for protein characterization by hydrogen/deuterium exchange and mass spectrometry. Anal Chem 2010; 82:1171-4. [PMID: 20095571 DOI: 10.1021/ac902477u] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid and complete digestion of proteins is important when protein characterization by hydrogen-deuterium exchange (HDX) is coupled with mass spectrometry. We developed a single-pump, online, high-pressure digestion system that relies on UPLC technology to aid in the digestion of proteins. Two model proteins, amyloid beta-peptide 1-42 (Abeta 1-42) and an HIV-1 capsid mutant protein (NBSA), were used to demonstrate the efficacy of the high-pressure system. Both model proteins readily aggregate and are difficult to digest under normal conditions. Our high-pressure system successfully digests these proteins into small, overlapping peptides. The extra information afforded by overlapping peptides allows us to pinpoint HDX protection to protein segments smaller than the digested peptide. The calculated average segment length (ASL) for both model proteins decreased by 2-fold for high-pressure digestion compared to digestion at ambient pressure.
Collapse
|
37
|
Tian R, Wang S, Elisma F, Li L, Zhou H, Wang L, Figeys D. Rare cell proteomic reactor applied to stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics study of human embryonic stem cell differentiation. Mol Cell Proteomics 2010; 10:M110.000679. [PMID: 20530636 DOI: 10.1074/mcp.m110.000679] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The molecular basis governing the differentiation of human embryonic stem cells (hESCs) remains largely unknown. Systems-level analysis by proteomics provides a unique approach to tackle this question. However, the requirement of a large number of cells for proteomics analysis (i.e. 10(6)-10(7) cells) makes this assay challenging, especially for the study of rare events during hESCs lineage specification. Here, a fully integrated proteomics sample processing and analysis platform, termed rare cell proteomic reactor (RCPR), was developed for large scale quantitative proteomics analysis of hESCs with ∼50,000 cells. hESCs were completely extracted by a defined lysis buffer, and all of the proteomics sample processing procedures, including protein preconcentration, reduction, alkylation, and digestion, were integrated into one single capillary column with a strong cation exchange monolith matrix. Furthermore, on-line two-dimensional LC-MS/MS analysis was performed directly using RCPR as the first dimension strong cation exchange column. 2,281 unique proteins were identified on this system using only 50,000 hESCs. For stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative study, a ready-to-use and chemically defined medium and an in situ differentiation procedure were developed for complete SILAC labeling of hESCs with well characterized self-renewal and differentiation properties. Mesoderm-enriched differentiation was studied by RCPR using 50,000 hESCs, and 1,086 proteins were quantified with a minimum of two peptides per protein. Of these, 56 proteins exhibited significant changes during mesoderm-enriched differentiation, and eight proteins were demonstrated for the first time to be overexpressed during early mesoderm development. This work provides a new platform for the study of rare cells and in particular for further elucidating proteins that govern the mesoderm lineage specification of human pluripotent stem cells.
Collapse
Affiliation(s)
- Ruijun Tian
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Yang HJ, Hong J, Lee S, Shin S, Kim J, Kim J. Pressure-assisted tryptic digestion using a syringe. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:901-908. [PMID: 20196188 DOI: 10.1002/rcm.4467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A simple and effective digestion method was developed using a syringe. A 3 mL syringe was used to apply a pressure of 6 atm to expedite tryptic digestion. Application of a pressure of 6 atm during digestion resulted in better digestion efficiency than digestion under atmospheric pressure. The protein peaks in the matrix-assisted laser desorption/ionization mass spectra of three model proteins (cytochrome c, horse heart myoglobin, and bovine serum albumin (BSA)) completely disappeared within 30 min at 37 degrees C under a pressure of 6 atm, with greater numbers of peptides observed in 30 min pressure-assisted digestion than in overnight atmospheric pressure digestion. This is mostly due to the miscleaved peptides. Similar sequence coverages were obtained for 30 min pressure-assisted digestion and overnight atmospheric pressure digestion of the three model proteins (92% vs. 88% for cytochrome c, 100% vs. 97% for horse heart myoglobin, and 53% vs. 53% for BSA).
Collapse
Affiliation(s)
- Hyo-Jik Yang
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | |
Collapse
|
39
|
Percy AJ, Schriemer DC. Rheostatic control of tryptic digestion in a microscale fluidic system. Anal Chim Acta 2010; 657:53-9. [DOI: 10.1016/j.aca.2009.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/17/2009] [Accepted: 10/09/2009] [Indexed: 11/25/2022]
|
40
|
Overview on modern approaches to speed up protein identification workflows relying on enzymatic cleavage and mass spectrometry-based techniques. Anal Chim Acta 2009; 650:151-9. [DOI: 10.1016/j.aca.2009.07.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022]
|
41
|
Ma J, Liu J, Sun L, Gao L, Liang Z, Zhang L, Zhang Y. Online Integration of Multiple Sample Pretreatment Steps Involving Denaturation, Reduction, and Digestion with Microflow Reversed-Phase Liquid Chromatography−Electrospray Ionization Tandem Mass Spectrometry for High-Throughput Proteome Profiling. Anal Chem 2009; 81:6534-40. [DOI: 10.1021/ac900971w] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junfeng Ma
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinxiang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Liangliang Sun
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Liang Gao
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhen Liang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|