1
|
Mabena KG, Nomngongo PN, Mketo N. Selective and precise solid phase extraction based on a magnetic cellulose gold nanocomposite followed by ICP-OES analysis for monitoring of total sulfur content in liquid fuels. RSC Adv 2024; 14:27990-27998. [PMID: 39224633 PMCID: PMC11367618 DOI: 10.1039/d4ra04427d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
This study describes the synthesis and characterization of a magnetic cellulose gold nanocomposite (MCNC@Au) for magnetic solid phase (m-SPE) extraction of total sulfur content in liquid fuel samples followed by analysis using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The nanocomposite was prepared using an in situ co-precipitation method and characterization results from FTIR, P-XRD, TEM and SEM-EDX techniques confirmed the formation of the targeted nanocomposite. To achieve good extraction efficiency, the 2-level half-fractional factorial design and central composite design were used to investigate the most influential parameters of the proposed m-SPE method. The multivariate optimization results showed that efficient extraction was obtained when 27.5 mg sorbent mass, 35 minutes sorption time, 200 μL eluent volume and 8 min elution time were used. The optimal parameters resulted in excellent accuracy (98.8%), precision (1.7%), LOD (0.039 mg L-1), LOQ (0.129 mg L-1), MDL (0.014 μg g-1) and MQL (0.047 μg g-1). The optimized and validated m-SPE method was applied in real fuel oil samples, revealing a total sulfur content range of 13.20 ± 0.05-15.70 ± 0.02 μg g-1 for crude oil, 7.32 ± 0.01-9.12 ± 0.03 for μg g-1, 8.41 ± 0.02-9.15 ± 0.06 μg g-1 for gasoline and 9.10 ± 0.02 and 9.70 ± 0.04 μg g-1 for kerosene samples, sugesting high concentration levels of sulfur in crude oils. However, the obtained sulfur content levels are within the accepted standards in fuel oils, except for those of crude oil and kerosene samples. Therefore, the proposed m-SPE method followed by ICP-OES analysis has proven to be an alternative procedure for rapid and selective quantification of total sulfur in fuel samples.
Collapse
Affiliation(s)
- Kgomotso G Mabena
- Department of Chemistry, College of Science, Engineering and Technology (CSET), University of South Africa Florida Science Campus 1709 Johannesburg South Africa +27-114712032
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, P.O. Box 17011 Johannesburg 2028 South Africa
| | - Nomvano Mketo
- Department of Chemistry, College of Science, Engineering and Technology (CSET), University of South Africa Florida Science Campus 1709 Johannesburg South Africa +27-114712032
| |
Collapse
|
2
|
Mohammadiazar S, Sheikhi T, Mazoji H, Roostaie A. Simultaneous determination of methadone and tramadol in serum samples by ultrasonic-assisted micro solid phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 2024; 1725:464875. [PMID: 38678692 DOI: 10.1016/j.chroma.2024.464875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
Ultrasonic-assisted dispersive micro solid phase extraction (UA-DMSPE) is proposed as a fast and easy technique for the extraction and preconcentration of methadone and tramadol from serum samples. Different sorbents including carbon nanotubes, oxidized carbon nanotubes, and TiO2 nanoparticles were compared to extract methadone and tramadol. The best performance was obtained using oxidized carbon nanotubes due to the strong affinity between the drugs and carbon nanotube adsorbents. Final analysis of drugs performed by using gas chromatography-mass spectrometric detection. Different parameters affecting the extraction efficiency, such as the sample volume, amount of adsorbent, desorption solvent type and volume, centrifugation time, and speed were investigated and optimized. The striking features of this technique are correlated to its speed and the small volumes of sample (about 1 mL), desorption solvent (about 50 μL), and adsorbent (about 0.001 g) for analysis of drugs, and finally, milder centrifugation conditions relative to the previously reported adsorbent. The optimal parameters were achieved as follows: pH value was set at 9, the sample volume was adjusted to 1200 µL, the amount of adsorbent used was 1 mg, the extraction time was set at 5 min, and the volume of the desorption solvent was adjusted to 50 µL. The limits of detections (0.5 and 0.8 ng mL-1) and quantifications (1.5 and 2.5 ng mL-1) were obtained for methadone and tramadol, respectively. The developed method also showed good repeatability, relative standard deviation (RSD) of 9.49 % and 7.47 % (n = 5), for the spiked aqueous solution at the concentration level of 10, 50, and 100 ng mL-1 for analytes, and linearity, R ≥ 0.9809. The results showed that UA-DMSPE is a quick, relatively inexpensive, and environmentally friendly alternative technique for the extraction of opiate drugs from serum samples.
Collapse
Affiliation(s)
- Sirwan Mohammadiazar
- Department of Chemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Tahereh Sheikhi
- Department of Chemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Hedyeh Mazoji
- Department of Chemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Ali Roostaie
- Equipment and Technologies department, Policing Sciences and Social Studies Research Institute, Tehran, Iran.
| |
Collapse
|
3
|
Chen L, Shao H, Mao C, Ren Y, Zhao T, Tu M, Wang H, Xu G. Degradation of hexavalent chromium and naphthalene by electron beam irradiation: Degradation efficiency, mechanisms, and degradation pathway. CHEMOSPHERE 2023:138992. [PMID: 37271473 DOI: 10.1016/j.chemosphere.2023.138992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in industrial wastewater have attracted much attention due to their damage to the environment and the human body. Studies have shown that there may be interactions between PAHs and HMs, leading to enhanced toxicity of both pollutants. It has been shown that traditional methods are difficult to treat a combination of PAHs and HMs simultaneously. This paper presented an innovative method for treating PAHs and HMs compound pollutants by electron beam irradiation and achieved the removal of the compound pollutants using a single means. Experiments showed that the absorbed dose at 15 kGy could achieve 100% degradation of NAP and 90% reduction of Cr (Ⅵ). This article investigated the effects of electron beam removal of PAHs and HMs complex contaminants in various water environmental matrices. The experimental results showed that the degradation of NAP followed the pseudo-first-order dynamics, and the degradation of NAP was more favorable under neutral conditions. Inorganic ions and water quality had little effect on NAP degradation. For electron beam reduction of Cr (Ⅵ), alkaline conditions were more conducive to reducing Cr (Ⅵ). Especially, adding K2S2O8 or HCOOH achieved 99% reduction of Cr (Ⅵ). Experiments showed that •OH achieve the degradation of NAP, and eaq- achieve the reduction of Cr (Ⅵ). The results showed that the degradation of NAP was mainly achieved by benzene ring opening, carboxylation and aldehyde, which proved that the degradation of NAP was mainly caused by •OH attack. The toxicity analysis results showed that the electron beam could significantly reduce the toxicity of NAP, and the toxicity of the final product was much lower than NAP, realizing the harmless treatment of NAP. The experimental results showed that electron beam irradiation has faster degradation rates and higher degradation efficiency for NAP and Cr (Ⅵ) compared to other reported treatment methods.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Yingfei Ren
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Tingting Zhao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Mengxin Tu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Hongyong Wang
- Shanghai University, Shanghai Institute Applied Radiation, 20 Chengzhong Road, Shanghai, 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
4
|
Rapid detection of four polycyclic aromatic hydrocarbons in drinking water by constant-wavelength synchronous fluorescence spectrometry. ANAL SCI 2023; 39:59-66. [PMID: 36223062 DOI: 10.1007/s44211-022-00200-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/02/2022] [Indexed: 01/06/2023]
Abstract
Based on the advantages of the good selectivity and high sensitivity of the synchronous fluorescence method, an efficient method using constant-wavelength synchronous fluorescence spectrometry (CWSFS) for simultaneous and rapid determination of four polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, phenanthrene, benzo[a]anthracene and fluoranthene) in drinking water was established in this study. When the difference in wavelength (Δλ) at 100 nm was chosen for CWSFS scanning, the synchronous fluorescence spectra of the four PAHs could be well separated with only one single scan. Different from conventional fluorescence analysis, the established method can avoid the interference among the four PAHs each other and the interference of the drinking water sample matrix, so the four PAHs in drinking water could be well distinguished and determined. The concentrations of four PAHs in the range of 0.05-100 μg/L, 0.1-400 μg/L, 0.05-100 μg/L and 0.5-2000 μg/L showed a good linear relationship with fluorescence intensity. The limits of detection were 0.0058 μg/L, 0.021 μg/L, 0.0061 μg/L and 0.056 μg/L, respectively. The recoveries were in the range of 86.55-98.74%. Overall, the established CWSFS had the characteristics of simple, rapid, sensitive and accuracy, and had been applied to the determination of the four PAHs in various drinking water with satisfactory results.
Collapse
|
5
|
Wise SA, Rodgers RP, Reddy CM, Nelson RK, Kujawinski EB, Wade TL, Campiglia AD, Liu Z. Advances in Chemical Analysis of Oil Spills Since the Deepwater Horizon Disaster. Crit Rev Anal Chem 2022; 53:1638-1697. [PMID: 35254870 DOI: 10.1080/10408347.2022.2039093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Analytical techniques for chemical analysis of oil, oil photochemical and biological transformation products, and dispersants and their biodegradation products benefited significantly from research following the 2010 Deepwater Horizon (DWH) disaster. Crude oil and weathered-oil matrix reference materials were developed based on the Macondo well oil and characterized for polycyclic aromatic hydrocarbons, hopanes, and steranes for use to assure and improve the quality of analytical measurements in oil spill research. Advanced gas chromatography (GC) techniques such as comprehensive two-dimensional GC (GC × GC), pyrolysis GC with mass spectrometry (MS), and GC with tandem MS (GC-MS/MS) provide a greater understanding at the molecular level of composition and complexity of oil and weathering changes. The capabilities of high-resolution MS (HRMS) were utilized to extend the analytical characterization window beyond conventional GC-based methods to include polar and high molecular mass components (>400 Da) and to provide new opportunities for discovery, characterization, and investigation of photooxidation and biotransformation products. Novel separation approaches to reduce the complexity of the oil and weathered oil prior to high-resolution MS and advanced fluorescence spectrometry have increased the information available on spilled oil and transformation products. HRMS methods were developed to achieve the required precision and sensitivity for detection of dispersants and to provide molecular-level characterization of the complex surfactants. Overall, research funding following the DWH oil spill significantly advanced and expanded the use of analytical techniques for chemical analysis to support petroleum and dispersant characterization and investigations of fate and effects of not only the DWH oil spill but future spills.
Collapse
Affiliation(s)
- Stephen A Wise
- Scientist Emeritus, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Ryan P Rodgers
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| |
Collapse
|
6
|
Lu F, Su Y, Ji Y, Ji R. Release of Zinc and Polycyclic Aromatic Hydrocarbons From Tire Crumb Rubber and Toxicity of Leachate to Daphnia magna: Effects of Tire Source and Photoaging. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:651-656. [PMID: 33547903 DOI: 10.1007/s00128-021-03123-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/19/2021] [Indexed: 05/12/2023]
Abstract
Tire crumb rubber (TCR) has been widely used in artificial turf fields, however, the potential environmental risk of TCR and the effect of sunlight exposure are scarcely studied. Here, we evaluated leachability of Zn and polycyclic aromatic hydrocarbons (PAHs) in four types of TCRs and acute toxicity of leachates to Daphnia magna. The results showed that all types of TCRs tested released Zn (0.20-1.3 μg/g) and PAHs (9.4-17 μg/g) but only two were lethal to D. magna (mortality 73%). Notably, ultraviolet (UV) irradiation induced TCR to generate acidic leachate (pH ~ 4.8), which contained 24- and 1.2-fold higher concentrations of Zn and PAHs and therefore was more toxic to D. magna than that in the absence of UV treatment. These findings demonstrate source-dependent toxicity of TCR and highlight the need to consider the effect of photoaging when evaluating the environmental risks of TCR.
Collapse
Affiliation(s)
- Fenxiao Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Yitong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Zhang Q, Liu P, Li S, Zhang X, Chen M. Progress in the analytical research methods of polycyclic aromatic hydrocarbons (PAHs). J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1746668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qiongyao Zhang
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Ping Liu
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Shuling Li
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Xuejiao Zhang
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Mengdi Chen
- Department of Hygiene Detection, College of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| |
Collapse
|
8
|
Aly AA, Górecki T. Green Approaches to Sample Preparation Based on Extraction Techniques. Molecules 2020; 25:E1719. [PMID: 32283595 PMCID: PMC7180442 DOI: 10.3390/molecules25071719] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Preparing a sample for analysis is a crucial step of many analytical procedures. The goal of sample preparation is to provide a representative, homogenous sample that is free of interferences and compatible with the intended analytical method. Green approaches to sample preparation require that the consumption of hazardous organic solvents and energy be minimized or even eliminated in the analytical process. While no sample preparation is clearly the most environmentally friendly approach, complete elimination of this step is not always practical. In such cases, the extraction techniques which use low amounts of solvents or no solvents are considered ideal alternatives. This paper presents an overview of green extraction procedures and sample preparation methodologies, briefly introduces their theoretical principles, and describes the recent developments in food, pharmaceutical, environmental and bioanalytical chemistry applications.
Collapse
Affiliation(s)
- Alshymaa A. Aly
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Menia Governorate 61519, Egypt
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
9
|
Liu Q, Xu X, Wang L, Lin L, Wang D. Simultaneous determination of forty-two parent and halogenated polycyclic aromatic hydrocarbons using solid-phase extraction combined with gas chromatography-mass spectrometry in drinking water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:241-247. [PMID: 31200196 DOI: 10.1016/j.ecoenv.2019.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The coexistence of parent polycyclic aromatic hydrocarbons (PPAHs) and halogenated PAHs (HPAHs) in drinking water has generated much concern recently. However, a method to simultaneously determine these compounds has not been developed. In this study, a method using solid-phase extraction combined with gas chromatography-mass spectrometry for determination of PPAHs and HPAHs in drinking water was established. Forty-two target compounds including 16 PPAHs and 26 HPAHs (16 chlorinated PAHs (Cl-HPAHs) and 10 brominated PAHs (Br-PAHs)) were selected to evaluate the performance. Our results indicate enriching compounds with a LC18 cartridge and eluting with dichloromethane is optimal with recovery of 74.88-119.4%. Method detection limits ranged from 0.34 to 3.37 ng L-1 when only using 1 L samples. The method accomplished the analysis of trace PPAHs and HPAHs. We found the coexistence of PPAHs and HPAHs including 12 PPAHs, 2 Cl-PAHs and 3 Br-PAHs in tap water samples. Maximum total concentration of PPAHs and HPAHs reached 33.69 ng L-1 and 3.04 ng L-1, respectively. Trace Br-PAHs were first detected in drinking water. 6-bromobenzene[a]pyrene was dominated among the HPAHs with a concentration from 2.30 to 2.69 ng L-1. The simultaneous occurrence of PPAHs and HPAHs in drinking water should receive more attention, and their formation mechanism should be further explored.
Collapse
Affiliation(s)
- Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Long Wang
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Lihua Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
10
|
Abstract
This article offers a review on the application of nanoparticles (NPs) that have been used as sorbents in the analysis of polycyclic aromatic hydrocarbons (PAHs). The novel advances in the application of carbon NPs, mesoporous silica NPs, metal, metal oxides, and magnetic and magnetised NPs in the extraction of PAHs from matrix solutions were discussed. The extraction techniques used to isolate PAHs have been highlighted including their advantages and limitations. Methods for preparing NPs and optimized conditions of NPs extraction efficiency have been overviewed since proper extraction procedures were necessary to achieve optimum analytical results. The aim was to provide an overview of current knowledge and information in order to assess the need for further exploration that can lead to an efficient and optimum analysis of PAHs.
Collapse
|
11
|
Mpupa A, Mashile GP, Nomngongo PN. Ultrasound-assisted dispersive solid phase nanoextraction of selected personal care products in wastewater followed by their determination using high performance liquid chromatography-diode array detector. JOURNAL OF HAZARDOUS MATERIALS 2019; 370:33-41. [PMID: 30262169 DOI: 10.1016/j.jhazmat.2018.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/05/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
This study reports a rapid and simple method based on ultrasound-assisted dispersive solid phase nanoextraction (UA-SPNE) method for the extraction and preconcentration of selected personal care products using MPC@Al2O3-SiO2 nano adsorbent. A high performance liquid chromatograph equipped with a diode array detector (HPLC-DAD) was used to detect the analytes of interest. Experimental parameters affecting the extraction and preconcentration efficiency of the UA-SPNE (such as mass of adsorbent, extraction time, sample pH and eluent volume,) were optimized using fractional factorial design and response surface methodology based on central composite design. Under optimized conditions, the linear range for benzophenone, N,N-diethyl-3-methylbenzamide and trichlorocarbanilide were in the interval of LOQ-1000 μg L-1 with correlation coefficients ranged from 0.9907 to 0.9977. The limits of detection and limits of quantification were 0.066-0.096 μg L-1 and 0.22-0.32 μg L-1, respectively. The accuracy of the UA-SPNE/HPLC-DAD method was evaluated using spike recovery test and the recoveries were in the range of 98-107%. The repeatability and reproducibility of the method 0.8-1.0 % and 2.4-4.4%, respectively.
Collapse
Affiliation(s)
- Anele Mpupa
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Geaneth P Mashile
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Philiswa N Nomngongo
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa.
| |
Collapse
|
12
|
Deriu C, Conticello I, Mebel AM, McCord B. Micro Solid Phase Extraction Surface-Enhanced Raman Spectroscopy (μ-SPE/SERS) Screening Test for the Detection of the Synthetic Cannabinoid JWH-018 in Oral Fluid. Anal Chem 2019; 91:4780-4789. [DOI: 10.1021/acs.analchem.9b00335] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chiara Deriu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Irene Conticello
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
- Department of Chemistry “Giacomo Ciamician”, School of Science, University of Bologna, Via Selmi 2, 40126, Bologna (BO), Italy
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
13
|
|
14
|
Wongkaew N, Simsek M, Griesche C, Baeumner AJ. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem Rev 2018; 119:120-194. [DOI: 10.1021/acs.chemrev.8b00172] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Marcel Simsek
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Christian Griesche
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Ncube S, Madikizela L, Cukrowska E, Chimuka L. Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Investigation of carbon-based nanomaterials as sorbents for headspace in-tube extraction of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 2017; 409:3861-3870. [DOI: 10.1007/s00216-017-0331-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/10/2017] [Accepted: 03/20/2017] [Indexed: 01/27/2023]
|
17
|
Ledesma J, Pisano PL, Martino DM, Boschetti CE, Bortolato SA. Thymine based copolymers: feasible sensors for the detection of persistent organic pollutants in water. RSC Adv 2017. [DOI: 10.1039/c7ra08868j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A multidisciplinary approach for understanding properties of thymine-based copolymer sensors.
Collapse
Affiliation(s)
- J. Ledesma
- Instituto de Procesos Biotecnológicos y Químicos de Rosario
- CONICET
- Rosario 2000
- Argentina
| | - P. L. Pisano
- Instituto de Química de Rosario
- CONICET
- Rosario 2000
- Argentina
| | - D. M. Martino
- Instituto de Física del Litoral
- CONICET
- Güemes 3450
- Argentina
| | - C. E. Boschetti
- Instituto de Procesos Biotecnológicos y Químicos de Rosario
- CONICET
- Rosario 2000
- Argentina
| | | |
Collapse
|
18
|
Qi X, Gao S, Ding G, Tang AN. Synthesis of surface Cr (VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase extraction and determination of Cr (VI) in water samples. Talanta 2017; 162:345-353. [DOI: 10.1016/j.talanta.2016.10.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022]
|
19
|
Adam V, Vaculovicova M. Nanomaterials for sample pretreatment prior to capillary electrophoretic analysis. Analyst 2017; 142:849-857. [DOI: 10.1039/c6an02608g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanomaterials are, in analytical science, used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection and identification of target molecules.
Collapse
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic
- Central European Institute of Technology
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic
- Central European Institute of Technology
| |
Collapse
|
20
|
Piramoon S, Aberoomand Azar P, Saber Tehrani M, Mohammadiazar S, Tavassoli A. Solid-phase nanoextraction of polychlorinated biphenyls in water and their determination by gas chromatography with electron capture detector. J Sep Sci 2016; 40:449-457. [PMID: 27958677 DOI: 10.1002/jssc.201600720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/19/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
A solid-phase nanoextraction method has been developed for the extraction and preconcentration of polychlorinated biphenyls using carboxyl multiwalled carbon nanotubes as a solid nano-sorbent. Parameters affecting extraction efficiency such as sorbent amount, desorption solvent type and volume, extraction time, pH, and salt content have been studied. Under optimized conditions, the correlation coefficient was up to 0.9989, the limits of detection was in the range of 1.4-3.5 ng/L, and limits of quantification was between 4.8 and 11.6 ng/L. The recoveries were in the range of 99-106% for different spiked analytes. The relative standard deviation for water samples spiked with two different spiking levels has been between 4 and 10%. The proposed sustainable method is rapid, easy to use, and small consumption of organic solvent for the detection and determination of trace levels of polychlorinated biphenyls in environmental waters.
Collapse
Affiliation(s)
- Shadi Piramoon
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Saber Tehrani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sirwan Mohammadiazar
- Department of Chemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | | |
Collapse
|
21
|
Detection of Phenols from Industrial Effluents Using Streptomyces Mediated Gold Nanoparticles. ACTA ACUST UNITED AC 2016. [DOI: 10.1155/2016/6937489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extracellular gold nanoparticles synthesized by Streptomyces tuirus DBZ39 were explored for the detection of phenols in the effluent of fertilizer and distillery industries. An average size of 27–56 nm gold nanoparticles was produced and confirmed by UV-vis absorption spectrum, scanning electron microscopy, and energy dispersive X-ray analysis. In the present investigation visual detection of phenols in the effluent samples by gold nanoparticles is enhanced by sodium sulphate. The detection is achieved successfully within 2 min, with change in color of the effluent samples. Use of biologically originated gold nanoparticles along with salt for the detection of phenols from industrial effluents is a novel approach.
Collapse
|
22
|
|
23
|
Determination of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions of coal tar standard reference material 1597a via solid-phase nanoextraction and laser-excited time-resolved Shpol'skii spectroscopy. Talanta 2016; 148:444-53. [PMID: 26653471 DOI: 10.1016/j.talanta.2015.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 11/22/2022]
Abstract
This article presents an alternative approach for the analysis of high molecular weight - polycyclic aromatic hydrocarbons (HMW-PAHs) with molecular mass 302 Da in complex environmental samples. This is not a trivial task due to the large number of molecular mass 302 Da isomers with very similar chromatographic elution times and similar, possibly even virtually identical, mass fragmentation patterns. The method presented here is based on 4.2K laser-excited time-resolved Shpol'skii spectroscopy, a high resolution spectroscopic technique with the appropriate selectivity for the unambiguous determination of PAHs with the same molecular mass. The potential of this approach is demonstrated here with the analysis of a coal tar standard reference material (SRM) 1597a. Liquid chromatography fractions were submitted to the spectroscopic analysis of five targeted isomers, namely dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene, naphtho[2,3-a]pyrene and dibenzo[a,h]pyrene. Prior to analyte determination, the liquid chromatographic fractions were pre-concentrated with gold nanoparticles. Complete analysis was possible with microliters of chromatographic fractions and organic solvents. The limits of detection varied from 0.05 (dibenzo[a,l]pyrene) to 0.24 µg L(-1) (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its non-destructive nature, which provides ample opportunity for further analysis with other instrumental methods, makes this approach an attractive alternative for the determination of PAH isomers in complex environmental samples.
Collapse
|
24
|
Rezaiyan M, Parastar H, Hormozi-Nezhad MR. Multi-response optimization followed by multivariate calibration for simultaneous determination of carcinogenic polycyclic aromatic hydrocarbons in environmental samples using gold nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra18415d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A multivariate-based strategy was developed for simultaneous determination of thirteen carcinogenic PAHs in water samples using AuNPs.
Collapse
Affiliation(s)
- Mahsa Rezaiyan
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Hadi Parastar
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | | |
Collapse
|
25
|
Wise SA, Sander LC, Schantz MM. Analytical Methods for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) — A Historical Perspective on the 16 U.S. EPA Priority Pollutant PAHs. Polycycl Aromat Compd 2015. [DOI: 10.1080/10406638.2014.970291] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Stephen A. Wise
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA
| | - Lane C. Sander
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA
| | - Michele M. Schantz
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA
| |
Collapse
|
26
|
Menezes HC, de Barcelos SMR, Macedo DFD, Purceno AD, Machado BF, Teixeira APC, Lago RM, Serp P, Cardeal ZL. Magnetic N-doped carbon nanotubes: A versatile and efficient material for the determination of polycyclic aromatic hydrocarbons in environmental water samples. Anal Chim Acta 2015; 873:51-6. [DOI: 10.1016/j.aca.2015.02.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/03/2015] [Accepted: 02/25/2015] [Indexed: 11/29/2022]
|
27
|
LIU HX, YANG YX, Ma MG, WANG XM, DU XZ. Self-assembled Gold Nanoparticles Coating for Solid-Phase Microextraction of Ultraviolet Filters in Environmental Water. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60803-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Wei W, Liang R, Wang Z, Qin W. Hydrophilic molecularly imprinted polymers for selective recognition of polycyclic aromatic hydrocarbons in aqueous media. RSC Adv 2015. [DOI: 10.1039/c4ra12555j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hydrophilic molecularly imprinted polymer (H-MIP) for phenanthrene has been synthesized with higher selectivity in aqueous solution than the traditional MIP.
Collapse
Affiliation(s)
- Wenchao Wei
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Provincial Key Laboratory of Coastal Environmental Processes
- YICCAS
| | - Rongning Liang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Provincial Key Laboratory of Coastal Environmental Processes
- YICCAS
| | - Zhuo Wang
- School of Environment and Materials Engineering
- Yantai University
- Yantai 264005
- P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Provincial Key Laboratory of Coastal Environmental Processes
- YICCAS
| |
Collapse
|
29
|
Liu FJ, Liu CT, Li W, Tang AN. Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudostationary phase. Talanta 2015; 132:366-72. [DOI: 10.1016/j.talanta.2014.09.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/02/2014] [Accepted: 09/07/2014] [Indexed: 11/16/2022]
|
30
|
Mehdinia A, Khojasteh E, Baradaran Kayyal T, Jabbari A. Magnetic solid phase extraction using gold immobilized magnetic mesoporous silica nanoparticles coupled with dispersive liquid–liquid microextraction for determination of polycyclic aromatic hydrocarbons. J Chromatogr A 2014; 1364:20-7. [DOI: 10.1016/j.chroma.2014.08.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 11/27/2022]
|
31
|
Ye N, Shi P. Applications of Graphene-Based Materials in Solid-Phase Extraction and Solid-Phase Microextraction. SEPARATION AND PURIFICATION REVIEWS 2014. [DOI: 10.1080/15422119.2014.912664] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Water analysis of the sixteen environmental protection agency—polycyclic aromatic hydrocarbons via solid-phase nanoextraction-gas chromatography/mass spectrometry. J Chromatogr A 2014; 1345:1-8. [DOI: 10.1016/j.chroma.2014.03.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/19/2014] [Accepted: 03/30/2014] [Indexed: 11/20/2022]
|
33
|
Liang X, Wang X, Ren H, Jiang S, Wang L, Liu S. Gold nanoparticle decorated graphene oxide/silica composite stationary phase for high-performance liquid chromatography. J Sep Sci 2014; 37:1371-9. [DOI: 10.1002/jssc.201400005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/13/2014] [Accepted: 03/19/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaojing Liang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou China
| | - Xusheng Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou China
| | - Haixia Ren
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou China
- Chinese Academy of Sciences; University of the Chinese Academy of Sciences; Beijing China
| | - Shengxiang Jiang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou China
| | - Licheng Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou China
| | - Shujuan Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou China
| |
Collapse
|
34
|
Abstract
Fibers of cellulose diacetate (CDA) and chitosan (CTS) of polycationic and polybasic forms were tested as matrices for solid-surface fluorescence (SSF) of several fluorescent probes—eosin Y, trypaflavine, and pyrene. The morphology and surface potential of these matrices were examined. The influence of structural and energetic characteristics of the fibrous polysaccharide materials at SSF of the probes was shown. Fluorescence was studied in aqueous solutions of eosin Y and trypaflavine, in water-ethanolic and water-micellar surfactant media of pyrene, before and after dynamic sorption of the dyes on fibers and in the adsorbed state. The surface of CDA fiber was shown to be capable of sorbing trypaflavine from water and pyrene from water-micellar surfactant media of various types, so it can be a promising matrix for SSF of pyrene and trypaflavine and their chemical analogs. The Coulomb interactions were proposed to determine eosin Y and trypaflavine concentration on the surface of CTS matrices and the SSF of these probes. The CTS fibers were permeable to hydrophobic pyrene dissolved in an ethanol-water medium or solubilized in the micelles of ionic surfactants.
Collapse
|
35
|
Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J Chromatogr A 2013; 1321:1-13. [DOI: 10.1016/j.chroma.2013.10.030] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 09/19/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
|
36
|
Pre-concentration of water samples with BEA zeolite for the direct determination of polycyclic aromatic hydrocarbons with laser-excited time-resolved Shpol'skii spectroscopy. Microchem J 2013. [DOI: 10.1016/j.microc.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Khajeh M, Laurent S, Dastafkan K. Nanoadsorbents: Classification, Preparation, and Applications (with Emphasis on Aqueous Media). Chem Rev 2013; 113:7728-68. [DOI: 10.1021/cr400086v] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mostafa Khajeh
- Department of Chemistry, University of Zabol, Mofateh Street, Zabol, Sistan & Balouchestan 98615-538, Iran
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 20, Place du Parc, B-7000 Mons, Belgium
| | - Kamran Dastafkan
- Department of Chemistry, University of Zabol, Mofateh Street, Zabol, Sistan & Balouchestan 98615-538, Iran
| |
Collapse
|
38
|
Tian J, Xu J, Zhu F, Lu T, Su C, Ouyang G. Application of nanomaterials in sample preparation. J Chromatogr A 2013; 1300:2-16. [DOI: 10.1016/j.chroma.2013.04.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/23/2013] [Accepted: 04/04/2013] [Indexed: 12/07/2022]
|
39
|
|
40
|
Nesterenko EP, Nesterenko PN, Connolly D, He X, Floris P, Duffy E, Paull B. Nano-particle modified stationary phases for high-performance liquid chromatography. Analyst 2013; 138:4229-54. [DOI: 10.1039/c3an00508a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Matin AA, Biparva P, Amanzadeh H, Farhadi K. Zinc/Aluminum layered double hydroxide–titanium dioxide composite nanosheet film as novel solid phase microextraction fiber for the gas chromatographic determination of valproic acid. Talanta 2013. [DOI: 10.1016/j.talanta.2012.10.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Zhu G, Zhang X, Gai P, Zhang X, Chen J. β-Cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3,4,9,10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid. NANOSCALE 2012; 4:5703-5709. [PMID: 22886354 DOI: 10.1039/c2nr31378b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report a simple and facile approach for the synthesis of β-cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3,4,9,10-perylene tetracarboxylic acid (β-CD-PTCA-SWCNTs). Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, Raman spectroscopy and electrochemical methods were used to characterize the as-prepared functionalized SWCNTs. Furthermore, the β-CD-PTCA-SWCNTs were applied successfully to detect 9-anthracenecarboxylic acid (9-ACA, one derivative of polycyclic aromatic hydrocarbons) by electrochemical methods. The results show that the oxidation peak current of 9-ACA on β-CD-PTCA-SWCNTs modified glassy carbon (GC) electrode is 4.0 and 31.2 times higher than that at the SWCNTs/GC and bare GC electrodes, respectively. The proposed modified electrode has a linear response range of 2.00 to 140.00 nM with a detection limit of 0.65 nM (S/N = 3) towards 9-ACA, which is due to the synergic effects of the SWCNTs (e.g. their good electrochemical properties and large surface area) and β-CD (e.g. a hydrophilic external surface and a high supramolecular recognition and enrichment capability).
Collapse
Affiliation(s)
- Gangbing Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | | | | | | | | |
Collapse
|
43
|
Wilson WB, Costa AA, Wang H, Dias JA, Dias SC, Campiglia AD. Analytical evaluation of BEA zeolite for the pre-concentration of polycyclic aromatic hydrocarbons and their subsequent chromatographic analysis in water samples. Anal Chim Acta 2012; 733:103-9. [DOI: 10.1016/j.aca.2012.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/27/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
|
44
|
Krenkova J, Foret F, Svec F. Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering. J Sep Sci 2012; 35:1266-83. [DOI: 10.1002/jssc.201100956] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jana Krenkova
- Institute of Analytical Chemistry of the ASCR; Brno; Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the ASCR; Brno; Czech Republic
| | - Frantisek Svec
- The Molecular Foundry; E. O. Lawrence Berkeley National Laboratory; Berkeley; California; USA
| |
Collapse
|
45
|
Huang G, Guo H, Wu T. Genetic variations of CYP2B6 gene were associated with plasma BPDE-Alb adducts and DNA damage levels in coke oven workers. Toxicol Lett 2012; 211:232-8. [DOI: 10.1016/j.toxlet.2012.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 12/23/2022]
|
46
|
Farkas J, Nizzetto L, Thomas KV. The binding of phenanthrene to engineered silver and gold nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 425:283-288. [PMID: 22483949 DOI: 10.1016/j.scitotenv.2012.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
The steadily rising production and use of engineered nanoparticles (ENP) leads to their entry into the aquatic environment. In addition to the various adverse effects that have been seen for different organisms, ENP are suspected to influence the transport, bioavailability and toxic properties of a range of environmental contaminants that may adsorb to their surface. In this study, the binding properties of the polycyclic aromatic hydrocarbon phenanthrene to stabilized silver and gold ENP were investigated using a novel mass balance based single-equilibrium approach. Only citrate coated gold ENP (AuNP(CIT)) were found to bind phenanthrene. No binding was observed for polyvinylpyrolidone coated silver ENP (AgNP(PVP)) nor citrate coated silver ENP (AgNP(CIT)) suggesting that the properties of the core material have a major influence on binding reactions. A binding coefficient K(b) was defined as the ratio between the concentration of phenanthrene associated to the AuNP(CIT) and that freely dissolved in the exposure medium. Temperature was not seen to significantly influence K(b) within an environmentally relevant range (4-25 °C). The presence of methanol significantly reduced or prevented the formation of the AuNP(CIT)-phenathrene complex. Results suggest that the binding is a low energy physio-sorption, likely associated to a partial displacement or specific arrangement of the citrate capping on the gold core.
Collapse
Affiliation(s)
- J Farkas
- Norwegian Institute for Water research, Gaustadalléen 21, N-0349 Oslo, Norway.
| | | | | |
Collapse
|
47
|
Zhang H, Low WP, Lee HK. Evaluation of sulfonated graphene sheets as sorbent for micro-solid-phase extraction combined with gas chromatography–mass spectrometry. J Chromatogr A 2012; 1233:16-21. [DOI: 10.1016/j.chroma.2012.02.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
|
48
|
Bao L, Sheng P, Li J, Wu S, Cai Q, Yao S. Surface enhanced Raman spectroscopic detection of polycyclic aromatic hydrocarbons (PAHs) using a gold nanoparticles-modified alginate gel network. Analyst 2012; 137:4010-5. [DOI: 10.1039/c2an35589b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Li Y, Yoshida S, Chondo Y, Nassar H, Tang N, Araki Y, Toriba A, Kameda T, Hayakawa K. On-Line Concentration and Fluorescence Determination HPLC for Polycyclic Aromatic Hydrocarbons in Seawater Samples and Its Application to Japan Sea. Chem Pharm Bull (Tokyo) 2012; 60:531-5. [DOI: 10.1248/cpb.60.531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ying Li
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Shota Yoshida
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Yvonne Chondo
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Hossam Nassar
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ning Tang
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Yuki Araki
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Akira Toriba
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takayuki Kameda
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Kazuichi Hayakawa
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
50
|
Guo LQ, Zeng YB, Guan AH, Chen GN. Preparation and characterization of molecularly imprinted silica particles for selective adsorption of naphthalene. REACT FUNCT POLYM 2011. [DOI: 10.1016/j.reactfunctpolym.2011.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|