1
|
Zhe Y, Wang J, Zhao Z, Ren G, Du J, Li K, Lin Y. Ascorbate oxidase-like nanozyme with high specificity for inhibition of cancer cell proliferation and online electrochemical DOPAC monitoring. Biosens Bioelectron 2022; 220:114893. [DOI: 10.1016/j.bios.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
2
|
Zhu Y, Qiu X, Chen X, Huang M, Li Y. Single gold nanowire-based nanosensor for adenosine triphosphate sensing by using in-situ surface-enhanced Raman scattering technique. Talanta 2022; 249:123675. [PMID: 35716474 DOI: 10.1016/j.talanta.2022.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 10/31/2022]
Abstract
Development of new hot spots for surface enhanced Raman scattering (SERS) technique is of great significance recently. Herein, we developed a single Au nanowire (NW)-based nanosensor for adenosine triphosphate (ATP) sensing by using in-situ SERS technique. Single Au NWs, fabricated by laser-assisted pulling method and hydrofluoric acid (HF) etching process, were linked with single-stranded HS-terminated DNA. After that, gold-silver bimetallic nanoparticles (Au/Ag NPs), attached with thiol-containing Raman dyes and ATP aptamer, were immobilized on DNA-modified single AuNW due to the designed affinity between ATP aptamer and single-stranded DNA. This single AuNW-based device exhibited strong SERS signals. In the presence of adenosine triphosphate (ATP), due to the strong specific affinity between the aptamer and the target, the Au/Ag NPs will be separated from the AuNW, resulting in the obvious decrease of the Raman signals, which can be used for ATP sensing with high sensitivity, selectivity and stability. This nanosensor can be used as an ideal platform for real applications, especially at some confined-space samples, such as trace detection, single cell and in vivo analysis.
Collapse
Affiliation(s)
- Yanyan Zhu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xiaohu Chen
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Mimi Huang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
3
|
Ren G, Dong F, Zhao Z, Li K, Lin Y. Structure Defect Tuning of Metal-Organic Frameworks as a Nanozyme Regulatory Strategy for Selective Online Electrochemical Analysis of Uric Acid. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52987-52997. [PMID: 34723454 DOI: 10.1021/acsami.1c17974] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozymes have been designed to address the limitations of high cost and poor stability involving natural enzymes in analytical applications. However, the catalytic efficiency of the nanozyme still needs to be improved so that it can meet the selectivity and stability requirements of accurate biomolecule analysis. Here, we presented structure defects of metal-organic frameworks (MOFs) as a tuning strategy to regulate the catalytic efficiency of artificial nanozymes and investigated the roles of defects on the catalytic activity of oxidase-like MOFs. Structural defects were introduced into a novel Co-containing zeolitic imidazolate framework with gradually loosened morphology (ZIF-L-Co) by doping cysteine (Cys). It was found that with the increase in defect degree, the properties of materials such as ascorbate oxidase-like, glutathione oxidase-like, and laccase-like were obviously enhanced by over 5, 2, and 3 times, respectively. In-depth structural investigations indicate that the doping of sulfur inducing structural defects which may destroy the equilibrium state between cobalt and nitrogen in 2-methylimidazole and distort the crystal lattice, thereby enhancing the adsorption of oxygen and thus promoting the oxidase-like activity. The ZIF-L-Co-10 mg with enhanced ascorbate oxidase- and laccase-like activity was loaded into a microreactor and integrated into an online electrochemical system (OECS) in the upstream of the detector. This nanozyme-based microreactor can completely remove ascorbic acid, dopamine, and 3,4-dihydroxyphenylacetic acid which are the main interference toward uric acid (UA) electrochemical measurement, and the ZIF-L-Co-10 mg Cys-based OECS system is capable of continuously capturing UA change in rat brain following ischemia-reperfusion injury. Structure defect tuning of ZIF-L-Co not only provides a new regulatory strategy for artificial nanozyme activity but also provides a critical chemical platform for the investigation of UA-related brain function and brain diseases.
Collapse
Affiliation(s)
- Guoyuan Ren
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Fangdi Dong
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| |
Collapse
|
4
|
Rani R, Singh G, Batra K, Minakshi P. Bioengineered Polymer/Composites as Advanced Biological Detection of Sorbitol: An Application in Healthcare Sector. Curr Top Med Chem 2021; 20:963-981. [PMID: 32141419 DOI: 10.2174/1568026620666200306131416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022]
Abstract
Bioengineered polymers and nanomaterials have emerged as promising and advanced materials for the fabrication and development of novel biosensors. Nanotechnology-enabled biosensor methods have high sensitivity, selectivity and more rapid detection of an analyte. Biosensor based methods are more rapid and simple with higher sensitivity and selectivity and can be developed for point-of-care diagnostic testing. Development of a simple, sensitive and rapid method for sorbitol detection is of considerable significance to efficient monitoring of diabetes-associated disorders like cataract, neuropathy, and nephropathy at initial stages. This issue encourages us to write a review that highlights recent advancements in the field of sorbitol detection as no such reports have been published till the date. The first section of this review will be dedicated to the conventional approaches or methods that had been playing a role in detection. The second part focused on the emerging field i.e. biosensors with optical, electrochemical, piezoelectric, etc. approaches for sorbitol detection and the importance of its detection in healthcare application. It is expected that this review will be very helpful for readers to know the different conventional and recent detection techniques for sorbitol at a glance.
Collapse
Affiliation(s)
- Ruma Rani
- ICAR-National Research Centre on Equines, Hisar-125001, India
| | - Geeta Singh
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131027, Sonipat, India
| | - Kanisht Batra
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| |
Collapse
|
5
|
Zhang W, Wang C, Peng M, Ren G, Li K, Lin Y. ATP-responsive laccase@ZIF-90 as a signal amplification platform to achieve indirect highly sensitive online detection of ATP in rat brain. Chem Commun (Camb) 2021; 56:6436-6439. [PMID: 32393954 DOI: 10.1039/d0cc02021d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel electrochemical online system for indirect, highly sensitive and selective online monitoring of ATP in the cerebral microdialysate is presented based on the particular reaction of ATP with zeolitic imidazole framework-90 (ZIF-90) encapsulated laccase microcrystals (laccase@ZIF-90) and the natural catalytic activity of laccase.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Chao Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Meihong Peng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
6
|
Peng M, Zhao X, Wang C, Guan L, Li K, Gu C, Lin Y. In Situ Observation of Glucose Metabolism Dynamics of Endothelial Cells in Hyperglycemia with a Stretchable Biosensor: Research Tool for Bridging Diabetes and Atherosclerosis. Anal Chem 2021; 93:1043-1049. [PMID: 33296175 DOI: 10.1021/acs.analchem.0c03938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes is a metabolic syndrome associated with hyperglycemia, hypertension, atherosclerosis, and endothelial dysfunction. Applying the mechanical stretch on cells to simulate blood circulation while monitoring the cell glucose metabolism in a high-glucose environment is important for better comprehension of the underlying mechanisms of atherosclerosis caused by diabetes. Herein, we developed a facile strategy integrating zeolitic imidazolate framework-8-encapsulated glucose oxidase (GOx@ZIF-8) and an gold (Au) stretchable electrode (Au SE) to construct a flexible and stretchable glucose sensor (GOx@ZIF-8/Au SE) for investigating the glucose metabolism mechanism of stretched endothelial cells in hyperglycemia. The encapsulation of GOx with ZIF-8 prevents the aggregation and detachment of GOx from the sensing interface and endows the biosensor with high stability. Additionally, the Au SE with inherent stretchability can act as an integrated platform for mechanical stimulation as well as for transient signal sensing during the mechanotransduction process. Moreover, this flexible and stretchable glucose sensor is successfully used for monitoring the glucose metabolism of mechanically stimulated cells in hyperglycemia, and it was found for the first time that the glucose utilization ability of cells under static conditions is higher than that in the stretched state. This facile and straightforward method paves a promising route for designing a stable enzyme-based stretchable biosensor for detecting the underlying mechanisms of atherosclerosis caused by diabetes.
Collapse
Affiliation(s)
- Meihong Peng
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xu Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chao Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lihao Guan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chaoyue Gu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
7
|
Li N, Li S, Li T, Yang H, Zhang Y, Zhao Z. Co-Incorporated Mesoporous Carbon Material-Assisted Laser Desorption/Ionization Ion Source as an Online Interface of In Vivo Microdialysis Coupled with Mass Spectrometry. Anal Chem 2020; 92:5482-5491. [PMID: 32181652 DOI: 10.1021/acs.analchem.0c00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The combination of microdialysis and mass spectrometry (MS) provides the potential for rapidly monitoring diverse metabolites in vivo. Unfortunately, the high concentration of salt in biological microdialysates hindered the sensitive and online detection of these small molecular compounds. In this study, we synthesized Co-incorporated mesoporous carbon material (Co-NC) and developed a Co-NC-assisted laser desorption/ionization (LDI) ion source as an online interface of in vivo microdialysis coupled with MS for the direct analysis of diverse metabolites in microdialysates. The Co-NC could be used as a matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI MS) analysis of small molecular compounds, even under high concentration salt conditions. The Co-NC possessed the adsorption ability for small molecular compounds, and it was believed that the adsorption ability of Co-NC might separate the analytes from the salt in microdialysates at a microscopic level, which might facilitate the desorption and ionization of the analytes and finally improved the salt-tolerance ability as a matrix. Furthermore, the Co-NC-assisted LDI ion source as a novel interface of in vivo microdialysis coupled with MS has been applied to the online monitoring of liver metabolites from the CCl4-induced liver injury rat model for the first time.
Collapse
Affiliation(s)
- Na Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Tuo Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Ying YL, Wang J, Leach AR, Jiang Y, Gao R, Xu C, Edwards MA, Pendergast AD, Ren H, Weatherly CKT, Wang W, Actis P, Mao L, White HS, Long YT. Single-entity electrochemistry at confined sensing interfaces. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9716-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Jiang Y, Xiao X, Li C, Luo Y, Chen S, Shi G, Han K, Gu H. Facile Ratiometric Electrochemical Sensor for In Vivo/Online Repetitive Measurements of Cerebral Ascorbic Acid in Brain Microdiaysate. Anal Chem 2020; 92:3981-3989. [PMID: 32037799 DOI: 10.1021/acs.analchem.9b05484] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The in vivo monitoring of ascorbic acid (AA) following physiological and pathological events is of great importance because AA plays a critical role in brain functions. The conventional electrochemical sensors (ECSs) usually suffered from poor selectivity and sluggish electron transfer kinetics for cerebral AA oxidation. The exploitation of ECSs adapt to the electrochemical detection (ECD)-microdialysis system, here we reported a facile ratiometric electrochemical sensor (RECS) for in vivo/online repetitive measurements of cerebral AA in brain microdiaysate. The sensor were constructed by careful electrodeposition of graphene oxide (GO) onto glassy carbon (GC) electrodes. Methylene blue (MB) was electrostatically adsorbed onto the GO surface as a built-in reference to achieve ratiometric detection of AA. The subsequent proper electroreduction treatment was able to readily facilitate the oxidation of AA at a relatively negative potential (-100 mV) and the oxidation of MB at separated potential (-428 mV). The in vitro experiments demonstrated that the RECS exhibited high sensitivity (detection limit: 10 nM), selectivity, and stability toward AA determination, enabling the in vivo/online repetitive measurement of cerebral AA in brain microdiaysate with high reliability. As a result, the designed RECS was successfully applied in the ECD-microdialysis system to in vivo/online repetitive monitoring the dynamic change of cerebral AA in the progress of the global cerebral ischemia/reperfusion events. More, the microinjection of endogenous AA and AA oxidase (AAOx) verified the reliability of the proposed RECS for in vivo/online repetitive cerebral AA detection. This proposed sensor filled the gap that no rational electrochemical sensor has been developed for the ECD-microdialysis system since its creation by the Mao group in 2005, which provided a reliable and effective method for brain chemistry research.
Collapse
Affiliation(s)
- Yimin Jiang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Xia Xiao
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Chenchen Li
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yu Luo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Kai Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
10
|
Ding Y, Ren G, Wang G, Lu M, Liu J, Li K, Lin Y. V2O5 Nanobelts Mimick Tandem Enzymes To Achieve Nonenzymatic Online Monitoring of Glucose in Living Rat Brain. Anal Chem 2020; 92:4583-4591. [DOI: 10.1021/acs.analchem.9b05872] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yongqi Ding
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Mingju Lu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jia Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
11
|
Gu H, Xiong P, Tang H, Chen S, Long Y, Shi G. In vivo monitoring of cerebral glucose with an updated on-line electroanalytical system. Anal Bioanal Chem 2019; 411:5929-5935. [DOI: 10.1007/s00216-019-02002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
|
12
|
|
13
|
Ding Y, Wang G, Sun F, Lin Y. Heterogeneous Nanostructure Design Based on the Epitaxial Growth of Spongy MoS x on 2D Co(OH) 2 Nanoflakes for Triple-Enzyme Mimetic Activity: Experimental and Density Functional Theory Studies on the Dramatic Activation Mechanism. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32567-32578. [PMID: 30169014 DOI: 10.1021/acsami.8b10560] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we present a three-in-one catalytic platform for intrinsic oxidase-, peroxidase-, and catalase-like activity, which is enabled by epitaxial growth of the MoS x nanosponge on 2D Co(OH)2 nanoflakes [2D Co(OH)2 NFs] (CoMo hybrids). First, the 2D Co(OH)2 NFs are stripped from hierarchical three-dimensional Co(OH)2 nanoflowers which are synthesized in an eco-friendly way via one-step surfactant-free chemical route. Next, the porous MoS x nanosponge is decorated on the 2D Co(OH)2 NFs' surface using a solvothermal process forming heterogeneous nanostructured CoMo hybrids. Finally, because of the host-guest interaction, that is, after the epitaxial growth of spongy MoS x on 2D Co(OH)2 NFs, the heterogeneous nanostructure of CoMo hybrids exhibits unpredictable triple-enzyme mimetic activity simultaneously. The mechanisms of the oxidase-like properties are investigated by density functional theory (DFT) calculations, and it is discovered that a simple reaction/dissociation of O2 absorbed on Co-Mo thin films can explain the enhanced oxidase-like activity of the CoMo hybrids. In addition, the CoMo hybrids are also reproducible, stable, and reusable, that is, after 10 cycle uses, >90% mimic enzyme activity of the CoMo hybrids is still maintained. The oxidase-like activity of the CoMo hybrids enables it to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) producing the blue oxTMB, which can selectively oxidize ascorbic acid (AA) and pave a new avenue for colorimetric sensing of AA. The proposed colorimetric strategy has been successfully utilized to measure AA in rat brain during the cerebral calm/ischemia process. Our findings provide in-depth insight into the future research of enzyme-like activities and might help to elucidate the mechanism and understand the role of epitaxial growth on the properties and application of hybrid nanostructures.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Guo Wang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Fengzhan Sun
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Yuqing Lin
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| |
Collapse
|
14
|
Li J, Peng Z, Wang E. Tackling Grand Challenges of the 21st Century with Electroanalytical Chemistry. J Am Chem Soc 2018; 140:10629-10638. [DOI: 10.1021/jacs.8b01302] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhangquan Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
15
|
Li B, Fan Y, Li C, Zhao X, Liu K, Lin Y. Online Electrochemical Monitoring of Glucose in Rat Brain with Acanthosphere-like CuOOH Nanospheres-based Electrochemical Sensor as Non-enzymatic and O2
-independent Detector. ELECTROANAL 2018. [DOI: 10.1002/elan.201700574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Bo Li
- Department of Chemistry; Capital Normal University; Beijing 100048 China
| | - Yongzhao Fan
- Capital University of Physical Education and Sports; Beijing 100191 P. R. China
| | - Changqing Li
- Department of Chemistry; Capital Normal University; Beijing 100048 China
| | - Xu Zhao
- Department of Chemistry; Capital Normal University; Beijing 100048 China
| | - Kun Liu
- Capital University of Physical Education and Sports; Beijing 100191 P. R. China
| | - Yuqing Lin
- Department of Chemistry; Capital Normal University; Beijing 100048 China
| |
Collapse
|
16
|
Ding Y, Zhao J, Li B, Zhao X, Wang C, Guo M, Lin Y. The CoOOH-TMB oxidative system for use in colorimetric and test strip based determination of ascorbic acid. Mikrochim Acta 2018; 185:131. [PMID: 29594579 DOI: 10.1007/s00604-018-2675-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/11/2018] [Indexed: 01/20/2023]
Abstract
The authors report that cobalt oxyhydroxide (CoOOH) nanoflakes possess intrinsic oxidizing ability to directly oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form a blue colored product (oxTMB) even in the absence of H2O2 and oxygen. In the presence of ascorbic acid (AA), less of the blue product is formed because AA reduces oxTMB. These findings constitute a new scheme for colorimetric detection of AA. Absorbance, best measured at 652 nm, linearly drops in the 10 nM to 1 μM AA concentration range, and the limit of detection is 5 nM (at an S/N ratio of 3). The reaction is complete within <5 s and highly selective. A strip test has been designed for fast and on-spot visual detection of AA. The method was applied to the direct estimation of AA in the microdialysate of brain, and also in soft drink samples. The strip test is considered to be a promising tool for the rapid screening of AA in brain and commercial samples. Graphic abstract Schematic of the CoOOH-TMB colorimetric system that exhibits a high selectivity for ascorbic acid (AA). A strip test has been designed for fast and on-spot visual detection of AA.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Junfeng Zhao
- Zhengzhou Prevention and Treatment Center for Occupational Diseases, Zhengzhou, 450003, China
| | - Bo Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xu Zhao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chao Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Minghui Guo
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
17
|
Qin H, Zhu Z, Ji W, Zhang M. Carbon Nanotube Paper-based Electrode for Electrochemical Detection of Chemicals in Rat Microdialysate. ELECTROANAL 2018. [DOI: 10.1002/elan.201700689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hancheng Qin
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Ziyu Zhu
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Wenliang Ji
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Meining Zhang
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| |
Collapse
|
18
|
Guo S, Yan H, Wu F, Zhao L, Yu P, Liu H, Li Y, Mao L. Graphdiyne as Electrode Material: Tuning Electronic State and Surface Chemistry for Improved Electrode Reactivity. Anal Chem 2017; 89:13008-13015. [DOI: 10.1021/acs.analchem.7b04115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shuyue Guo
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Key Laboratory of Organic Solids,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Yan
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Key Laboratory of Organic Solids,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Key Laboratory of Organic Solids,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Zhao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Key Laboratory of Organic Solids,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Key Laboratory of Organic Solids,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huibiao Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Key Laboratory of Organic Solids,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Key Laboratory of Organic Solids,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Key Laboratory of Organic Solids,
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Mizuguchi H, Sasaki K, Ichinose H, Seino S, Sakurai J, Iiyama M, Kijima T, Tachibana K, Nishina T, Takayanagi T, Shida J. A Triple-Electrode Based Dual-Biosensor System Utilizing Track-Etched Microporous Membrane Electrodes for the Simultaneous Determination of l-Lactate and d-Glucose. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hitoshi Mizuguchi
- Department of Applied Chemistry, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506
| | - Keiko Sasaki
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510
| | - Hirokazu Ichinose
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510
| | - Shota Seino
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510
| | - Jun Sakurai
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510
| | - Masamitsu Iiyama
- Nomura Micro Science Co., Ltd., 2-4-37 Okada, Atsugi, Kanagawa 243-0021
| | - Tatsuro Kijima
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510
| | - Kazuhiro Tachibana
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510
| | - Tatsuo Nishina
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510
| | - Toshio Takayanagi
- Department of Applied Chemistry, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506
| | - Junichi Shida
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510
| |
Collapse
|
20
|
Wang D, Xiao X, Xu S, Liu Y, Li Y. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay. Biosens Bioelectron 2017; 99:431-437. [PMID: 28810234 DOI: 10.1016/j.bios.2017.08.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/30/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
In this work, single Au nanowire electrodes (AuNWEs) were fabricated by laser-assisted pulling/hydrofluoric acid (HF) etching process, which then were characterized by transmission electron microscopy (TEM), electrochemical method and finite-element simulation. The as-prepared single AuNWEs were used to construct electrochemical aptamer-based nanosensors (E-AB nanosensors) based on the formation of Au-S bond that duplex DNA tagged with methylene blue (MB) was modified on the surface of electrode. In the presence of adenosine triphosphate (ATP), the MB-labeled aptamer dissociated from the duplex DNA due to the strong specific affinity between aptamer and target, which lead to the reduction of MB electrochemical signals. Moreover, BSA was employed to further passivate electrode surface bonding sites for the stable of the sensor. The as-prepared E-AB nanosensor has been used for ATP assay with excellent sensitivity and selectivity, even in a complex system like cerebrospinal fluid of rat brain. Considering the unique properties of good stability, larger surface area and smaller overall dimensions, this E-AB nanosensor should be an ideal platform for widely sensing applications in living bio-system.
Collapse
Affiliation(s)
- Dongmei Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China; College of Chemistry and Material Engineering, Chaohu University, Chaohu, Anhui 238000, PR China
| | - Xiaoqing Xiao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Shen Xu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yong Liu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
21
|
Wang W, Tang J, Zheng S, Ma X, Zhu J, Li F, Wang J. Electrochemical Determination of Bisphenol A at Multi-walled Carbon Nanotubes/Poly (Crystal Violet) Modified Glassy Carbon Electrode. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0944-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Zhang K, He X, Liu Y, Yu P, Fei J, Mao L. Highly Selective Cerebral ATP Assay Based on Micrometer Scale Ion Current Rectification at Polyimidazolium-Modified Micropipettes. Anal Chem 2017; 89:6794-6799. [PMID: 28516771 DOI: 10.1021/acs.analchem.7b01218] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Development of new principles and methods for cerebral ATP assay is highly imperative not only for determining ATP dynamics in brain but also for understanding physiological and pathological processes related to ATP. Herein, we for the first time demonstrate that micrometer scale ion current rectification (MICR) at a polyimidazolium brush-modified micropipette can be used as the signal transduction output for the cerebral ATP assay with a high selectivity. The rationale for ATP assay is essentially based on the competitive binding ability between positively charged polyimidazolium and ATP toward negatively charged ATP aptamer. The method is well responsive to ATP with a good linearity within a concentration range from 5 nM to 100 nM, and high selectivity toward ATP. These properties essentially enable the method to determine the cerebral ATP by combining in vivo microdialysis. The basal dialysate level of ATP in rat brain cortex is determined to be 11.32 ± 2.36 nM (n = 3). This study demonstrates that the MICR-based sensors could be potentially used for monitoring neurochemicals in cerebral systems.
Collapse
Affiliation(s)
- Kailin Zhang
- Key Laboratory of Environmental Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University , Xiangtan, Hunan 411105, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) , Beijing 100190, China
| | - Xiulan He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yang Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) , Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Junjie Fei
- Key Laboratory of Environmental Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University , Xiangtan, Hunan 411105, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
23
|
Ding S, Cao S, Liu Y, Lian Y, Zhu A, Shi G. Rational Design of a Stimuli-Responsive Polymer Electrode Interface Coupled with in Vivo Microdialysis for Measurement of Sialic Acid in Live Mouse Brain in Alzheimer's Disease. ACS Sens 2017; 2:394-400. [PMID: 28723199 DOI: 10.1021/acssensors.6b00772] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sensitive and selective monitoring of sialic acid (SA) in cerebral nervous system is of great importance for studying the role that SA plays in the pathological process of Alzheimer's disease (AD). In this work, we first reported an electrochemical biosensor based on a novel stimuli-responsive copolymer for selective and sensitive detection of SA in mouse brain. Notably, through synergetic hydrogen-bonding interactions, the copolymer could translate the recognition of SA into their conformational transition and wettability switch, which facilitated the access and enrichment of redox labels and targets to the electrode surface, thus significantly improving the detection sensitivity with the detection limit down to 0.4 pM. Besides amplified sensing signals, the proposed method exhibited good selectivity toward SA in comparison to potential interference molecules coexisting in the complex brain system due to the combination of high affinity between phenylboronic acid (PBA) and SA and the directional hydrogen-bonding interactions in the copolymer. The electrochemical biosensor with remarkable analytical performance was successfully applied to evaluate the dynamic change of SA level in live mouse brain with AD combined with in vivo midrodialysis. The accurate concentration of SA in different brain regions of live mouse with AD has been reported for the first time, which is beneficial for progressing our understanding of the role that SA plays in physiological and pathological events in the brain.
Collapse
Affiliation(s)
- Shushu Ding
- School
of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Sumei Cao
- School
of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Yingzi Liu
- Institute
of Brain Functional Genomics, East China Normal University, 3663
Zhongshan Road N., Shanghai 200062, People’s Republic of China
| | - Ying Lian
- School
of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Anwei Zhu
- School
of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Guoyue Shi
- School
of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| |
Collapse
|
24
|
Ma S, Zhou QY, Mu FY, Chen ZH, Ding XY, Zhang M, Shi G. Ratiometric fluorescence monitoring of cerebral Cu2+ based on coumarin-labeled DNA coupled with the Cu2+-induced oxidation of o-phenylenediamine. Analyst 2017; 142:3341-3345. [DOI: 10.1039/c7an01099k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel ratiometric fluorescence assay for cerebral Cu2+ has been developed based on coumarin-labeled single-stranded DNA coupled with the Cu2+-induced oxidation of o-phenylenediamine.
Collapse
Affiliation(s)
- Shishi Ma
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| | - Qiao-Yu Zhou
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| | - Fang-Ya Mu
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| | - Zi-Han Chen
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| | - Xu-Yin Ding
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| | - Min Zhang
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
25
|
Ma S, Qi YX, Jiang XQ, Chen JQ, Zhou QY, Shi G, Zhang M. Selective and Sensitive Monitoring of Cerebral Antioxidants Based on the Dye-Labeled DNA/Polydopamine Conjugates. Anal Chem 2016; 88:11647-11653. [DOI: 10.1021/acs.analchem.6b03216] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shishi Ma
- School
of Chemistry and Molecular Engineering and ‡School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yan-Xia Qi
- School
of Chemistry and Molecular Engineering and ‡School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiao-Qin Jiang
- School
of Chemistry and Molecular Engineering and ‡School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jie-Qiong Chen
- School
of Chemistry and Molecular Engineering and ‡School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiao-Yu Zhou
- School
of Chemistry and Molecular Engineering and ‡School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyue Shi
- School
of Chemistry and Molecular Engineering and ‡School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Zhang
- School
of Chemistry and Molecular Engineering and ‡School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
26
|
Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L. In Vivo Analysis with Electrochemical Sensors and Biosensors. Anal Chem 2016; 89:300-313. [DOI: 10.1021/acs.analchem.6b04308] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tongfang Xiao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Hao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meining Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Ultrasensitive and facile electrochemical detection of hydrogen sulfide in rat brain microdialysate based on competitive binding reaction. Anal Bioanal Chem 2016; 409:1101-1107. [DOI: 10.1007/s00216-016-0030-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
|
28
|
Cheng H, Xiao T, Wang D, Hao J, Yu P, Mao L. Simultaneous in vivo ascorbate and electrophysiological recordings in rat brain following ischemia/reperfusion. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Tang J, Jin B. Poly (crystal violet) - Multi-walled carbon nanotubes modified electrode for electroanalytical determination of luteolin. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
An Online Electrochemical System for Continuously Monitoring Uric Acid Change following Rabbit Kidney following Ischemia-reperfusion Injury. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Yu P, He X, Mao L. Tuning interionic interaction for highly selective in vivo analysis. Chem Soc Rev 2016; 44:5959-68. [PMID: 26505054 DOI: 10.1039/c5cs00082c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of highly selective methodologies to enable in vivo recording of chemical signals is of great importance for studying brain functions and brain activity mapping. However, the complexity of cerebral systems presents a great challenge in the development of chem/(bio)sensors that are capable of directly and selectively recording bioactive molecules involved in brain functions. As one of the most important and popular interactions in nature, interionic interaction constitutes the chemical essence of high specificity in natural systems, which inspires us to develop highly selective chem/(bio)sensors for in vivo analysis by precisely engineering interionic interaction in the in vivo sensing system. In this tutorial review, we focus on the recent progress in the tuning of interionic interaction to improve the selectivity of biosensors for in vivo analysis. The type and property of the interionic interaction is first introduced and several strategies to improve the selectivity of the biosensors, including enzyme-based electrochemical biosensors, aptamer-based electrochemical biosensors, and the strategies to recruit recognition molecules are reviewed. We also present an overview of the potential applications of the biosensors for in vivo analysis and thereby for physiological investigations. Finally, we present the major challenges and opportunities regarding the high selectivity of in vivo analysis based on tuning interionic interaction. We believe that this tutorial review provides critical insights for highly selective in vivo analysis and offers new concepts and strategies to understand brain chemistry.
Collapse
|
32
|
Cheng H, Zhang L, He J, Guo W, Zhou Z, Zhang X, Nie S, Wei H. Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains. Anal Chem 2016; 88:5489-97. [DOI: 10.1021/acs.analchem.6b00975] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hanjun Cheng
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
- Collaborative
Innovation Center of Chemistry for Life Sciences, State Key Laboratory
of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Zhang
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jian He
- Department
of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wenjing Guo
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhengyang Zhou
- Department
of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xuejin Zhang
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Shuming Nie
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
- Department
of Biomedical Engineering, Emory University, Atlanta, Georgia 30322, United States
| | - Hui Wei
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
- Collaborative
Innovation Center of Chemistry for Life Sciences, State Key Laboratory
of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
33
|
Qian Q, Hao J, Ma W, Yu P, Mao L. Tuning interionic interaction by rationally controlling solution pH for highly selective colorimetric sensing of arginine. Anal Bioanal Chem 2016; 408:3005-12. [DOI: 10.1007/s00216-016-9323-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/26/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
|
34
|
Li L, Zhang Y, Hao J, Liu J, Yu P, Ma F, Mao L. Online electrochemical system as an in vivo method to study dynamic changes of ascorbate in rat brain during 3-methylindole-induced olfactory dysfunction. Analyst 2016; 141:2199-207. [DOI: 10.1039/c6an00064a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study demonstrates the application of an OECS as an in vivo method to investigate the dynamic change of ascorbate in the olfactory bulb of rats during the acute period of olfactory dysfunction.
Collapse
Affiliation(s)
- Lijuan Li
- Department of Otolaryngology Head and Neck Surgery
- Peking University Third Hospital
- Beijing 100191
- China
| | - Yinghong Zhang
- Department of Otolaryngology Head and Neck Surgery
- Peking University Third Hospital
- Beijing 100191
- China
| | - Jie Hao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery
- Peking University Third Hospital
- Beijing 100191
- China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Furong Ma
- Department of Otolaryngology Head and Neck Surgery
- Peking University Third Hospital
- Beijing 100191
- China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
35
|
Lin Y, Wang C, Li L, Wang H, Liu K, Wang K, Li B. Tunable Fluorescent Silica-Coated Carbon Dots: A Synergistic Effect for Enhancing the Fluorescence Sensing of Extracellular Cu²⁺ in Rat Brain. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27262-70. [PMID: 26592139 DOI: 10.1021/acsami.5b08499] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon quantum dots (CDs) combined with self-assembly strategy have created an innovative way to fabricate novel hybrids for biological analysis. This study demonstrates a new fluorescence platform with enhanced selectivity for copper ion sensing in the striatum of the rat brain following the cerebral calm/sepsis process. Here, the fabrication of silica-coated CDs probes is based on the efficient hybridization of APTES which act as a precursor of organosilane self-assembly, with CDs to form silica-coated CDs probes. The fluorescent properties including intensity, fluorescence quantum yield, excitation-independent region, and red/blue shift of the emission wavelength of the probe are tunable through reliable regulation of the ratio of CDs and APTES, realizing selectivity and sensitivity-oriented Cu(2+) sensing. The as-prepared probes (i.e., 3.33% APTES-0.9 mg mL(-1) CDs probe) show a synergistic amplification effect of CDs and APTES on enhancing the fluorescence signal of Cu(2+) detection through fluorescent self-quenching. The underlying mechanism can be ascribed to the stronger interaction including chelation and electrostatic attraction between Cu(2+) and N and O atoms-containing as well as negatively charged silica-coated CDs than other interference. Interestingly, colorimetric assay and Tyndall effect can be observed and applied to directly distinguish the concentration of Cu(2+) by the naked eye. The proposed fluorescent platform here has been successfully applied to monitor the alteration of striatum Cu(2+) in rat brain during the cerebral calm/sepsis process. The versatile properties of the probe provide a new and effective fluorescent platform for the sensing method in vivo sampled from the rat brain.
Collapse
Affiliation(s)
- Yuqing Lin
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Chao Wang
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Linbo Li
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Hao Wang
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Kangyu Liu
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Keqing Wang
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Bo Li
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| |
Collapse
|
36
|
Zhang Z, Xiao T, Hao J, Yu P, Ohsaka T, Mao L. An Online Electrochemical System for Continuous Measurement of Glutamate with Signal Amplification by Enzymatic Substrate Cycling. ELECTROANAL 2015. [DOI: 10.1002/elan.201500122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
|
38
|
Fe(3+)-functionalized carbon quantum dots: A facile preparation strategy and detection for ascorbic acid in rat brain microdialysates. Talanta 2015; 144:1301-7. [PMID: 26452962 DOI: 10.1016/j.talanta.2015.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 11/22/2022]
Abstract
This study reports an Fe(3+)-functionalized carbon quantum dots (Fe(3+)-functionalized CQDs) for the highly sensitive and selective detection of ascorbic acid (AA) in rat brain microdialysates based on the specific redox reaction between iron(III) ions and AA. The carbon quantum dots (CQDs) were synthesized by one-step pyrolysis of a small organic molecules i.e. tris(hydroxymethyl)aminomethane (Tris). Fe(3+) can tightly chelate to the surface of CQDs by the hydroxyl group to form Fe(3+)-functionalized CQDs while the fluorescence of CQDs can be effectively quenched by Fe(3+) via Fluorescence resonance energy transfer (FRET). The fluorescence of the Fe(3+)-functionalized CQDs can be sensitively turned on by AA to give an "on-off-on" fluorescence response through the oxidation-reduction between Fe(3+) and AA since the produced Fe(2+) has much lower chelating ability to CQDs and the fluorescence of CQDs can be restored. This Fe(3+)-functionalized CQDs based nanoprobe shows high selective and sensitive response in the concentration of AA ranging from 0.1 μM to 50 μM with the detection limit as lower as 9.1 nM, which is lower than other assays. Finally, the proposed fluorescent probe was successfully applied to direct analysis of AA in biological fluids, i.e. rat brain microdialysates, and may pave a new route to the design of effective carbon quantum dots-based fluorescence probes for other bioassay.
Collapse
|
39
|
Cordeiro C, de Vries M, Ngabi W, Oomen P, Cremers T, Westerink B. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device. Biosens Bioelectron 2015; 67:677-86. [DOI: 10.1016/j.bios.2014.09.101] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/27/2014] [Accepted: 09/22/2014] [Indexed: 01/30/2023]
|
40
|
Wang Z, Dai Z. Carbon nanomaterial-based electrochemical biosensors: an overview. NANOSCALE 2015; 7:6420-31. [PMID: 25805626 DOI: 10.1039/c5nr00585j] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Carbon materials on the nanoscale exhibit diverse outstanding properties, rendering them extremely suitable for the fabrication of electrochemical biosensors. Over the past two decades, advances in this area have continuously emerged. In this review, we attempt to survey the recent developments of electrochemical biosensors based on six types of carbon nanomaterials (CNs), i.e., graphene, carbon nanotubes, carbon dots, carbon nanofibers, nanodiamonds and buckminsterfullerene. For each material, representative samples are introduced to expound the different roles of the CNs in electrochemical bioanalytical strategies. In addition, remaining challenges and perspectives for future developments are also briefly discussed.
Collapse
Affiliation(s)
- Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | | |
Collapse
|
41
|
Sardesai NP, Ganesana M, Karimi A, Leiter JC, Andreescu S. Platinum-Doped Ceria Based Biosensor for in Vitro and in Vivo Monitoring of Lactate during Hypoxia. Anal Chem 2015; 87:2996-3003. [DOI: 10.1021/ac5047455] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Naimish P. Sardesai
- Department
of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States, and
| | - Mallikarjunarao Ganesana
- Department
of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, United States
| | - Anahita Karimi
- Department
of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States, and
| | - James C. Leiter
- Department
of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, United States
| | - Silvana Andreescu
- Department
of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States, and
| |
Collapse
|
42
|
Yue X, Zhu Z, Zhang M, Ye Z. Reaction-Based Turn-on Electrochemiluminescent Sensor with a Ruthenium(II) Complex for Selective Detection of Extracellular Hydrogen Sulfide in Rat Brain. Anal Chem 2015; 87:1839-45. [DOI: 10.1021/ac503875j] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoxiao Yue
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ziyu Zhu
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiqiang Ye
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
43
|
Li R, Guo D, Ye J, Zhang M. Stabilization of Prussian blue with polyaniline and carbon nanotubes in neutral media for in vivo determination of glucose in rat brains. Analyst 2015; 140:3746-52. [DOI: 10.1039/c4an02352h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study demonstrates a new electrochemical microbiosensor for selectivein vivomonitoring of glucose in rat brains.
Collapse
Affiliation(s)
- Ruixin Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Deyin Guo
- College of Chemistry and Chemical Engineering
- South China University of Technology
- Wushan
- China
| | - Jianshan Ye
- College of Chemistry and Chemical Engineering
- South China University of Technology
- Wushan
- China
| | - Meining Zhang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
44
|
Lin Y, Yu P, Mao L. A multi-enzyme microreactor-based online electrochemical system for selective and continuous monitoring of acetylcholine. Analyst 2015; 140:3781-7. [DOI: 10.1039/c4an02089h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrates an online electrochemical system (OECS) for selective and continuous measurements of acetylcholine (ACh) through efficiently integrating in vivo microdialysis, a multi-enzyme microreactor and an electrochemical detector.
Collapse
Affiliation(s)
- Yuqing Lin
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences (CAS)
- Beijing 100190
| |
Collapse
|
45
|
Zhang Z, Hao J, Xiao T, Yu P, Mao L. Online electrochemical systems for continuous neurochemical measurements with low-potential mediator-based electrochemical biosensors as selective detectors. Analyst 2015; 140:5039-47. [DOI: 10.1039/c5an00593k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study demonstrates a new strategy to develop online electrochemical systems (OECSs) for continuously monitoring neurochemicals by efficiently integrating in vivo microdialysis with an oxidase-based electrochemical biosensor with low-potential electron mediators to shuttle the electron transfer of the oxidases.
Collapse
Affiliation(s)
- Zipin Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Jie Hao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Tongfang Xiao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- The Chinese Academy of Sciences (CAS)
- Beijing 100190
| |
Collapse
|
46
|
Yu P, He X, Zhang L, Mao L. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay. Anal Chem 2014; 87:1373-80. [PMID: 25495279 DOI: 10.1021/ac504249k] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.
Collapse
Affiliation(s)
- Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | |
Collapse
|
47
|
Zhai W, Wang C, Yu P, Wang Y, Mao L. Single-Layer MnO2 Nanosheets Suppressed Fluorescence of 7-Hydroxycoumarin: Mechanistic Study and Application for Sensitive Sensing of Ascorbic Acid in Vivo. Anal Chem 2014; 86:12206-13. [DOI: 10.1021/ac503215z] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wanying Zhai
- Beijing National Laboratory
for Molecular
Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems,
Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Chunxia Wang
- Beijing National Laboratory
for Molecular
Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems,
Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory
for Molecular
Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems,
Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yuexiang Wang
- Beijing National Laboratory
for Molecular
Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems,
Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lanqun Mao
- Beijing National Laboratory
for Molecular
Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems,
Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|
48
|
Online electrochemical method for continuous and simultaneous monitoring of glucose and l-lactate in vivo with graphene hybrids as the electrocatalyst. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Lin Y, Liu K, Liu C, Yin L, Kang Q, Li L, Li B. Electrochemical sensing of bisphenol A based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.04.095] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Zhang L, Qi H, Hao J, Yang L, Yu P, Mao L. Water-stable, adaptive, and electroactive supramolecular ionic material and its application in biosensing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5988-5995. [PMID: 24724737 DOI: 10.1021/am5011628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Developing water-stable and adaptive supramolecular materials is of great importance in various research fields. Here, we demonstrate a new kind of water-stable, adaptive, and electroactive supramolecular ionic materials (SIM) that is formed from the aqueous solutions of imidazolium-based dication and dianionic dye (i.e., 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS) through ionic self-assembly. The formed SIM not only shows good thermostability and unique optical and electrochemical properties that are raised from precursors of the SIM, but also exhibits good water-stability, salt-stability, and adaptive encapsulation properties toward some heterocyclic cationic dye molecules. UV-vis and FT-IR results demonstrate that this encapsulation property is essentially based on the electrostatic interactions between the guest dye molecules and ABTS in the SIM. The application of the SIM prepared here is illustrated by the development of a new electrochemical sensor for NADH sensing at a low potential. This study not only opens a new avenue to the preparation of the supramolecular materials, but also provides a versatile platform for electrochemical (bio)sensing.
Collapse
Affiliation(s)
- Li Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190, P. R. China
| | | | | | | | | | | |
Collapse
|