1
|
Ligler FS, Ligler GT. Forty years of advances in optical biosensors-are "autonomous" biosensors in our future? Anal Bioanal Chem 2024:10.1007/s00216-024-05338-1. [PMID: 38811407 DOI: 10.1007/s00216-024-05338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
Optical biosensors have employed at least three distinct system architectures over the last 40 years, moving from "sample in-answer out" systems to completely embedding the optical biosensor into the sample to embedding the recognition module in the sample and optically interrogating the recognition module from outside of the sample. This trends article provides an overview of the evolution of these three system architectures and discusses how each architecture has been applied to solve the measurement challenges of a wide variety of applications. A fourth biosensor system architecture, that of an "autonomous" biosensor which "takes the user out of the loop" while both detecting target analytes and responding to that measurement, is currently under development for applications initially including environmental cleanup and "smart therapeutics." As is the case in many other areas of technology, it will be profoundly interesting to observe the further development and application of elegant, simpler (optical) biosensor systems to address tomorrow's measurement needs.
Collapse
Affiliation(s)
- Frances S Ligler
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| | - George T Ligler
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Shinar R, Shinar J. Organic Electronics-Microfluidics/Lab on a Chip Integration in Analytical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:8488. [PMID: 37896581 PMCID: PMC10611406 DOI: 10.3390/s23208488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Organic electronics (OE) technology has matured in displays and is advancing in solid-state lighting applications. Other promising and growing uses of this technology are in (bio)chemical sensing, imaging, in vitro cell monitoring, and other biomedical diagnostics that can benefit from low-cost, efficient small devices, including wearable designs that can be fabricated on glass or flexible plastic. OE devices such as organic LEDs, organic and hybrid perovskite-based photodetectors, and organic thin-film transistors, notably organic electrochemical transistors, are utilized in such sensing and (bio)medical applications. The integration of compact and sensitive OE devices with microfluidic channels and lab-on-a-chip (LOC) structures is very promising. This survey focuses on studies that utilize this integration for a variety of OE tools. It is not intended to encompass all studies in the area, but to present examples of the advances and the potential of such OE technology, with a focus on microfluidics/LOC integration for efficient wide-ranging sensing and biomedical applications.
Collapse
Affiliation(s)
- Ruth Shinar
- Electrical & Computer Engineering Department, Iowa State University, Ames, IA 50011, USA
| | - Joseph Shinar
- Physics & Astronomy Department and Ames National Laboratory—USDOE, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Yu Y, Nie W, Chu K, Wei X, Smith ZJ. Highly Sensitive, Portable Detection System for Multiplex Chemiluminescence Analysis. Anal Chem 2023; 95:14762-14769. [PMID: 37729474 DOI: 10.1021/acs.analchem.3c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chemiluminescence (CL) has emerged as a critical tool for the sensing and quantification of various bioanalytes in virtually all clinical fields. However, the rapid nature of many CL reactions raises challenges for typical low-cost optical sensors such as cameras to achieve accurate and sensitive detection. Meanwhile, classic sensors such as photomultiplier tubes are highly sensitive but lack spatial multiplexing capabilities and are generally not suited for point-of-care applications outside a standard laboratory setting. To address this issue, in this paper, a miniaturized and versatile silicon-photomultiplier-based fiber-integrated CL device (SFCD) was designed for sensitive multiplex CL detection. The SFCD comprises a silicon photomultiplier array coupled to an array of high numerical aperture plastic optical fibers to achieve 16-plex detection. The optical fibers ensure efficient light collection while allowing the fixed detector to be mated with diverse sample geometries (e.g., circular or grid), simply by adjusting the fiber configuration. In a head-to-head comparison with a lens-based camera system featuring a cooled detector, the SFCD achieved a 14-fold improved limit of detection in both direct and enzyme-mediated CL reactions. The SFCD also features improved compactness and lower cost, as well as faster temporal resolution compared with camera-based systems while preserving spatial multiplexing and good environmental robustness. Thus, the SFCD has excellent potential for point-of-care biosensing applications.
Collapse
Affiliation(s)
- Yannan Yu
- Key Laboratory of Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Wei Nie
- Department of Chemistry, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Kaiqin Chu
- Key Laboratory of Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Xi Wei
- Department of Chemistry, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Zachary J Smith
- Key Laboratory of Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| |
Collapse
|
4
|
Morioka K, Osashima M, Azuma N, Qu K, Hemmi A, Shoji A, Murakami H, Teshima N, Umemura T, Uchiyama K, Nakajima H. Development of a fluorescence microplate reader using an organic photodiode array with a large light receiving area. Talanta 2022; 238:122994. [PMID: 34857327 DOI: 10.1016/j.talanta.2021.122994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
We developed a small fluorescence microplate reader with an organic photodiode (OPD) array. The OPD array has nine OPDs that have a large light receiving area (9.62 mm2 per one OPD). Since the OPD array is fabricated on a flat glass plate, it can be placed just below microwells and can detect fluorescence emitted through the entire surface of the microwell bottom. The analytical performance of the developed plate reader was evaluated by measuring an aqueous solution of resorufin. The limit of detection (LOD) for resorufin (0.01-0.05 μM) was lower than that obtained with a plate reader equipped with nine inorganic photodiodes developed in a previous study (0.30 μM) and a commercially available microplate reader (0.16 μM). These results indicate that the large light receiving area improves the detection performance of the system. In addition, the developed reader was successfully used to quantify immunoglobulin A (IgA) in human saliva. The LOD for IgA was estimated to be 1.2 ng/mL, which is low enough to objectively evaluate human stress.
Collapse
Affiliation(s)
- Kazuhiro Morioka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Moeko Osashima
- Department of Applied Chemistry, Graduate School of Urban Environmental Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Nao Azuma
- Department of Applied Chemistry, Graduate School of Urban Environmental Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Kuizhi Qu
- Department of Applied Chemistry, Graduate School of Urban Environmental Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Akihide Hemmi
- Mebius Advanced Technology Ltd., 3-31-6 Nishiogi-kita, Suginami-ku, Tokyo, 167-0042, Japan
| | - Atsushi Shoji
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, Aichi, 470-0392, Japan
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, Aichi, 470-0392, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Katsumi Uchiyama
- Department of Applied Chemistry, Graduate School of Urban Environmental Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry, Graduate School of Urban Environmental Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
5
|
Wu J, Dai B, Li Z, Pan T, Zhang D, Lin F. Emerging optofluidic technologies for biodiagnostic applications. VIEW 2021. [DOI: 10.1002/viw.20200035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jiandong Wu
- Bionic Sensing and Intelligence Center Institute of Biomedical and Health Engineering Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai China
| | - Zhenqing Li
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai China
| | - Tingrui Pan
- Department of Biomedical Engineering University of California Davis California USA
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai China
| | - Francis Lin
- Department of Physics and Astronomy University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
6
|
Calabretta MM, Zangheri M, Calabria D, Lopreside A, Montali L, Marchegiani E, Trozzi I, Guardigli M, Mirasoli M, Michelini E. Paper-Based Immunosensors with Bio-Chemiluminescence Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:4309. [PMID: 34202483 PMCID: PMC8271422 DOI: 10.3390/s21134309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Since the introduction of paper-based analytical devices as potential diagnostic platforms a few decades ago, huge efforts have been made in this field to develop systems suitable for meeting the requirements for the point-of-care (POC) approach. Considerable progress has been achieved in the adaptation of existing analysis methods to a paper-based format, especially considering the chemiluminescent (CL)-immunoassays-based techniques. The implementation of biospecific assays with CL detection and paper-based technology represents an ideal solution for the development of portable analytical devices for on-site applications, since the peculiarities of these features create a unique combination for fitting the POC purposes. Despite this, the scientific production is not paralleled by the diffusion of such devices into everyday life. This review aims to highlight the open issues that are responsible for this discrepancy and to find the aspects that require a focused and targeted research to make these methods really applicable in routine analysis.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Antonia Lopreside
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Laura Montali
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Elisa Marchegiani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 48123 Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 48123 Ravenna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d’Oro, 00136 Rome, Italy
| | - Elisa Michelini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d’Oro, 00136 Rome, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Raji MA, Aloraij Y, Alhamlan F, Suaifan G, Weber K, Cialla-May D, Popp J, Zourob M. Development of rapid colorimetric assay for the detection of Influenza A and B viruses. Talanta 2021; 221:121468. [PMID: 33076087 PMCID: PMC7392922 DOI: 10.1016/j.talanta.2020.121468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 11/27/2022]
Abstract
The flu viruses are respiratory pathogens which, according to the World Health Organization (WHO), infect 5-10% of the world population resulting in 3-5 million cases of severe illness and 290,000 to 650,000 annual deaths. Early diagnosis and therapeutic intervention can ameliorate symptoms of infection and reduce mortality. The conventional diagnosis of viral infections, including flu viruses, has evolved over the years with diverse approaches, however, there are inherent short comings associated with these testing. There is an urgent need for rapid and low-cost diagnostic assays, due to the enormous annual burden of influenza diseases and its associated mortality. In this study, novel, low cost and easy to use colorimetric flu virus biosensor assay was developed. The sandwich assay format was utilized using antibodies immobilized onto cotton swabs, for the rapid detection of flu A and B viruses. These swabs serve as sample collection, analytes pre-concentration as well as sensing tool. The proof of concept was established for this assay in buffer and mucus samples. The limit of detection (LOD) of the colorimetric assay was 0.04 ng mL-1 for Flu A and Flu B respectively and with linear dynamic range between 0.04 ng ml-1 to 40 ng ml for both viruses in mucous samples. The assay can be performed at the patient's bed side by minimally skilled hospital personnel without the need for instrumentation. Cross-reactivity assays testing was done using Flu viruses specific activated swabs reacted with other common respiratory viral pathogens' antigen, in order to assess the specificity of the swabs.
Collapse
Affiliation(s)
- Muhabat Adeola Raji
- Department of Microbiology and Immunology, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia
| | - Yumna Aloraij
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia
| | - Fatimah Alhamlan
- King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia
| | - Ghadeer Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman-Jordan, P.O. Box 11942, Amman, Jordan
| | - Karina Weber
- InfectoGnostics Research Campus Jena, Center for Applied Research, Friedrich-Schiller-University, Philosophenweg7, Jena, 07743, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of the Leibniz Research Allicance, Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Dana Cialla-May
- InfectoGnostics Research Campus Jena, Center for Applied Research, Friedrich-Schiller-University, Philosophenweg7, Jena, 07743, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of the Leibniz Research Allicance, Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Jürgen Popp
- InfectoGnostics Research Campus Jena, Center for Applied Research, Friedrich-Schiller-University, Philosophenweg7, Jena, 07743, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of the Leibniz Research Allicance, Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia.
| |
Collapse
|
8
|
Handheld Enzymatic Luminescent Biosensor for Rapid Detection of Heavy Metals in Water Samples. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7010016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enzymatic luminescent systems are a promising tool for rapid detection of heavy metals ions for water quality assessment. Nevertheless, their widespread use is limited by the lack of test procedure automation and available sensitive handheld luminometers. Herein we describe integration of disposable microfluidic chips for bioluminescent enzyme-inhibition based assay with a handheld luminometer, which detection system is based on a thermally stabilized silicon photomultiplier (SiPM). Microfluidic chips were made of poly(methyl methacrylate) by micro-milling method and sealed using a solvent bonding technique. The composition of the bioluminescent system in microfluidic chip was optimized to achieve higher luminescence intensity and storage time. Results indicate that developed device provided comparable sensitivity with bench-scale PMT-based commercial luminometers. Limit of detection for copper (II) sulfate reached 2.5 mg/L for developed biosensor. Hereby we proved the concept of handheld enzymatic optical biosensors with disposable chips for bioassay. The proposed biosensor can be used as an early warning field-deployable system for rapid detection of heavy metals salts and other toxic chemicals, which affect bioluminescent signal of enzymatic reaction.
Collapse
|
9
|
Soares RR, Neumann F, Caneira CR, Madaboosi N, Ciftci S, Hernández-Neuta I, Pinto IF, Santos DR, Chu V, Russom A, Conde JP, Nilsson M. Silica bead-based microfluidic device with integrated photodiodes for the rapid capture and detection of rolling circle amplification products in the femtomolar range. Biosens Bioelectron 2019; 128:68-75. [DOI: 10.1016/j.bios.2018.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
|
10
|
Oliveira J, Correia V, Sowade E, Etxebarria I, Rodriguez RD, Mitra KY, Baumann RR, Lanceros-Mendez S. Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12904-12912. [PMID: 29580050 DOI: 10.1021/acsami.8b00828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organic photodetectors (PDs) based on printing technologies will allow to expand the current field of PD applications toward large-area and flexible applications in areas such as medical imaging, security, and quality control, among others. Inkjet printing is a powerful digital tool for the deposition of smart and functional materials on various substrates, allowing the development of electronic devices such as PDs on various substrates. In this work, inkjet-printed PD arrays, based on the organic thin-film transistor architecture, have been developed and applied for the indirect detection of X-ray radiation using a scintillator ink as an X-ray absorber. The >90% increase of the photocurrent of the PDs under X-ray radiation, from about 53 nA without the scintillator film to about 102 nA with the scintillator located on top of the PD, proves the suitability of the developed printed device for X-ray detection applications.
Collapse
Affiliation(s)
- Juliana Oliveira
- Centro de Física , Universidade do Minho , 4710-057 Braga , Portugal
- Algoritmi Research Center , Universidade do Minho , Campus de Azurém , 4800-058 Guimarães , Portugal
| | - Vitor Correia
- Centro de Física , Universidade do Minho , 4710-057 Braga , Portugal
- Algoritmi Research Center , Universidade do Minho , Campus de Azurém , 4800-058 Guimarães , Portugal
| | | | - Ikerne Etxebarria
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , 48940 Leioa , Spain
| | | | | | - Reinhard R Baumann
- Department Printed Functionalities , Fraunhofer Institute for Electronic Nano Systems (ENAS) , 09126 Chemnitz , Germany
| | - Senentxu Lanceros-Mendez
- Centro de Física , Universidade do Minho , 4710-057 Braga , Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , 48940 Leioa , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
11
|
Abstract
This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications.
Collapse
Affiliation(s)
- Hui Yang
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Science
- 518055 Shenzhen
- China
| | - Martin A. M. Gijs
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| |
Collapse
|
12
|
Zhang Y, Li QN, Li CC, Zhang CY. Label-free and high-throughput bioluminescence detection of uracil-DNA glycosylase in cancer cells through tricyclic cascade signal amplification. Chem Commun (Camb) 2018; 54:6991-6994. [DOI: 10.1039/c8cc03769h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We develop a label-free and high-throughput bioluminescence method for the sensitive detection of uracil DNA glycosylase through tricyclic cascade signal amplification.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qing-nan Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chen-chen Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
13
|
Dong T, Pires NMM. Immunodetection of salivary biomarkers by an optical microfluidic biosensor with polyethylenimine-modified polythiophene-C70 organic photodetectors. Biosens Bioelectron 2017; 94:321-327. [DOI: 10.1016/j.bios.2017.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 11/28/2022]
|
14
|
Heo S, Lee J, Kim SH, Yun DJ, Park JB, Kim K, Kim N, Kim Y, Lee D, Kim KS, Kang HJ. Device performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device. Sci Rep 2017; 7:1516. [PMID: 28473719 PMCID: PMC5431428 DOI: 10.1038/s41598-017-01653-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/29/2017] [Indexed: 11/16/2022] Open
Abstract
An advanced organic photodetector (OPD) with a butter layer of Si-rich silicon oxynitride (SiOxNy) was fabricated. The detector structure is as follows: Indium tin oxide (ITO) coated glass substrate/SiOxNy(10 nm)/naphthalene-based donor:C60(1:1)/ITO. Values of x and y in SiOxNy were carefully controlled and the detector performances such as dark current and thermal stability were investigated. When the values of x and y are 0.16 and 0.66, the detector illustrates low dark current as well as excellent thermal stability. In the OPD, silicon oxynitride layer works as electron barrier under reverse bias, leading to the decrease of dark current and increase of detectivity. Since the band gap of silicon oxynitride unlike conventional buffer layers can also be controlled by adjusting x and y values, it can be adapted into various photodiode applications.
Collapse
Affiliation(s)
- Sung Heo
- Platform Technology Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea
| | - Jooho Lee
- Platform Technology Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea
| | - Seong Heon Kim
- Platform Technology Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea
| | - Dong-Jin Yun
- Platform Technology Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea
| | - Jong-Bong Park
- Platform Technology Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea
| | - Kihong Kim
- Platform Technology Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea
| | - NamJeong Kim
- Platform Technology Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea
| | - Yongsung Kim
- Platform Technology Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea
| | - Dongwook Lee
- Platform Technology Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea
| | - Kyu-Sik Kim
- Organic Materials Laboratory, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Korea.
| | - Hee Jae Kang
- Department of Physics, Chungbuk National University, Cheongju, 361-763, Korea
| |
Collapse
|
15
|
Abstract
Inkjet printing is a powerful and cost-effective technique for deposition of liquid inks with high accuracy, which is not only of great significance for graphic applications but also has enormous potential for the direct printing of optoelectronic devices. This review highlights a comprehensive overview of the progress that has been made in optoelectronics fabrication by the inkjet printing technique. The first part briefly covers the droplet-generation process in the nozzles of printheads and the physical properties affecting droplet formation and the profiles of the printed patterns. The second section outlines the recent activities related to applications of inkjet printing in optoelectronics fabrication including solar cells, light-emitting diodes, photodetectors and transparent electrodes. In each application field, the challenges with the inkjet printing process and the possible solutions are discussed before a few remarks. In the last section, a brief summary on the progress of inkjet printing fabrication of optoelectronics and an outlook for future research effort are presented.
Collapse
Affiliation(s)
- Zhaoyao Zhan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Jianing An
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Yuefan Wei
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Van Thai Tran
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Hejun Du
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| |
Collapse
|
16
|
Pires NMM. Highly sensitive detection of human cancer antigens by an immunogold-silver assay chip coupled with a polythiophene-based optical sensor. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:2087-2090. [PMID: 28268742 DOI: 10.1109/embc.2016.7591139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This work presents a novel method for protein or cancer antigen detection in clinical samples by an immunogold-silver assay microfluidic biochip coupled with a polythiophene-based organic photodetector. The method has showed a detection limit below 1ng/mL and the low cost and high sensitivity of both organic photodetector and immunogold-silver assay make this method amenable for realization in a portable handheld probe tip biosensor.
Collapse
|
17
|
Jansen-van Vuuren RD, Armin A, Pandey AK, Burn PL, Meredith P. Organic Photodiodes: The Future of Full Color Detection and Image Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:4766-4802. [PMID: 27111541 DOI: 10.1002/adma.201505405] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Major growth in the image sensor market is largely as a result of the expansion of digital imaging into cameras, whether stand-alone or integrated within smart cellular phones or automotive vehicles. Applications in biomedicine, education, environmental monitoring, optical communications, pharmaceutics and machine vision are also driving the development of imaging technologies. Organic photodiodes (OPDs) are now being investigated for existing imaging technologies, as their properties make them interesting candidates for these applications. OPDs offer cheaper processing methods, devices that are light, flexible and compatible with large (or small) areas, and the ability to tune the photophysical and optoelectronic properties - both at a material and device level. Although the concept of OPDs has been around for some time, it is only relatively recently that significant progress has been made, with their performance now reaching the point that they are beginning to rival their inorganic counterparts in a number of performance criteria including the linear dynamic range, detectivity, and color selectivity. This review covers the progress made in the OPD field, describing their development as well as the challenges and opportunities.
Collapse
Affiliation(s)
- Ross D Jansen-van Vuuren
- Center for Organic Photonics & Electronics, the University of Queensland, Queensland, 4072, Australia
| | - Ardalan Armin
- Center for Organic Photonics & Electronics, the University of Queensland, Queensland, 4072, Australia
| | - Ajay K Pandey
- Center for Organic Photonics & Electronics, the University of Queensland, Queensland, 4072, Australia
| | - Paul L Burn
- Center for Organic Photonics & Electronics, the University of Queensland, Queensland, 4072, Australia
| | - Paul Meredith
- Center for Organic Photonics & Electronics, the University of Queensland, Queensland, 4072, Australia
| |
Collapse
|
18
|
Bhattacharjee M, Pasumarthi V, Chaudhuri J, Singh AK, Nemade H, Bandyopadhyay D. Self-spinning nanoparticle laden microdroplets for sensing and energy harvesting. NANOSCALE 2016; 8:6118-28. [PMID: 26931770 DOI: 10.1039/c6nr00217j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exposure of a volatile organic vapour could set in powerful rotational motion a microdroplet composed of an aqueous salt solution loaded with metal nanoparticles. The solutal Marangoni motion on the surface originating from the sharp difference in the surface tension of water and organic vapour stimulated the strong vortices inside the droplet. The vapour sources of methanol, ethanol, diethyl ether, toluene, and chloroform stimulated motions of different magnitudes could easily be correlated to the surface tension gradient on the drop surface. Interestingly, when the nanoparticle laden droplet of aqueous salt solution was connected to an external electric circuit through a pair of electrodes, an ∼85-95% reduction in the electrical resistance was observed across the spinning droplet. The extent of reduction in the resistance was found to have a correlation with the difference in the surface tension of the vapour source and the water droplet, which could be employed to distinguish the vapour sources. Remarkably, the power density of the same prototype was estimated to be around 7 μW cm(-2), which indicated the potential of the phenomenon in converting surface energy into electrical in a non-destructive manner and under ambient conditions. Theoretical analysis uncovered that the difference in the ζ-potential near the electrodes was the major reason for the voltage generation. The prototype could also detect the repeated exposure and withdrawal of vapour sources, which helped in the development of a proof-of-concept detector to sense alcohol issuing out of the human breathing system.
Collapse
Affiliation(s)
- Mitradip Bhattacharjee
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Viswanath Pasumarthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, India
| | - Joydip Chaudhuri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, India
| | - Amit Kumar Singh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Harshal Nemade
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India. and Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India. and Department of Chemical Engineering, Indian Institute of Technology Guwahati, India
| |
Collapse
|
19
|
Roda A, Mirasoli M, Michelini E, Di Fusco M, Zangheri M, Cevenini L, Roda B, Simoni P. Progress in chemical luminescence-based biosensors: A critical review. Biosens Bioelectron 2016; 76:164-79. [DOI: 10.1016/j.bios.2015.06.017] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022]
|
20
|
|
21
|
Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. SENSORS 2014; 14:15458-79. [PMID: 25196161 PMCID: PMC4178989 DOI: 10.3390/s140815458] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 01/23/2023]
Abstract
The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.
Collapse
|
22
|
Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem 2014; 406:5589-612. [DOI: 10.1007/s00216-014-7968-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/14/2014] [Accepted: 06/12/2014] [Indexed: 12/26/2022]
|
23
|
Zhang Z, Yu L, Xu L, Hu X, Li P, Zhang Q, Ding X, Feng X. Biotoxin sensing in food and environment via microchip. Electrophoresis 2014; 35:1547-59. [PMID: 24723235 DOI: 10.1002/elps.201300570] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/21/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
| | - Li Yu
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan); Ministry of Agriculture; Wuhan China
| | - Lin Xu
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Quality Inspection and Test Center for Oilseeds Products; Ministry of Agriculture; Wuhan China
| | - Xiaofeng Hu
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Detection for Mycotoxins; Ministry of Agriculture; Wuhan China
| | - Peiwu Li
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan); Ministry of Agriculture; Wuhan China
- Quality Inspection and Test Center for Oilseeds Products; Ministry of Agriculture; Wuhan China
- Key Laboratory of Detection for Mycotoxins; Ministry of Agriculture; Wuhan China
| | - Qi Zhang
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
| | - Xiaoxia Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan); Ministry of Agriculture; Wuhan China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory; Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
24
|
Pires NMM, Dong T. Ultrasensitive opto-microfluidic immunosensor integrating gold nanoparticle-enhanced chemiluminescence and highly stable organic photodetector. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:30504. [PMID: 24615640 DOI: 10.1117/1.jbo.19.3.030504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
The expensive fabrication of current opto-microfluidic sensors is a barrier to the successful adoption of these devices in point-of-care testing. This work reports a simple inexpensive opto-microfluidic device incorporating a poly(dimethylsiloxane)-glass hybrid microfluidic chip modified with gold nanoparticles and a high-detectivity, high-stability organic photodetector. The enhancing effect of the gold nanoparticles on horseradish peroxidase-luminol-H2O2 chemiluminescence was exploited in rapid single-analyte immunoassays. The limit of detection for 17-β estradiol was 2.5 pg/ml, which is ∼200 times more sensitive than previously reported chemiluminescent immunosensors employing other organic photodetectors. Detection was also demonstrated in complex media, including natural water and blood serum.
Collapse
|
25
|
Integration of Organic Light Emitting Diodes and Organic Photodetectors for Lab-on-a-Chip Bio-Detection Systems. ELECTRONICS 2014. [DOI: 10.3390/electronics3010043] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Xu Q, Zhang CY. Riboadenosine-substituted DNA probes for self-illuminating real-time monitoring of exonuclease III activity and exonuclease III-assisted target recycling. Chem Commun (Camb) 2014; 50:8047-9. [DOI: 10.1039/c4cc03021d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Mirasoli M, Guardigli M, Michelini E, Roda A. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J Pharm Biomed Anal 2014; 87:36-52. [DOI: 10.1016/j.jpba.2013.07.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 01/27/2023]
|
28
|
Ishimatsu R, Naruse A, Liu R, Nakano K, Yahiro M, Adachi C, Imato T. An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel. Talanta 2013; 117:139-45. [DOI: 10.1016/j.talanta.2013.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
|
29
|
Microfluidic biosensor array with integrated poly(2,7-carbazole)/fullerene-based photodiodes for rapid multiplexed detection of pathogens. SENSORS 2013; 13:15898-911. [PMID: 24287522 PMCID: PMC3892833 DOI: 10.3390/s131215898] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 11/17/2022]
Abstract
A multiplexed microfluidic biosensor made of poly(methylmethacrylate) (PMMA) was integrated into an array of organic blend heterojunction photodiodes (OPDs) for chemiluminescent detection of pathogens. Waterborne Escherichia coli O157:H7, Campylobacter jejuni and adenovirus were targeted in the PMMA chip, and detection of captured pathogens was conducted by poly(2,7-carbazole)/fullerene OPDs which showed a responsivity over 0.20 A/W at 425 nm. The limits of chemiluminescent detection were 5 × 105 cells/mL for E. coli, 1 × 105 cells/mL for C. jejuni, and 1 × 10−8 mg/mL for adenovirus. Parallel analysis for all three analytes in less than 35 min was demonstrated. Further recovery tests illustrated the potential of the integrated biosensor for detecting bacteria in real water samples.
Collapse
|
30
|
Xu Q, Zhu G, Zhang CY. Homogeneous bioluminescence detection of biomolecules using target-triggered hybridization chain reaction-mediated ligation without luciferase label. Anal Chem 2013; 85:6915-21. [PMID: 23767867 DOI: 10.1021/ac401334r] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We develop a new homogeneous method for sensitive detection of various biomolecules on the basis of bioluminescence monitoring the released AMP from the target-triggered hybridization chain reaction-mediated ligation. The introduction of hybridization chain reaction not only improves the sensitivity of DNA assay, but also facilitates the sensitive detection of proteins by designing specific aptamer triggers, providing a universally amplified platform for simultaneous detection of different kinds of biomolecules. Importantly, this bioluminescence assay employs the target-dependent ATP from the ligation byproduct of AMP as the reporter without the requirement for the sophisticated luciferase manipulation, complicated immobilization, and separation steps. The proposed method has significant advantages of simplicity, high sensitivity, low cost, and high throughput, and holds a great promise for practical point-of-care applications.
Collapse
Affiliation(s)
- Qinfeng Xu
- Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | | |
Collapse
|
31
|
Biswas S, Shalev O, Shtein M. Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications. Annu Rev Chem Biomol Eng 2013; 4:289-317. [PMID: 23540286 DOI: 10.1146/annurev-chembioeng-061312-103356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rapid advances in research and development in organic electronics have resulted in many exciting discoveries and applications, including organic light-emitting devices for information display and illumination, solar cells, photodetectors, chemosensors, and logic. Organic optoelectronic materials are broadly classified as polymeric or small molecular. For the latter category, solvent-free deposition techniques are generally preferred to form well-defined interfaces and improve device performance. This article reviews several deposition and patterning methods for small molecular thin films and devices, including organic molecular beam deposition, vacuum thermal evaporation, organic vapor phase deposition, and organic vapor jet printing, and compares them to several other methods that have been proposed recently. We hope this review provides a compact but informative summary of the state of the art in organic device processing and addresses the various techniques' governing physical principles.
Collapse
Affiliation(s)
- Shaurjo Biswas
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
32
|
Yoon JY, Kim B. Lab-on-a-chip pathogen sensors for food safety. SENSORS (BASEL, SWITZERLAND) 2012; 12:10713-41. [PMID: 23112625 PMCID: PMC3472853 DOI: 10.3390/s120810713] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/28/2012] [Accepted: 07/04/2012] [Indexed: 02/08/2023]
Abstract
There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs). These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.
Collapse
Affiliation(s)
- Jeong-Yeol Yoon
- Department of Agricultural and Biosystems Engineering, the University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
33
|
Gai H, Li Y, Yeung ES. Optical Detection Systems on Microfluidic Chips. MICROFLUIDICS 2011; 304:171-201. [DOI: 10.1007/128_2011_144] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Washburn AL, Bailey RC. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. Analyst 2010; 136:227-36. [PMID: 20957245 DOI: 10.1039/c0an00449a] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.
Collapse
Affiliation(s)
- Adam L Washburn
- Department of Chemistry, Institute for Genomic Biology and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
35
|
Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 2010; 25:1553-65. [PMID: 20042326 PMCID: PMC2846767 DOI: 10.1016/j.bios.2009.12.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/13/2009] [Accepted: 12/02/2009] [Indexed: 12/13/2022]
Abstract
The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed.
Collapse
Affiliation(s)
- Santhisagar Vaddiraju
- Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269
- Biorasis Inc., 23 Fellen Road, Storrs, CT 06268
| | | | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269
| | - Faquir C Jain
- Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269
| | - Fotios Papadimitrakopoulos
- Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
36
|
Tang D, Su B, Tang J, Ren J, Chen G. Nanoparticle-Based Sandwich Electrochemical Immunoassay for Carbohydrate Antigen 125 with Signal Enhancement Using Enzyme-Coated Nanometer-Sized Enzyme-Doped Silica Beads. Anal Chem 2010; 82:1527-34. [DOI: 10.1021/ac902768f] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education), and Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Biling Su
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education), and Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Juan Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education), and Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingjing Ren
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education), and Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Guonan Chen
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education), and Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
37
|
Xu Q, Liu J, He Z, Yang S. Superquenching acridinium ester chemiluminescence by gold nanoparticles for DNA detection. Chem Commun (Camb) 2010; 46:8800-2. [DOI: 10.1039/c0cc03349a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Affiliation(s)
- Jerome Workman
- Luminous Medical Inc., 1920 Palomar Point Way, Carlsbad, California 92008, Center for Process Analytical Chemistry (CPAC), University of Washington, Seattle, Washington 98195-1700, Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, and Atodyne Technologies, L.L.C., 4699 Pontiac Trail, Ann Arbor, Michigan 48105
| | - Mel Koch
- Luminous Medical Inc., 1920 Palomar Point Way, Carlsbad, California 92008, Center for Process Analytical Chemistry (CPAC), University of Washington, Seattle, Washington 98195-1700, Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, and Atodyne Technologies, L.L.C., 4699 Pontiac Trail, Ann Arbor, Michigan 48105
| | - Barry Lavine
- Luminous Medical Inc., 1920 Palomar Point Way, Carlsbad, California 92008, Center for Process Analytical Chemistry (CPAC), University of Washington, Seattle, Washington 98195-1700, Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, and Atodyne Technologies, L.L.C., 4699 Pontiac Trail, Ann Arbor, Michigan 48105
| | - Ray Chrisman
- Luminous Medical Inc., 1920 Palomar Point Way, Carlsbad, California 92008, Center for Process Analytical Chemistry (CPAC), University of Washington, Seattle, Washington 98195-1700, Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, and Atodyne Technologies, L.L.C., 4699 Pontiac Trail, Ann Arbor, Michigan 48105
| |
Collapse
|