1
|
Mostufa S, Rezaei B, Ciannella S, Yari P, Gómez-Pastora J, He R, Wu K. Advancements and Perspectives in Optical Biosensors. ACS OMEGA 2024; 9:24181-24202. [PMID: 38882113 PMCID: PMC11170745 DOI: 10.1021/acsomega.4c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Optical biosensors exhibit immense potential, offering extraordinary possibilities for biosensing due to their high sensitivity, reusability, and ultrafast sensing capabilities. This review provides a concise overview of optical biosensors, encompassing various platforms, operational mechanisms, and underlying physics, and it summarizes recent advancements in the field. Special attention is given to plasmonic biosensors and metasurface-based biosensors, emphasizing their significant performance in bioassays and, thus, their increasing attraction in biosensing research, positioning them as excellent candidates for lab-on-chip and point-of-care devices. For plasmonic biosensors, we emphasize surface plasmon resonance (SPR) and its subcategories, along with localized surface plasmon resonance (LSPR) devices and surface enhance Raman spectroscopy (SERS), highlighting their ability to perform diverse bioassays. Additionally, we discuss recently emerged metasurface-based biosensors. Toward the conclusion of this review, we address current challenges, opportunities, and prospects in optical biosensing. Considering the advancements and advantages presented by optical biosensors, it is foreseeable that they will become a robust and widespread platform for early disease diagnostics.
Collapse
Affiliation(s)
- Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Rui He
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
2
|
Raju C, Elpa DP, Urban PL. Automation and Computerization of (Bio)sensing Systems. ACS Sens 2024; 9:1033-1048. [PMID: 38363106 PMCID: PMC10964247 DOI: 10.1021/acssensors.3c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Sensing systems necessitate automation to reduce human effort, increase reproducibility, and enable remote sensing. In this perspective, we highlight different types of sensing systems with elements of automation, which are based on flow injection and sequential injection analysis, microfluidics, robotics, and other prototypes addressing specific real-world problems. Finally, we discuss the role of computer technology in sensing systems. Automated flow injection and sequential injection techniques offer precise and efficient sample handling and dependable outcomes. They enable continuous analysis of numerous samples, boosting throughput, and saving time and resources. They enhance safety by minimizing contact with hazardous chemicals. Microfluidic systems are enhanced by automation to enable precise control of parameters and increase of analysis speed. Robotic sampling and sample preparation platforms excel in precise execution of intricate, repetitive tasks such as sample handling, dilution, and transfer. These platforms enhance efficiency by multitasking, use minimal sample volumes, and they seamlessly integrate with analytical instruments. Other sensor prototypes utilize mechanical devices and computer technology to address real-world issues, offering efficient, accurate, and economical real-time solutions for analyte identification and quantification in remote areas. Computer technology is crucial in modern sensing systems, enabling data acquisition, signal processing, real-time analysis, and data storage. Machine learning and artificial intelligence enhance predictions from the sensor data, supporting the Internet of Things with efficient data management.
Collapse
Affiliation(s)
- Chamarthi
Maheswar Raju
- Department of Chemistry, National
Tsing Hua University 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Decibel P. Elpa
- Department of Chemistry, National
Tsing Hua University 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Pawel L. Urban
- Department of Chemistry, National
Tsing Hua University 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
3
|
An S, Suh Y, Kelich P, Lee D, Vukovic L, Jeong S. Directed Evolution of Near-Infrared Serotonin Nanosensors with Machine Learning-Based Screening. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:247. [PMID: 38334518 PMCID: PMC10856788 DOI: 10.3390/nano14030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
In this study, we employed a novel approach to improve the serotonin-responsive ssDNA-wrapped single-walled carbon nanotube (ssDNA-SWCNT) nanosensors, combining directed evolution and machine learning-based prediction. Our iterative optimization process is aimed at the sensitivity and selectivity of ssDNA-SWCNT nanosensors. In the three rounds for higher serotonin sensitivity, we substantially improved sensitivity, achieving a remarkable 2.5-fold enhancement in fluorescence response compared to the original sequence. Following this, we directed our efforts towards selectivity for serotonin over dopamine in the two rounds. Despite the structural similarity between these neurotransmitters, we achieved a 1.6-fold increase in selectivity. This innovative methodology, offering high-throughput screening of mutated sequences, marks a significant advancement in biosensor development. The top-performing nanosensors, N2-1 (sensitivity) and L1-14 (selectivity) present promising reference sequences for future studies involving serotonin detection.
Collapse
Affiliation(s)
- Seonghyeon An
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yeongjoo Suh
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Dakyeon Lee
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sanghwa Jeong
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Cutuli E, Sanalitro D, Stella G, Saitta L, Bucolo M. A 3D-Printed Micro-Optofluidic Chamber for Fluid Characterization and Microparticle Velocity Detection. MICROMACHINES 2023; 14:2115. [PMID: 38004972 PMCID: PMC10673365 DOI: 10.3390/mi14112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
This work proposes a multi-objective polydimethylsiloxane (PDMS) micro-optofluidic (MoF) device suitably designed and manufactured through a 3D-printed-based master-slave approach. It exploits optical detection techniques to characterize immiscible fluids or microparticles in suspension inside a compartment specifically designed at the core of the device referred to as the MoF chamber. In addition, we show our novel, fast, and cost-effective methodology, dual-slit particle signal velocimetry (DPSV), for fluids and microparticle velocity detection. Different from the standard state-of-the-art approaches, the methodology focuses on signal processing rather than image processing. This alternative has several advantages, including the ability to circumvent the requirement of complex and extensive setups and cost reduction. Additionally, its rapid processing speed allows for real-time sample manipulations in ongoing image-based analyses. For our specific design, optical signals have been detected from the micro-optics components placed in two slots designed ad hoc in the device. To show the devices' multipurpose capabilities, the device has been tested with fluids of various colors and densities and the inclusion of synthetic microparticles. Additionally, several experiments have been conducted to prove the effectiveness of the DPSV approach in estimating microparticle velocities. A digital particle image velocimetry (DPIV)-based approach has been used as a baseline against which the outcomes of our methods have been evaluated. The combination of the suitability of the micro-optical components for integration, along with the MoF chamber device and the DPSV approach, demonstrates a proof of concept towards the challenge of real-time total-on-chip analysis.
Collapse
Affiliation(s)
- Emanuela Cutuli
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (G.S.); (M.B.)
| | - Dario Sanalitro
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (G.S.); (M.B.)
| | - Giovanna Stella
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (G.S.); (M.B.)
| | - Lorena Saitta
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy;
| | - Maide Bucolo
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (G.S.); (M.B.)
| |
Collapse
|
5
|
Halicka K, Meloni F, Czok M, Spychalska K, Baluta S, Malecha K, Pilo MI, Cabaj J. New Trends in Fluorescent Nanomaterials-Based Bio/Chemical Sensors for Neurohormones Detection-A Review. ACS OMEGA 2022; 7:33749-33768. [PMID: 36188279 PMCID: PMC9520559 DOI: 10.1021/acsomega.2c04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The study of neurotransmitters and stress hormones allows the determination of indicators of the current stress load in the body. These species also create a proper strategy of stress protection. Nowadays, stress is a general factor that affects the population, and it may cause a wide range of serious disorders. Abnormalities in the level of neurohormones, caused by chronic psychological stress, can occur in, for instance, corporate employees, health care workers, shift workers, policemen, or firefighters. Here we present a new nanomaterials-based sensors technology development for the determination of neurohormones. We focus on fluorescent sensors/biosensors that utilize nanomaterials, such as quantum dots or carbon nanomaterials. Nanomaterials, owing to their diversity in size and shape, have been attracting increasing attention in sensing or bioimaging. They possess unique properties, such as fluorescent, electronic, or photoluminescent features. In this Review, we summarize new trends in adopting nanomaterials for applications in fluorescent sensors for neurohormone monitoring.
Collapse
Affiliation(s)
- Kinga Halicka
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Francesca Meloni
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Mateusz Czok
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Kamila Spychalska
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sylwia Baluta
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Karol Malecha
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Maria I. Pilo
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Joanna Cabaj
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
6
|
Abbasi R, Liu J, Suarasan S, Wachsmann-Hogiu S. SE-ECL on CMOS: a miniaturized electrochemiluminescence biosensor. LAB ON A CHIP 2022; 22:994-1005. [PMID: 35137754 DOI: 10.1039/d1lc00905b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biosensors exhibit high potential for the detection of analytes of interest at the point-of-need. Over the past two decades, the combination of novel biosensing systems - such as electrochemiluminescence (ECL) biosensors - and advances in microfluidic techniques has allowed the development of lab-on-a-chip devices with enhanced overall performance and simplified sample handling. However, recording data with conventional platforms requires advanced and complicated instruments, such as sensitive photodetectors coupled to microscopes, to capture the photons from the chemiluminescent reaction. In this work, we integrated microfluidic and luminol/hydrogen peroxide ECL systems on a complementary metal-oxide-semiconductor (CMOS) chip for sample handling and data collection on the same platform. This was achieved by the adaptation of a single electrode as an electrochemical transducer and a CMOS chip as a built-in detector. We demonstrated the application of this platform for the detection of uric acid (UA), a biomarker of gout disease. A linear detection range was observed from 25 to 300 μM, with a detection limit (LOD) as low as 26.09 μM. The device showed high reusability and reproducibility within the linear detection range while maintaining high selectivity for UA detection. The analytical performance has also been evaluated in simulated saliva and urine samples, demonstrating the potential utility in medical diagnosis at the point-of-need. Compared to other ECL imaging platforms, this device showed an eightfold increase in photon collection efficiency. Overall, this approach has promising potential as an inexpensive, portable, and efficient ECL platform for measuring analytes at the point-of-need.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC, Canada.
| | - Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal, QC, Canada.
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurean 42, Cluj-Napoca 400271, Romania
| | | |
Collapse
|
7
|
Peltomaa R, Barderas R, Benito-Peña E, Moreno-Bondi MC. Recombinant antibodies and their use for food immunoanalysis. Anal Bioanal Chem 2022; 414:193-217. [PMID: 34417836 PMCID: PMC8380008 DOI: 10.1007/s00216-021-03619-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Antibodies are widely employed as biorecognition elements for the detection of a plethora of compounds including food and environmental contaminants, biomarkers, or illicit drugs. They are also applied in therapeutics for the treatment of several disorders. Recent recommendations from the EU on animal protection and the replacement of animal-derived antibodies by non-animal-derived ones have raised a great controversy in the scientific community. The application of recombinant antibodies is expected to achieve a high growth rate in the years to come thanks to their versatility and beneficial characteristics in comparison to monoclonal and polyclonal antibodies, such as stability in harsh conditions, small size, relatively low production costs, and batch-to-batch reproducibility. This review describes the characteristics, advantages, and disadvantages of recombinant antibodies including antigen-binding fragments (Fab), single-chain fragment variable (scFv), and single-domain antibodies (VHH) and their application in food analysis with especial emphasis on the analysis of biotoxins, antibiotics, pesticides, and foodborne pathogens. Although the wide application of recombinant antibodies has been hampered by a number of challenges, this review demonstrates their potential for the sensitive, selective, and rapid detection of food contaminants.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Life Sciences, University of Turku, 20014, Turku, Finland
- Turku Collegium for Science and Medicine, University of Turku, 20014, Turku, Finland
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Mirzajani H, Cheng C, Vafaie RH, Wu J, Chen J, Eda S, Aghdam EN, Ghavifekr HB. Optimization of ACEK-enhanced, PCB-based biosensor for highly sensitive and rapid detection of bisphenol a in low resource settings. Biosens Bioelectron 2021; 196:113745. [PMID: 34753078 DOI: 10.1016/j.bios.2021.113745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
Abstract
In this study, we developed a low-cost and easy-to-use capacitive biosensor employing printed-circuit-board (PCB)-based technique for electrode fabrication and a specific alternative current (AC) signal for AC Electrokinetics (ACEK) effect excitation. Fast, accurate, and highly sensitive detection and quantification of bisphenol A (BPA) was achieved. An easy characterization of the biofunctionalization process is introduced by measuring interfacial capacitance which is simple and superior to most of methods currently in use. The frequency and amplitude of the AC signal used for capacitive interrogation were optimized to achieve maximum interfacial capacitance and maximum sensitivity. To evaluate the performance of the developed biosensor, its operation was compared with in-house microfabricated and commercially available electrodes. The limit-of-detection (LOD) obtained using the PCB-based electrodes was found to be at least one order of magnitude lower than that obtained with the commercial and in-house microfabricated electrodes. The linear range for BPA detection was wide from 1 fM to 10 pM with an LOD of 109.5 aM and sample to result in 20s. The biosensor operation was validated by spike-and-recovery tests of BPA using commercial food samples. Thus, the platform has a potential as an on-site detection of bisphenol A in low-resource settings.
Collapse
Affiliation(s)
- Hadi Mirzajani
- The University of Tennessee, Knoxville, Department of Electrical Engineering and Computer Science, 1520 Middle Drive, Knoxville, TN, 37966, USA; Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, 34450 Istanbul, Turkey; Sahand University of Technology, Department of Electrical Engineering, Microelectronics Research Lab., Tabriz, Iran
| | - Cheng Cheng
- The University of Tennessee, Knoxville, Department of Electrical Engineering and Computer Science, 1520 Middle Drive, Knoxville, TN, 37966, USA; School of Engineering and Computer Science, Morehead State University, 150 University Blvd., Morehead, KY, 40351, USA
| | | | - Jayne Wu
- The University of Tennessee, Knoxville, Department of Electrical Engineering and Computer Science, 1520 Middle Drive, Knoxville, TN, 37966, USA.
| | - Jiangang Chen
- The University of Tennessee, Department of Public Health, 1914 Andy Holt Avenue, Knoxville, TN, 37996, USA
| | - Shigotoshi Eda
- University of Tennessee Institute of Agriculture, Department of Forestry, Wildlife and Fisheries, 2505 E. J. Chapman Drive, Knoxville, TN, 37996, USA
| | - Esmaeil Najafi Aghdam
- Sahand University of Technology, Department of Electrical Engineering, Microelectronics Research Lab., Tabriz, Iran
| | - Habib Badri Ghavifekr
- Sahand University of Technology, Department of Electrical Engineering, Microelectronics Research Lab., Tabriz, Iran
| |
Collapse
|
9
|
Microfluidics-Based Plasmonic Biosensing System Based on Patterned Plasmonic Nanostructure Arrays. MICROMACHINES 2021; 12:mi12070826. [PMID: 34357236 PMCID: PMC8303257 DOI: 10.3390/mi12070826] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
This review aims to summarize the recent advances and progress of plasmonic biosensors based on patterned plasmonic nanostructure arrays that are integrated with microfluidic chips for various biomedical detection applications. The plasmonic biosensors have made rapid progress in miniaturization sensors with greatly enhanced performance through the continuous advances in plasmon resonance techniques such as surface plasmon resonance (SPR) and localized SPR (LSPR)-based refractive index sensing, SPR imaging (SPRi), and surface-enhanced Raman scattering (SERS). Meanwhile, microfluidic integration promotes multiplexing opportunities for the plasmonic biosensors in the simultaneous detection of multiple analytes. Particularly, different types of microfluidic-integrated plasmonic biosensor systems based on versatile patterned plasmonic nanostructured arrays were reviewed comprehensively, including their methods and relevant typical works. The microfluidics-based plasmonic biosensors provide a high-throughput platform for the biochemical molecular analysis with the advantages such as ultra-high sensitivity, label-free, and real time performance; thus, they continue to benefit the existing and emerging applications of biomedical studies, chemical analyses, and point-of-care diagnostics.
Collapse
|
10
|
Ronchi A, Sterzi A, Gandolfi M, Belarouci A, Giannetti C, Fatti ND, Banfi F, Ferrini G. Discrimination of nano-objects via cluster analysis techniques applied to time-resolved thermo-acoustic microscopy. ULTRASONICS 2021; 114:106403. [PMID: 33677164 DOI: 10.1016/j.ultras.2021.106403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Time-effective, unsupervised clustering techniques are exploited to discriminate nanometric metal disks patterned on a dielectric substrate. The discrimination relies on cluster analysis applied to time-resolved optical traces obtained from thermo-acoustic microscopy based on asynchronous optical sampling. The analysis aims to recognize similarities among nanopatterned disks and to cluster them accordingly. Each cluster is characterized by a fingerprint time-resolved trace, synthesizing the common features of the thermo-acoustics response of the composing elements. The protocol is robust and widely applicable, not relying on any specific knowledge of the physical mechanisms involved. The present route constitutes an alternative diagnostic tool for on-chip non-destructive testing of individual nano-objects.
Collapse
Affiliation(s)
- Andrea Ronchi
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium; Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - Andrea Sterzi
- Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Marco Gandolfi
- CNR-INO, Via Branze 45, 25123 Brescia, Italy; Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Ali Belarouci
- Institut des Nanotechnologies de Lyon - CNRS - Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Claudio Giannetti
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - Natalia Del Fatti
- FemtoNanoOptics group, Université de Lyon, Institut Lumière Matière (ILM), Université Lyon 1 and CNRS, 10 rue Ada Byron, 69622 Villeurbanne cedex, France
| | - Francesco Banfi
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; FemtoNanoOptics group, Université de Lyon, Institut Lumière Matière (ILM), Université Lyon 1 and CNRS, 10 rue Ada Byron, 69622 Villeurbanne cedex, France.
| | - Gabriele Ferrini
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy.
| |
Collapse
|
11
|
TANG XI, LUO HAOQI, CHEN JUNXUE, BADUGU RAMACHANDRAM, WANG PEI, LAKOWICZ JOSEPHR, ZHANG DOUGUO. Converting the guided-modes of Bloch surface waves with surface pattern. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. B, OPTICAL PHYSICS 2021; 38:1579-1585. [PMID: 34385758 PMCID: PMC8356629 DOI: 10.1364/josab.418106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/21/2021] [Indexed: 06/13/2023]
Abstract
The guided-modes of Bloch surface waves, such as the transverse electric modes (TE00 and TE01 modes), can simultaneously exist in a low-refractive-index ridge waveguide with subwavelength thickness that are deposited on an all dielectric one-dimension photonic crystal. By using the finite difference frequency domain method, coupled mode theory and finite-difference time-domain method, the conversion between the guided-modes has been investigated. This conversion can be realized in a broadband wavelength with surface pattern of this low-index ridge. This conversion is useful for developing lab-on-a-chip photonic devices, such as a mode converter that can maintain the output mode purity over 90% with working wavelength ranging from 590 to 680 nm, and a power splitter that can maintain the splitting ratio over 8:2 with wavelength ranging from 530 to 710 nm.
Collapse
Affiliation(s)
- XI TANG
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China Hefei, Anhui, 230026, China
| | - HAOQI LUO
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China Hefei, Anhui, 230026, China
| | - JUNXUE CHEN
- College of Science, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - RAMACHANDRAM BADUGU
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine,725 West Lombard St., Baltimore, MD 21201, USA
| | - PEI WANG
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China Hefei, Anhui, 230026, China
| | - JOSEPH. R. LAKOWICZ
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine,725 West Lombard St., Baltimore, MD 21201, USA
| | - DOUGUO ZHANG
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China Hefei, Anhui, 230026, China
| |
Collapse
|
12
|
Sadighbayan D, Ghafar-Zadeh E. Portable Sensing Devices for Detection of COVID-19: A Review. IEEE SENSORS JOURNAL 2021; 21:10219-10230. [PMID: 36790948 PMCID: PMC8769007 DOI: 10.1109/jsen.2021.3059970] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus pandemic is the most challenging incident that people have faced in recent years. Despite the time-consuming and expensive conventional methods, point-of-care diagnostics have a crucial role in deterrence, timely detection, and intensive care of the disease's progress. Hence, this detrimental health emergency persuaded researchers to accelerate the development of highly-scalable diagnostic devices to control the propagation of the virus even in the least developed countries. The strategies exploited for detecting COVID-19 stem from the already designed systems for studying other maladies, particularly viral infections. The present report reviews not only the novel advances in portable diagnostic devices for recognizing COVID-19, but also the previously existing biosensors for detecting other viruses. It discusses their adaptability for identifying surface proteins, whole viruses, viral genomes, host antibodies, and other biomarkers in biological samples. The prominence of different types of biosensors such as electrochemical, optical, and electrical for detecting low viral loads have been underlined. Thus, it is anticipated that this review will assist scientists who have embarked on a competition to come up with more efficient and marketable in-situ test kits for identifying the infection even in its incubation time without sample pretreatment. Finally, a conclusion is provided to highlight the importance of such an approach for monitoring people to combat the spread of such contagious diseases.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Lassonde School of Engineering, Department of Electrical Engineering and Computer Science, Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
13
|
Al-Enezi E, Vakurov A, Eades A, Ding M, Jose G, Saha S, Millner P. Affimer-Based Europium Chelates Allow Sensitive Optical Biosensing in a Range of Human Disease Biomarkers. SENSORS 2021; 21:s21030831. [PMID: 33513673 PMCID: PMC7865513 DOI: 10.3390/s21030831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
The protein biomarker measurement has been well-established using ELISA (enzyme-linked immunosorbent assay), which offers good sensitivity and specificity, but remains slow and expensive. Certain clinical conditions, where rapid measurement or immediate confirmation of a biomarker is paramount for treatment, necessitate more rapid analysis. Biosensors offer the prospect of reagent-less, processing-free measurements at the patient's bedside. Here, we report a platform for biosensing based on chelated Eu3+ against a range of proteins including biomarkers of cardiac injury (human myoglobin), stroke (glial fibrillary acidic protein (GFAP)), inflammation (C-reactive protein (CRP)) and colorectal cancer (carcinoembryonic antigen (CEA)). The Eu3+ ions are chelated by modified synthetic binding proteins (Affimers), which offer an alternative targeting strategy to existing antibodies. The fluorescence characteristics of the Eu3+ complex with modified Affimers against human myoglobin, GFAP, CRP and CEA were measured in human serum using λex = 395 nm, λem = 590 and 615 nm. The Eu3+-Affimer based complex allowed sensitive detection of human myoglobin, GFAP, CRP and CEA proteins as low as 100 fM in (100-fold) diluted human serum samples. The unique dependence on Eu3+ fluorescence in the visible region (590 and 615 nm) was exploited in this study to allow rapid measurement of the analyte concentration, with measurements in 2 to 3 min. These data demonstrate that the Affimer based Eu3+ complexes can function as nanobiosensors with potential analytical and diagnostic applications.
Collapse
Affiliation(s)
- Eiman Al-Enezi
- Bionanotechnology Group, School of Biomedical Science, University of Leeds, Leeds LS2 9JT, UK; (E.A.-E.); (A.V.); (A.E.); (M.D.)
| | - Alexandre Vakurov
- Bionanotechnology Group, School of Biomedical Science, University of Leeds, Leeds LS2 9JT, UK; (E.A.-E.); (A.V.); (A.E.); (M.D.)
| | - Amy Eades
- Bionanotechnology Group, School of Biomedical Science, University of Leeds, Leeds LS2 9JT, UK; (E.A.-E.); (A.V.); (A.E.); (M.D.)
| | - Mingyu Ding
- Bionanotechnology Group, School of Biomedical Science, University of Leeds, Leeds LS2 9JT, UK; (E.A.-E.); (A.V.); (A.E.); (M.D.)
| | - Gin Jose
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Sikha Saha
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| | - Paul Millner
- Bionanotechnology Group, School of Biomedical Science, University of Leeds, Leeds LS2 9JT, UK; (E.A.-E.); (A.V.); (A.E.); (M.D.)
- Correspondence:
| |
Collapse
|
14
|
Chen Y, Zhu Q, Zhou X, Wang R, Yang Z. Reusable, facile, and rapid aptasensor capable of online determination of trace mercury. ENVIRONMENT INTERNATIONAL 2021; 146:106181. [PMID: 33099062 DOI: 10.1016/j.envint.2020.106181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Herein, we reported a homemade waveguide-based evanescent wave aptasensor for the facile online monitoring of mercury pollution. The aptasensor exploited the high selectivity of hairpin structure-based thymidine-Hg2+-thymidine coordination chemistry (T-T mismatch) for Hg2+ recognition and the stably regenerable capability of DNA-functionalized waveguide surfaces. The presence of Hg2+ caused the T-T mismatch of Cy5.5-labeled T-rich single-stranded DNA sequences. The formed hairpin structures blocked the further hybridization of T-rich single-stranded DNA sequences with the complementary DNA strands that are modified on the waveguide surface; this phenomenon was accompanied by the decrease in the fluorescent signals excited by the evanescent wave. The limit of detection in real water samples was determined to be 0.2 μg/L, which was comparable with that of 0.4 μg/L in an ultrapure water under controlled conditions. And the linear range was observed from 1.4 µg/L to 240.7 µg/L. The negligible environmental matrix effect on the performance ensured the reliability of the proposed aptasensor. Moreover, the cross reactivity of this method toward other investigated metal ions was negligible. Through the delicate surface modification with DNA molecules covalently, the chip was reused at least 31 times with a relative standard deviation (RSD) of less than 19%. A Hg2+ pollution accident was successfully detected within 30 min, shedding new light in pollution monitoring, environment restoration, and emergency treatment.
Collapse
Affiliation(s)
- Yangyang Chen
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China; National Key Laboratory of Science & Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Advanced Technology and Equipment of Water Environment Pollution Monitoring, Changsha 410205, China.
| | - Ruoyu Wang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenchuan Yang
- National Key Laboratory of Science & Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Phosphorescent palladium-tetrabenzoporphyrin indicators for immunosensing of small molecules with a novel optical device. Talanta 2020; 224:121927. [PMID: 33379126 DOI: 10.1016/j.talanta.2020.121927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Small-molecule detection is important for many applications including clinical diagnostics, drug discovery, environmental screening, and food technology. Current techniques suffer from various limitations including cost, complex sample processing, massive instrumentation, and need for expertise. To overcome these limitations, a new optical immunosensing assay for the detection of small molecules was developed and assessed with the targets estrone (E1) and estradiol (E2). For this purpose, phosphorescent indicators were designed based on the tetrabenzoporphyrin skeleton directly linked to E1 or E2, or attached through a linker, with phosphorescence lifetimes in the range of ~100-~300 μs. The assay is an indicator displacement assay (IDA). The best performances of our optical immunosensor were obtained with the indicators E1-L-Por and E2-L-Por. As they bound to specific polyclonal antibodies, their phosphorescence (τ ~200 μs) was quenched. When an endogenous competitor was added, the indicator was displaced, and the phosphorescence was immediately recovered. These effects were measured with a new optical device, described here, and able to detect picograms of luminescent molecules emitting in the NIR range, simply by measuring phosphorescence decay. This radical switch-off/switch on process demonstrates that E1-L-Por and E2-L-Por are good candidates for in vivo and in vitro immunosensing of E1 and E2. Importantly, the present immunosensing assay can be easily adapted to other small molecules such as other hormones and drugs.
Collapse
|
16
|
Berneschi S, Bettazzi F, Giannetti A, Baldini F, Nunzi Conti G, Pelli S, Palchetti I. Optical whispering gallery mode resonators for label-free detection of water contaminants. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Mohammadnejad P, Asl SS, Aminzadeh S, Haghbeen K. A new sensitive spectrophotometric method for determination of saliva and blood glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117897. [PMID: 31836401 DOI: 10.1016/j.saa.2019.117897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/03/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
There is an increasing need for accurate and inexpensive glucometers as the world moves toward personalized medicine. Among the existing technologies, photometric based devices are more desired due to the cost-effectiveness, ease-of-use and the potential to be adopted in the smart-phone technology for remote sensing and self-monitoring purposes. However, the accuracy, precision, and reproducibility of the results of these devices are heavily dependent on the details of the chosen glucose measuring method. Considering the delicate problems with the current spectrophotometric methods, a new method was developed for more precise, accurate, and fast measurement of blood glucose via the coupled reactions of glucose oxidase and peroxidase using 4-[(4-Hydroxy-3-methoxyphenyl) azo]-benzenesulfonic acid (GASA) as the substrate. Stability of GASA and its oxidized products along with its direct and fast consumption by peroxidase, made it possible to determine blood glucose concentration in <20 s with high reproducibility. The low detection limit of GASA method (0.36 mg dL-1) with a linear range from 0.36 to 399.6 mg.dL-1 also allowed determination of salivary glucose concentration (SGC). As compared with the blood samples, the SGC results were more dispersed, especially for the diabetic participants, assumingly due to the diverse nature of salivary samples. However, a good correlation coefficient of 0.81 for non-diabetic individuals showed that it is accurate enough to recognize non-diabetic from diabetic condition. Results of this study disclose the potential application of GASA method as a reliable alternative for the current spectrophotometric methods with the ability to be adopted in miniaturized glucometers.
Collapse
Affiliation(s)
- Parvin Mohammadnejad
- National Institute for Genetic Engineering and Biotechnology, P.O. Box: 14965, /161, Tehran, Iran
| | - Saeed Soleimani Asl
- National Institute for Genetic Engineering and Biotechnology, P.O. Box: 14965, /161, Tehran, Iran
| | - Saeed Aminzadeh
- National Institute for Genetic Engineering and Biotechnology, P.O. Box: 14965, /161, Tehran, Iran
| | - Kamahldin Haghbeen
- National Institute for Genetic Engineering and Biotechnology, P.O. Box: 14965, /161, Tehran, Iran.
| |
Collapse
|
18
|
Liu D, Wang J, Wu L, Huang Y, Zhang Y, Zhu M, Wang Y, Zhu Z, Yang C. Trends in miniaturized biosensors for point-of-care testing. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115701] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Borile G, Rossi S, Filippi A, Gazzola E, Capaldo P, Tregnago C, Pigazzi M, Romanato F. Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance. Biophys Chem 2019; 254:106262. [DOI: 10.1016/j.bpc.2019.106262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/16/2023]
|
20
|
Abstract
Optical biosensors are defined as portable optical devices that use biorecognition molecules to interrogate a sample for the presence of a target. The capabilities of optical biosensors have expanded rapidly with advances in miniature optical components and molecular engineering. Biosensors to meet the needs in health and environmental monitoring and food safety have become commercially available, with many more in the pipeline. We review the innovative approaches to overcoming existing hurdles to practical biosensor designs and explore potential areas for future breakthroughs in optical biosensor technology.
Collapse
Affiliation(s)
- Frances S Ligler
- Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University and the North Carolina State University Comparative Medicine Institute , Raleigh , North Carolina 27695-7115 , United States
| | - J Justin Gooding
- School of Chemistry, The Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of New South Wales , Sydney 2052 , Australia
| |
Collapse
|
21
|
Handheld Enzymatic Luminescent Biosensor for Rapid Detection of Heavy Metals in Water Samples. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7010016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enzymatic luminescent systems are a promising tool for rapid detection of heavy metals ions for water quality assessment. Nevertheless, their widespread use is limited by the lack of test procedure automation and available sensitive handheld luminometers. Herein we describe integration of disposable microfluidic chips for bioluminescent enzyme-inhibition based assay with a handheld luminometer, which detection system is based on a thermally stabilized silicon photomultiplier (SiPM). Microfluidic chips were made of poly(methyl methacrylate) by micro-milling method and sealed using a solvent bonding technique. The composition of the bioluminescent system in microfluidic chip was optimized to achieve higher luminescence intensity and storage time. Results indicate that developed device provided comparable sensitivity with bench-scale PMT-based commercial luminometers. Limit of detection for copper (II) sulfate reached 2.5 mg/L for developed biosensor. Hereby we proved the concept of handheld enzymatic optical biosensors with disposable chips for bioassay. The proposed biosensor can be used as an early warning field-deployable system for rapid detection of heavy metals salts and other toxic chemicals, which affect bioluminescent signal of enzymatic reaction.
Collapse
|
22
|
Badoux M, Billing M, Klok HA. Polymer brush interfaces for protein biosensing prepared by surface-initiated controlled radical polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00163h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article discusses protein-binding polymer brushes and the various strategies that can be used to immobilize proteins on these films.
Collapse
Affiliation(s)
- Michael Badoux
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimique
- Laboratoire des Polymères
- École Polytechnique Fédérale de Lausanne (EPFL)
- Bâtiment MXD
- CH-1015 Lausanne
| | - Mark Billing
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimique
- Laboratoire des Polymères
- École Polytechnique Fédérale de Lausanne (EPFL)
- Bâtiment MXD
- CH-1015 Lausanne
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimique
- Laboratoire des Polymères
- École Polytechnique Fédérale de Lausanne (EPFL)
- Bâtiment MXD
- CH-1015 Lausanne
| |
Collapse
|
23
|
Peltomaa R, Glahn-Martínez B, Benito-Peña E, Moreno-Bondi MC. Optical Biosensors for Label-Free Detection of Small Molecules. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4126. [PMID: 30477248 PMCID: PMC6308632 DOI: 10.3390/s18124126] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Label-free optical biosensors are an intriguing option for the analyses of many analytes, as they offer several advantages such as high sensitivity, direct and real-time measurement in addition to multiplexing capabilities. However, development of label-free optical biosensors for small molecules can be challenging as most of them are not naturally chromogenic or fluorescent, and in some cases, the sensor response is related to the size of the analyte. To overcome some of the limitations associated with the analysis of biologically, pharmacologically, or environmentally relevant compounds of low molecular weight, recent advances in the field have improved the detection of these analytes using outstanding methodology, instrumentation, recognition elements, or immobilization strategies. In this review, we aim to introduce some of the latest developments in the field of label-free optical biosensors with the focus on applications with novel innovations to overcome the challenges related to small molecule detection. Optical label-free methods with different transduction schemes, including evanescent wave and optical fiber sensors, surface plasmon resonance, surface-enhanced Raman spectroscopy, and interferometry, using various biorecognition elements, such as antibodies, aptamers, enzymes, and bioinspired molecularly imprinted polymers, are reviewed.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Bettina Glahn-Martínez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María C Moreno-Bondi
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
24
|
Rossi S, Gazzola E, Capaldo P, Borile G, Romanato F. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1621. [PMID: 29783711 PMCID: PMC5981862 DOI: 10.3390/s18051621] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30⁻50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration.
Collapse
Affiliation(s)
- Stefano Rossi
- Department of Physics and Astronomy "G. Galilei", University of Padua, Via Marzolo 8, 35131 Padua, Italy.
- Laboratory for Nanofabrication of Nanodevices, Corso Stati Uniti 4, 35127 Padua, Italy.
- Fondazione Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127 Padua, Italy.
| | - Enrico Gazzola
- Department of Physics and Astronomy "G. Galilei", University of Padua, Via Marzolo 8, 35131 Padua, Italy.
| | - Pietro Capaldo
- CNR-INFM TASC IOM National Laboratory, Area Science Park S.S. 14 km 163.5, 34012 Trieste, Italy.
| | - Giulia Borile
- Department of Physics and Astronomy "G. Galilei", University of Padua, Via Marzolo 8, 35131 Padua, Italy.
- Laboratory for Nanofabrication of Nanodevices, Corso Stati Uniti 4, 35127 Padua, Italy.
- Fondazione Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127 Padua, Italy.
| | - Filippo Romanato
- Department of Physics and Astronomy "G. Galilei", University of Padua, Via Marzolo 8, 35131 Padua, Italy.
- Laboratory for Nanofabrication of Nanodevices, Corso Stati Uniti 4, 35127 Padua, Italy.
- Fondazione Institute of Pediatric Research Città della Speranza, Corso Stati Uniti 4, 35127 Padua, Italy.
- CNR-INFM TASC IOM National Laboratory, Area Science Park S.S. 14 km 163.5, 34012 Trieste, Italy.
| |
Collapse
|
25
|
Romano S, Lamberti A, Masullo M, Penzo E, Cabrini S, Rendina I, Mocella V. Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum. MATERIALS 2018; 11:ma11040526. [PMID: 29601484 PMCID: PMC5951372 DOI: 10.3390/ma11040526] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/14/2022]
Abstract
A novel optical label-free bio-sensing platform based on a new class of resonances supported in a photonic crystal metasurface is reported herein. Molecular binding is detected as a shift in the resonant wavelength of the bound states in the continuum of radiation modes. The new configuration is applied to the recognition of the interaction between protein p53 and its protein regulatory partner murine double minute 2 (MDM2). A detection limit of 66 nM for the protein p53 is found. The device provides an excellent interrogation stability and loss-free operation, requires minimal optical interrogation equipment and can be easily optimized to work in a wide wavelength range.
Collapse
Affiliation(s)
- Silvia Romano
- Institute for Microelectronics and Microsystems-Unit of Naples-National Council of Research, Via Pietro Castellino, 80131 Naples, Italy.
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Napoli, Italy.
| | - Mariorosario Masullo
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy.
| | - Erika Penzo
- Lawrence Berkeley National Laboratory, Molecular Foundry Division, 67 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Stefano Cabrini
- Lawrence Berkeley National Laboratory, Molecular Foundry Division, 67 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Ivo Rendina
- Institute for Microelectronics and Microsystems-Unit of Naples-National Council of Research, Via Pietro Castellino, 80131 Naples, Italy.
| | - Vito Mocella
- Institute for Microelectronics and Microsystems-Unit of Naples-National Council of Research, Via Pietro Castellino, 80131 Naples, Italy.
| |
Collapse
|
26
|
Chen CY, Wang CM, Chen PS, Liao WS. Self-standing aptamers by an artificial defect-rich matrix. NANOSCALE 2018; 10:3191-3197. [PMID: 29372203 DOI: 10.1039/c7nr07381j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The classical alkanethiol post-passivation can prevent nonspecific binding of nucleotide bases onto supporting substrates and help aptamers transition from a "lying down" to a "standing up" orientation. However, the surface probes display lower binding affinity towards targets than those in bulk solutions due to unsatisfied hybridization spaces on the alkanethiol passivated substrate. To overcome this challenge, an artificial defect-rich matrix possessing an aptamer "self-standing" property created by chemical lift-off lithography (CLL) is demonstrated. This approach provided artificial defects on a hydroxyl-terminated alkanethiol self-assembled monolayer (SAM), which allowed the insertion of thiolated aptamers. The diluted surface molecular environment assisted aptamers not only to "self-stand" on the surface, but also to separate from each other, providing a suitable surface aptamer density and sufficient space for capturing targets. With this approach, the binding affinity of the aptamer towards a target was comparable to solution-type probes, showing higher recognition efficiency than that in conventional methods.
Collapse
Affiliation(s)
- Chong-You Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | | | | | | |
Collapse
|
27
|
Abstract
This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications.
Collapse
Affiliation(s)
- Hui Yang
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Science
- 518055 Shenzhen
- China
| | - Martin A. M. Gijs
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| |
Collapse
|
28
|
Costantini F, Tiggelaar RM, Salvio R, Nardecchia M, Schlautmann S, Manetti C, Gardeniers HJGE, de Cesare G, Caputo D, Nascetti A. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay. BIOSENSORS-BASEL 2017; 7:bios7040058. [PMID: 29206205 PMCID: PMC5746781 DOI: 10.3390/bios7040058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/27/2022]
Abstract
A lab-on-chip system, integrating an all-glass microfluidics and on-chip optical detection, was developed and tested. The microfluidic network is etched in a glass substrate, which is then sealed with a glass cover by direct bonding. Thin film amorphous silicon photosensors have been fabricated on the sealed microfluidic substrate preventing the contamination of the micro-channels. The microfluidic network is then made accessible by opening inlets and outlets just prior to the use, ensuring the sterility of the device. The entire fabrication process relies on conventional photolithographic microfabrication techniques and is suitable for low-cost mass production of the device. The lab-on-chip system has been tested by implementing a chemiluminescent biochemical reaction. The inner channel walls of the microfluidic network are chemically functionalized with a layer of polymer brushes and horseradish peroxidase is immobilized into the coated channel. The results demonstrate the successful on-chip detection of hydrogen peroxide down to 18 μM by using luminol and 4-iodophenol as enhancer agent.
Collapse
Affiliation(s)
- Francesca Costantini
- School of Aerospace Engineering, Sapienza University of Rome, via Salaria n. 851/881, 00138 Rome, Italy.
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro n.5, 00185 Rome, Italy.
| | - Roald M Tiggelaar
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
- NanoLab cleanroom, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Riccardo Salvio
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro n.5, 00185 Rome, Italy.
| | - Marco Nardecchia
- School of Aerospace Engineering, Sapienza University of Rome, via Salaria n. 851/881, 00138 Rome, Italy.
| | - Stefan Schlautmann
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Cesare Manetti
- Department of Environmental Biology, Sapienza University of Rome, p.le Aldo Moro n.5, 00185 Rome Italy.
| | - Han J G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Giampiero de Cesare
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana, 18, 00184 Rome, Italy.
| | - Domenico Caputo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana, 18, 00184 Rome, Italy.
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, via Salaria n. 851/881, 00138 Rome, Italy.
| |
Collapse
|
29
|
Luka GS, Nowak E, Kawchuk J, Hoorfar M, Najjaran H. Portable device for the detection of colorimetric assays. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171025. [PMID: 29291093 PMCID: PMC5717667 DOI: 10.1098/rsos.171025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/27/2017] [Indexed: 05/03/2023]
Abstract
In this work, a low-cost, portable device is developed to detect colorimetric assays for in-field and point-of-care (POC) analysis. The device can rapidly detect both pH values and nitrite concentrations of five different samples, simultaneously. After mixing samples with specific reagents, a high-resolution digital camera collects a picture of the sample, and a single-board computer processes the image in real time to identify the hue-saturation-value coordinates of the image. An internal light source reduces the effect of any ambient light so the device can accurately determine the corresponding pH values or nitrite concentrations. The device was purposefully designed to be low-cost, yet versatile, and the accuracy of the results have been compared to those from a conventional method. The results obtained for pH values have a mean standard deviation of 0.03 and a correlation coefficient R2 of 0.998. The detection of nitrites is between concentrations of 0.4-1.6 mg l-1, with a low detection limit of 0.2 mg l-1, and has a mean standard deviation of 0.073 and an R2 value of 0.999. The results represent great potential of the proposed portable device as an excellent analytical tool for POC colorimetric analysis and offer broad accessibility in resource-limited settings.
Collapse
Affiliation(s)
- G. S. Luka
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, British Columbia, CanadaV1V1V7
| | | | | | | | - H. Najjaran
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, British Columbia, CanadaV1V1V7
| |
Collapse
|
30
|
Luka GS, Nowak E, Kawchuk J, Hoorfar M, Najjaran H. Portable device for the detection of colorimetric assays. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171025. [PMID: 29291093 DOI: 10.5061/dryad.pj475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/27/2017] [Indexed: 05/19/2023]
Abstract
In this work, a low-cost, portable device is developed to detect colorimetric assays for in-field and point-of-care (POC) analysis. The device can rapidly detect both pH values and nitrite concentrations of five different samples, simultaneously. After mixing samples with specific reagents, a high-resolution digital camera collects a picture of the sample, and a single-board computer processes the image in real time to identify the hue-saturation-value coordinates of the image. An internal light source reduces the effect of any ambient light so the device can accurately determine the corresponding pH values or nitrite concentrations. The device was purposefully designed to be low-cost, yet versatile, and the accuracy of the results have been compared to those from a conventional method. The results obtained for pH values have a mean standard deviation of 0.03 and a correlation coefficient R2 of 0.998. The detection of nitrites is between concentrations of 0.4-1.6 mg l-1, with a low detection limit of 0.2 mg l-1, and has a mean standard deviation of 0.073 and an R2 value of 0.999. The results represent great potential of the proposed portable device as an excellent analytical tool for POC colorimetric analysis and offer broad accessibility in resource-limited settings.
Collapse
Affiliation(s)
- G S Luka
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, British Columbia, CanadaV1V1V7
| | - E Nowak
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, British Columbia, CanadaV1V1V7
| | - J Kawchuk
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, British Columbia, CanadaV1V1V7
| | - M Hoorfar
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, British Columbia, CanadaV1V1V7
| | - H Najjaran
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, British Columbia, CanadaV1V1V7
| |
Collapse
|
31
|
Lotan O, Bar-David J, Smith CLC, Yagur-Kroll S, Belkin S, Kristensen A, Levy U. Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells. NANO LETTERS 2017; 17:5481-5488. [PMID: 28771367 DOI: 10.1021/acs.nanolett.7b02132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We experimentally demonstrate the interrogation of an individual Escherichia coli cell using a nanoscale plasmonic V-groove waveguide. Several different configurations were studied. The first involved the excitation of the cell in a liquid environment because it flows on top of the waveguide nanocoupler, while the obtained fluorescence is coupled into the waveguide and collected at the other nanocoupler. The other two configurations involved the positioning of the bacterium within the nanoscale waveguide and its excitation in a dry environment either directly from the top or through waveguide modes. This is achieved by taking advantage of the waveguide properties not only for light guiding but also as a mechanical tool for trapping the bacteria within the V-grooves. The obtained results are supported by a set of numerical simulations, shedding more light on the mechanism of excitation. This demonstration paves the way for the construction of an efficient bioplasmonic chip for diverse cell-based sensing applications.
Collapse
Affiliation(s)
| | | | - Cameron L C Smith
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | | | | | - Anders Kristensen
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | | |
Collapse
|
32
|
Catalyst-free “click” functionalization of polymer brushes preserves antifouling properties enabling detection in blood plasma. Anal Chim Acta 2017; 971:78-87. [DOI: 10.1016/j.aca.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/26/2017] [Accepted: 03/01/2017] [Indexed: 11/22/2022]
|
33
|
Ha JW. Chemical interface damping of single gold nanorods with low sensitivity to the medium dielectric constant. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Wang R, Zhou X, Zhu X, Yang C, Liu L, Shi H. Isoelectric Bovine Serum Albumin: Robust Blocking Agent for Enhanced Performance in Optical-Fiber Based DNA Sensing. ACS Sens 2017; 2:257-262. [PMID: 28723134 DOI: 10.1021/acssensors.6b00746] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface blocking is a well-known process for reducing unwanted nonspecific adsorption in sensor fabrication, especially important in the emerging field where DNA/RNA applied. Bovine serum albumin (BSA) is one of the most popular blocking agents with an isoelectric point at pH 4.6. Although it is widely recognized that the adsorption of a blocking agent is strongly affected by its net charge and the maximum adsorption is often observed under its isoelectric form, BSA has long been perfunctorily used for blocking merely in neutral solution, showing poor blocking performances in the optical-fiber evanescent wave (OFEW) based sensing toward DNA target. To meet this challenge, we first put forward the view that isoelectric BSA (iep-BSA) has the best blocking performance and use an OFEW sensor platform to demonstrate this concept. An optical-fiber was covalently modified with amino-DNA, and further coupled with the optical system to detect fluorophore labeled complementary DNA within the evanescent field. A dramatic improvement in the reusability of this DNA modified sensing surface was achieved with 120 stable detection cycles, which ensured accurate quantitative bioassay. As expected, the iep-BSA blocked OFEW system showed enhanced sensing performance toward target DNA with a detection limit of 125 pM. To the best of our knowledge, this is the highest number of regeneration cycles ever reported for a DNA immobilized optical-fiber surface. This study can also serve as a good reference and provide important implications for developing similar DNA-directed surface biosensors.
Collapse
Affiliation(s)
- Ruoyu Wang
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiyu Zhu
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Yang
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanhua Liu
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Hanchang Shi
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Chen X, Leary TF, Maldarelli C. Transport of biomolecules to binding partners displayed on the surface of microbeads arrayed in traps in a microfluidic cell. BIOMICROFLUIDICS 2017; 11:014101. [PMID: 28096941 PMCID: PMC5218969 DOI: 10.1063/1.4973247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/13/2016] [Indexed: 05/15/2023]
Abstract
Arrays of probe molecules integrated into a microfluidic cell are utilized as analytical tools to screen the binding interactions of the displayed probes against a target molecule. These assay platforms are useful in enzyme or antibody discovery, clinical diagnostics, and biosensing, as their ultraminiaturized design allows for high sensitivity and reduced consumption of reagents and target. We study here a platform in which the probes are first grafted to microbeads which are then arrayed in the microfluidic cell by capture in a trapping course. We examine a course which consists of V-shaped, half-open enclosures, and study theoretically and experimentally target mass transfer to the surface probes. Target binding is a two step process of diffusion across streamlines which convect the target over the microbead surface, and kinetic conjugation to the surface probes. Finite element simulations are obtained to calculate the target surface concentration as a function of time. For slow convection, large diffusive gradients build around the microbead and the trap, decreasing the overall binding rate. For rapid convection, thin diffusion boundary layers develop along the microbead surface and within the trap, increasing the binding rate to the idealized limit of untrapped microbeads in a channel. Experiments are undertaken using the binding of a target, fluorescently labeled NeutrAvidin, to its binding partner biotin, on the microbead surface. With the simulations as a guide, we identify convective flow rates which minimize diffusion barriers so that the transport rate is only kinetically determined and measure the rate constant.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Chemical Engineering, Benjamin Levich Institute, City College of the City University of New York , New York, New York 10031, USA
| | - Thomas F Leary
- Department of Chemical Engineering, Benjamin Levich Institute, City College of the City University of New York , New York, New York 10031, USA
| | - Charles Maldarelli
- Department of Chemical Engineering, Benjamin Levich Institute, City College of the City University of New York , New York, New York 10031, USA
| |
Collapse
|
36
|
Trusso Sfrazzetto G, Millesi S, Pappalardo A, Tomaselli GA, Ballistreri FP, Toscano RM, Fragalà I, Gulino A. Nerve Gas Simulant Sensing by a Uranyl-Salen Monolayer Covalently Anchored on Quartz Substrates. Chemistry 2016; 23:1576-1583. [DOI: 10.1002/chem.201602292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 12/23/2022]
Affiliation(s)
| | - Salvatrice Millesi
- Dipartimento di Scienze Chimiche; Università di Catania; viale A. Doria 6 95125 Catania Italy
- INSTM Udr of Catania; viale A. Doria 6 95125 Catania Italy
| | - Andrea Pappalardo
- Dipartimento di Scienze Chimiche; Università di Catania; viale A. Doria 6 95125 Catania Italy
- INSTM Udr of Catania; viale A. Doria 6 95125 Catania Italy
| | - Gaetano A. Tomaselli
- Dipartimento di Scienze Chimiche; Università di Catania; viale A. Doria 6 95125 Catania Italy
| | | | - Rosa Maria Toscano
- Dipartimento di Scienze Chimiche; Università di Catania; viale A. Doria 6 95125 Catania Italy
| | - Ignazio Fragalà
- Dipartimento di Scienze Chimiche; Università di Catania; viale A. Doria 6 95125 Catania Italy
- INSTM Udr of Catania; viale A. Doria 6 95125 Catania Italy
| | - Antonino Gulino
- Dipartimento di Scienze Chimiche; Università di Catania; viale A. Doria 6 95125 Catania Italy
- INSTM Udr of Catania; viale A. Doria 6 95125 Catania Italy
| |
Collapse
|
37
|
Chandran GT, Li X, Ogata A, Penner RM. Electrically Transduced Sensors Based on Nanomaterials (2012-2016). Anal Chem 2016; 89:249-275. [PMID: 27936611 DOI: 10.1021/acs.analchem.6b04687] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Girija Thesma Chandran
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Xiaowei Li
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Alana Ogata
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
38
|
Schädle T, Mizaikoff B. Mid-Infrared Waveguides: A Perspective. APPLIED SPECTROSCOPY 2016; 70:1625-1638. [PMID: 27624555 DOI: 10.1177/0003702816659668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 05/28/2023]
Abstract
Significant advancements in waveguide technology in the mid-infrared (MIR) regime during recent decades have assisted in establishing MIR spectroscopic and sensing technologies as a routine tool among nondestructive analytical methods. In this review, the evolution of MIR waveguides along with state-of-the-art technologies facilitating next-generation MIR chem/bio sensors will be discussed introducing a classification scheme defining three "generations" of MIR waveguides: (1) conventional internal reflection elements as "first generation" waveguides; (2) MIR-transparent optical fibers as "second generation" waveguides; and most recently introduced(3) thin-film structures as "third generation" waveguides. Selected application examples for these each waveguide category along with future trends will highlight utility and perspectives for waveguide-based MIR spectroscopy and sensing systems.
Collapse
Affiliation(s)
- Thomas Schädle
- Institute of Analytical and Bioanalytical Chemistry (IABC), Ulm University, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry (IABC), Ulm University, Ulm, Germany
| |
Collapse
|
39
|
Han S, Zhou X, Tang Y, He M, Zhang X, Shi H, Xiang Y. Practical, highly sensitive, and regenerable evanescent-wave biosensor for detection of Hg2+ and Pb2+ in water. Biosens Bioelectron 2016; 80:265-272. [DOI: 10.1016/j.bios.2016.01.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
40
|
Luppa PB, Bietenbeck A, Beaudoin C, Giannetti A. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnol Adv 2016; 34:139-60. [DOI: 10.1016/j.biotechadv.2016.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 01/19/2023]
|
41
|
T–T mismatch-driven biosensor using triple functional DNA-protein conjugates for facile detection of Hg2+. Biosens Bioelectron 2016; 78:418-422. [DOI: 10.1016/j.bios.2015.11.082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022]
|
42
|
Trapaidze A, Hérault JP, Herbert JM, Bancaud A, Gué AM. Investigation of the selectivity of thrombin-binding aptamers for thrombin titration in murine plasma. Biosens Bioelectron 2015; 78:58-66. [PMID: 26594887 DOI: 10.1016/j.bios.2015.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 11/08/2015] [Indexed: 11/26/2022]
Abstract
Detection of thrombin in plasma raises timely challenges to enable therapeutic management of thrombosis in patients under vital threat. Thrombin binding aptamers represent promising candidates as sensing elements for the development of real-time thrombin biosensors; however implementation of such biosensor requires the clear understanding of thrombin-aptamer interaction properties in real-like environment. In this study, we used Surface Plasmon Resonance technique to answer the questions of specificity and sensitivity of thrombin detection by the thrombin-binding aptamers HD1, NU172 and HD22. We systematically characterized their properties in the presence of thrombin, as well as interfering molecular species such as the thrombin precursor prothrombin, thrombin in complex with some of its natural inhibitors, nonspecific serum proteins, and diluted plasma. Kinetic experiments show the multiple binding modes of HD1 and NU172, which both interact with multiple sites of thrombin with low nanomolar affinities and show little specificity of interaction for prothrombin vs. thrombin. HD22, on the other hand, binds specifically to thrombin exosite II and has no affinity to prothrombin at all. While thrombin in complex with some of its inhibitors could not be recognized by any aptamer, the binding of HD1 and NU172 properties is compromised by thrombin inhibitors alone, as well as with serum albumin. Finally, the complex nature of plasma was overwhelming for HD1, but we define conditions for the thrombin detection at 10nM range in 100-fold diluted plasma by HD22. Consequently HD22 showed key advantage over HD1 and NU172, and appears as the only alternative to design an aptasensor.
Collapse
Affiliation(s)
- Ana Trapaidze
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Université de Toulouse, LAAS, F-31400 Toulouse, France.
| | | | | | - Aurélien Bancaud
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Université de Toulouse, LAAS, F-31400 Toulouse, France.
| | - Anne-Marie Gué
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Université de Toulouse, LAAS, F-31400 Toulouse, France
| |
Collapse
|
43
|
Capitán-Vallvey LF, López-Ruiz N, Martínez-Olmos A, Erenas MM, Palma AJ. Recent developments in computer vision-based analytical chemistry: A tutorial review. Anal Chim Acta 2015; 899:23-56. [DOI: 10.1016/j.aca.2015.10.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
|
44
|
Della Gaspera E, Martucci A. Sol-Gel Thin Films for Plasmonic Gas Sensors. SENSORS 2015; 15:16910-28. [PMID: 26184216 PMCID: PMC4541914 DOI: 10.3390/s150716910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
Abstract
Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors.
Collapse
Affiliation(s)
| | - Alessandro Martucci
- Dipartimento di Ingegneria Industriale ,Universita' di Padova, Via Marzolo 9, Padova 35131, Italy.
| |
Collapse
|
45
|
McLeod E, Wei Q, Ozcan A. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics. Anal Chem 2015; 87:6434-45. [PMID: 26068279 PMCID: PMC4497296 DOI: 10.1021/acs.analchem.5b01381] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/12/2015] [Indexed: 01/28/2023]
Abstract
Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.
Collapse
Affiliation(s)
- Euan McLeod
- Department
of Electrical Engineering, University of
California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California
Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Qingshan Wei
- Department
of Electrical Engineering, University of
California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California
Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Department
of Electrical Engineering, University of
California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California
Los Angeles (UCLA), Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California Los Angeles (UCLA), Los Angeles, California 90095, United States
| |
Collapse
|
46
|
Zeng H, Glawdel T, Ren CL. Microchip with an open tubular immobilized ph gradient for UV whole column imaging detection. Electrophoresis 2015; 36:2542-5. [PMID: 26101201 DOI: 10.1002/elps.201500041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/06/2023]
Abstract
This study reports a new method for establishing an open tubular IPG in a microchip coupled with a whole column image detection (WCID) system for protein separation applications. This method allows a wider range of immobilized pH (2.6-9.5) to be established in a PDMS/quartz channel by controlling the diffusion of acidic and basic polymer solutions into the channel through well-designed channel dimensions. The developed pH gradient was experimentally validated by performing the separation of a mixture of standard pI markers. It was further validated by the separation of the hemoglobin control AFSC sample. This method is advantageous over existing IPG methods because it has a wider range of pH and maintains the open tubular feature that matches the UV WCID to improve the sensitivity.
Collapse
Affiliation(s)
- Hulie Zeng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Tomasz Glawdel
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Carolyn L Ren
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
47
|
Liu LH, Zhou XH, Shi HC. Portable optical aptasensor for rapid detection of mycotoxin with a reversible ligand-grafted biosensing surface. Biosens Bioelectron 2015; 72:300-5. [PMID: 26000463 DOI: 10.1016/j.bios.2015.05.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/17/2022]
Abstract
As food safety is gaining prominence as a global issue, the demand for developing rapid, simple, on-site, accurate and low-cost biosensor technologies will continue to grow. This study demonstrates an evanescent wave optical aptasensor with a reversible ligand-grafted biosensing surface for rapid, sensitive and highly selective detection of ochratoxin A (OTA) in food. In this system, the OTA molecules were covalently immobilized onto the surface of an optical fiber using glutaraldehyde and ethylenediamine as space linkers. An integrated evanescent wave all-fiber (EWA) biosensing platform was developed for investigating the binding kinetics between the tethered ligand and free OTA-aptamer, the performance of the aptamer-based bioassay and the reversibility of biosensing surface. The affinity constant (Ka) of aptamer with tethered OTA was measured to be 2.2 × 10(8)M(-1) based on the EWA biosensing platform. With a competitive detection mode, the quantification of OTA over concentration ranges from 0.73 μg L(-1) to 12.50 μg L(-1) with a detection limit of 0.39 μg L(-1). The performance of the aptasensor with other interfering mycotoxins and spiked real wheat samples shows high specificity and selectivity, good recovery, precision, and accuracy, indicating that it can be applied for on-site, inexpensive and easy-to-use monitoring of OTA in real samples. Moreover, since the organic ligands are grafted onto the fiber surface, this strategy may avoid the potential disadvantages caused by immobilizing the nucleic acid biomolecules, such as weak restoration to the original DNA conformation after repeated uses.
Collapse
Affiliation(s)
- Lan-hua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao-hong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Han-chang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Kausar ASMZ, Reza AW, Latef TA, Ullah MH, Karim ME. Optical nano antennas: state of the art, scope and challenges as a biosensor along with human exposure to nano-toxicology. SENSORS (BASEL, SWITZERLAND) 2015; 15:8787-831. [PMID: 25884787 PMCID: PMC4431286 DOI: 10.3390/s150408787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 01/25/2023]
Abstract
The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters.
Collapse
Affiliation(s)
| | - Ahmed Wasif Reza
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Tarik Abdul Latef
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohammad Habib Ullah
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | |
Collapse
|
49
|
Soler M, Mesa-Antunez P, Estevez MC, Ruiz-Sanchez AJ, Otte MA, Sepulveda B, Collado D, Mayorga C, Torres MJ, Perez-Inestrosa E, Lechuga LM. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens Bioelectron 2015; 66:115-23. [DOI: 10.1016/j.bios.2014.10.081] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/14/2023]
|
50
|
Leary TF, Manafirasi S, Maldarelli C. Mass transfer in the biomolecular binding of a target against probe molecules on the surface of microbeads sequestered in wells in a microfluidic cell. LAB ON A CHIP 2015; 15:459-77. [PMID: 25408192 DOI: 10.1039/c4lc01185f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Diagnostic tools which screen the binding interactions of a protein target against a display of biomolecular probes to identify molecules which bind the target are central to cell proteomic studies, and to diagnostic assays. Here, we study a microfluidic design for screening interactions in which the probe molecules are hosted on microbeads sequestered in wells arranged at the bottom of a microfluidic flow channel. Assays are undertaken by streaming an analyte solution with a fluorescently labelled target through the cell, and identifying the fluorescing beads. Numerical simulations are first constructed for the analyte flow over the microbeads in the well array, and the increase in the target concentration on the microbead surface. The binding profile is expressed as a function of the ratio of the convective to the diffusive transport rates (Peclet number or Pe), and the ratio of the kinetic to the diffusive rates (Damkohler number, Da). For any Pe, as Da becomes small enough, the transport is determined by the intrinsic kinetic binding rate. As Pe increases, a thin concentration boundary layer develops over the top surface of the microbead because of the convective flow, and target binds more rapidly. However, the relatively stagnant layers of liquid in the well provide a diffusion barrier which slows the target transport, and for any Da and Pe the transport is slower than equivalent patches of probes arranged on the channel wall. Experiments are also undertaken at high Pe, using the binding of fluorescently labelled NeutrAvidin as a target to probes of its binding partner, biotin, on the microbead surface. The binding profile is compared to the simulations to measure the kinetic rate constant, and this comparison shows that the transport in the cell is not kinetically limited because of the diffusion barriers created by the stagnant liquid layer in the well. Simulations and experiments on microbeads which are only partially recessed in the well demonstrate an increase in the mass transfer rate as more of the microbead surface intersects the flow and the diffusion limitation due to the stagnant layer of liquid surrounding the bottom part of the microbead is minimized.
Collapse
Affiliation(s)
- Thomas F Leary
- Levich Institute and Department of Chemical Engineering, The City College of the City University of New York, New York, New York 10031, USA.
| | | | | |
Collapse
|