1
|
Gao SQ, Zhao JH, Guan Y, Tang YS, Li Y, Liu LY. Mass Spectrometry Imaging technology in metabolomics: a systematic review. Biomed Chromatogr 2022:e5494. [PMID: 36044038 DOI: 10.1002/bmc.5494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/11/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful label-free analysis technique that can provide simultaneous spatial distribution of multiple compounds in a single experiment. By combining the sensitive and rapid screening of high-throughput mass spectrometry with spatial chemical information, metabolite analysis and morphological characteristics are presented in a single image. MSI can be used for qualitative and quantitative analysis of metabolic profiles and it can provide visual analysis of spatial distribution information of complex biological and microbial systems. Matrix assisted laser desorption ionization, laser ablation electrospray ionization and desorption electrospray ionization are commonly used in MSI. Here, we summarize and compare these three technologies, as well as the applications and prospects of MSI in metabolomics.
Collapse
Affiliation(s)
- Si-Qi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Jin-Hui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Yue Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Ying-Shu Tang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Li-Yan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
2
|
Beinat C, Patel CB, Haywood T, Murty S, Naya L, Castillo JB, Reyes ST, Phillips M, Buccino P, Shen B, Park JH, Koran MEI, Alam IS, James ML, Holley D, Halbert K, Gandhi H, He JQ, Granucci M, Johnson E, Liu DD, Uchida N, Sinha R, Chu P, Born DE, Warnock GI, Weissman I, Hayden-Gephart M, Khalighi M, Massoud TF, Iagaru A, Davidzon G, Thomas R, Nagpal S, Recht LD, Gambhir SS. A Clinical PET Imaging Tracer ([ 18F]DASA-23) to Monitor Pyruvate Kinase M2-Induced Glycolytic Reprogramming in Glioblastoma. Clin Cancer Res 2021; 27:6467-6478. [PMID: 34475101 PMCID: PMC8639752 DOI: 10.1158/1078-0432.ccr-21-0544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. EXPERIMENTAL DESIGN [18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/μmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. RESULTS In mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. CONCLUSIONS We developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.
Collapse
Affiliation(s)
- Corinne Beinat
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California.
| | - Chirag B Patel
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Tom Haywood
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Surya Murty
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Lewis Naya
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Jessa B Castillo
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Samantha T Reyes
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Megan Phillips
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Pablo Buccino
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Bin Shen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Jun Hyung Park
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Mary Ellen I Koran
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Israt S Alam
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Michelle L James
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Dawn Holley
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Kim Halbert
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Harsh Gandhi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Joy Q He
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Monica Granucci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Eli Johnson
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Daniel Dan Liu
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Nobuko Uchida
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Rahul Sinha
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Pauline Chu
- Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, California
| | - Donald E Born
- Department of Pathology, Neuropathology, Stanford University School of Medicine, Stanford, California
| | | | - Irving Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Melanie Hayden-Gephart
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Mehdi Khalighi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Tarik F Massoud
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Guido Davidzon
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Reena Thomas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Seema Nagpal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Lawrence D Recht
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California.
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
- Departments of Bioengineering and Materials Science & Engineering, Stanford University, Stanford, California
| |
Collapse
|
3
|
Masthoff M, Buchholz R, Beuker A, Wachsmuth L, Kraupner A, Albers F, Freppon F, Helfen A, Gerwing M, Höltke C, Hansen U, Rehkämper J, Vielhaber T, Heindel W, Eisenblätter M, Karst U, Wildgruber M, Faber C. Introducing Specificity to Iron Oxide Nanoparticle Imaging by Combining 57Fe-Based MRI and Mass Spectrometry. NANO LETTERS 2019; 19:7908-7917. [PMID: 31556617 DOI: 10.1021/acs.nanolett.9b03016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Iron oxide nanoparticles (ION) are highly sensitive probes for magnetic resonance imaging (MRI) that have previously been used for in vivo cell tracking and have enabled implementation of several diagnostic tools to detect and monitor disease. However, the in vivo MRI signal of ION can overlap with the signal from endogenous iron, resulting in a lack of detection specificity. Therefore, the long-term fate of administered ION remains largely unknown, and possible tissue deposition of iron cannot be assessed with established methods. Herein, we combine nonradioactive 57Fe-ION MRI with ex vivo laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging, enabling unambiguous differentiation between endogenous iron (56Fe) and iron originating from applied ION in mice. We establish 57Fe-ION as an in vivo MRI sensor for cell tracking in a mouse model of subcutaneous inflammation and for assessing the long-term fate of 57Fe-ION. Our approach resolves the lack of detection specificity in ION imaging by unambiguously recording a 57Fe signature.
Collapse
Affiliation(s)
- Max Masthoff
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Rebecca Buchholz
- Institute for Inorganic and Analytical Chemistry, University of Muenster , 48149 Muenster , Germany
| | - Andre Beuker
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | | | - Franziska Albers
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Felix Freppon
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Anne Helfen
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Mirjam Gerwing
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Carsten Höltke
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine , University Hospital Muenster , 48149 Muenster , Germany
| | - Jan Rehkämper
- Institute of Pathology , University Hospital Muenster , 48149 Muenster , Germany
| | - Torsten Vielhaber
- Institute for Inorganic and Analytical Chemistry, University of Muenster , 48149 Muenster , Germany
| | - Walter Heindel
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Michel Eisenblätter
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Uwe Karst
- Institute for Inorganic and Analytical Chemistry, University of Muenster , 48149 Muenster , Germany
- DFG Cluster of Excellence EXC 1003 "Cells in Motion" , University of Muenster , 48149 Muenster , Germany
| | - Moritz Wildgruber
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
- DFG Cluster of Excellence EXC 1003 "Cells in Motion" , University of Muenster , 48149 Muenster , Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
- DFG Cluster of Excellence EXC 1003 "Cells in Motion" , University of Muenster , 48149 Muenster , Germany
| |
Collapse
|
4
|
Le Fur M, Caravan P. The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists. Metallomics 2019; 11:240-254. [PMID: 30516229 PMCID: PMC6486840 DOI: 10.1039/c8mt00302e] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are widely used with clinical magnetic resonance imaging (MRI), and 10 s of millions of doses of GBCAs are administered annually worldwide. GBCAs are hydrophilic, thermodynamically stable and kinetically inert gadolinium chelates. In clinical MRI, 5-10 millimoles of Gd ion is administered intravenously and the GBCA is rapidly eliminated intact primarily through the kidneys into the urine. It is now well-established that the Gd3+ ion, in some form(s), is partially retained in vivo. In patients with advanced kidney disease, there is an association of Gd retention with nephrogenic systemic fibrosis (NSF) disease. However Gd is also retained in the brain, bone, skin, and other tissues in patients with normal renal function, and the presence of Gd can persist months to years after the last administration of a GBCA. Regulatory agencies are restricting the use of specific GBCAs and inviting health care professionals to evaluate the risk/benefit ratio prior to using GBCAs. Despite the growing number of studies investigating this issue both in animals and humans, the biological distribution and the chemical speciation of the residual gadolinium are not fully understood. Is the GBCA retained in its intact form? Is the Gd3+ ion dissociated from its chelator, and if so, what is its chemical form? Here we discuss the current state of knowledge regarding the issue of Gd retention and describe the analytical and spectroscopic methods that can be used to investigate the Gd speciation. Many of the physical methods that could be brought to bear on this problem are in the domain of bioinorganic chemistry and we hope that this review will serve to inspire this community to take up this important problem.
Collapse
Affiliation(s)
- Mariane Le Fur
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
5
|
Computational Methods for Mass Spectrometry Imaging: Challenges, Progress, and Opportunities. HEALTH INFORMATION SCIENCE 2017. [DOI: 10.1007/978-3-319-44981-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Gadolinium deposition: Is it chelated or dissociated gadolinium? How can we tell? Magn Reson Imaging 2016; 34:1377-1382. [DOI: 10.1016/j.mri.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 11/22/2022]
|
7
|
Zou J, Talbot F, Tata A, Ermini L, Franjic K, Ventura M, Zheng J, Ginsberg H, Post M, Ifa DR, Jaffray D, Miller RJD, Zarrine-Afsar A. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI). Anal Chem 2015; 87:12071-9. [PMID: 26561279 DOI: 10.1021/acs.analchem.5b02756] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 μm vertical resolution (∼3 μm removal per pulse) and a lateral resolution of ∼100 μm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery.
Collapse
Affiliation(s)
- Jing Zou
- Department of Physics, University of Toronto , 60 St George Street, Toronto, Ontario M5S 1A7, Canada
| | - Francis Talbot
- Department of Chemistry, University of Toronto , 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alessandra Tata
- Department of Chemistry, York University , 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,Techna Institute for the Advancement of Technology for Health, University Health Network , Toronto, Ontario M5G 1P5, Canada
| | - Leonardo Ermini
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, Ontario M5G 0A4, Canada
| | - Kresimir Franjic
- Department of Physics, University of Toronto , 60 St George Street, Toronto, Ontario M5S 1A7, Canada
| | - Manuela Ventura
- Techna Institute for the Advancement of Technology for Health, University Health Network , Toronto, Ontario M5G 1P5, Canada
| | - Jinzi Zheng
- Techna Institute for the Advancement of Technology for Health, University Health Network , Toronto, Ontario M5G 1P5, Canada
| | - Howard Ginsberg
- Department of Surgery, University of Toronto , 149 College Street, Toronto, Ontario M5T 1P5, Canada.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital , 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Martin Post
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, Ontario M5G 0A4, Canada.,Institute of Medical Science, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Demian R Ifa
- Department of Chemistry, York University , 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - David Jaffray
- Techna Institute for the Advancement of Technology for Health, University Health Network , Toronto, Ontario M5G 1P5, Canada.,Department of Medical Biophysics, University of Toronto , 101 College Street Suite 15-701, Toronto, Ontario M5G 1L7, Canada
| | - R J Dwayne Miller
- Department of Physics, University of Toronto , 60 St George Street, Toronto, Ontario M5S 1A7, Canada.,Department of Chemistry, University of Toronto , 80 St George Street, Toronto, Ontario M5S 3H6, Canada.,Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arash Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health, University Health Network , Toronto, Ontario M5G 1P5, Canada.,Department of Surgery, University of Toronto , 149 College Street, Toronto, Ontario M5T 1P5, Canada.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital , 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.,Department of Medical Biophysics, University of Toronto , 101 College Street Suite 15-701, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
8
|
Aichler M, Huber K, Schilling F, Lohöfer F, Kosanke K, Meier R, Rummeny EJ, Walch A, Wildgruber M. Spatially Resolved Quantification of Gadolinium(III)-Based Magnetic Resonance Agents in Tissue by MALDI Imaging Mass Spectrometry after In Vivo MRI. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Aichler M, Huber K, Schilling F, Lohöfer F, Kosanke K, Meier R, Rummeny EJ, Walch A, Wildgruber M. Spatially resolved quantification of gadolinium(III)-based magnetic resonance agents in tissue by MALDI imaging mass spectrometry after in vivo MRI. Angew Chem Int Ed Engl 2015; 54:4279-83. [PMID: 25689595 DOI: 10.1002/anie.201410555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 11/06/2022]
Abstract
Gadolinium(III)-based contrast agents improve the sensitivity and specificity of magnetic resonance imaging (MRI), especially when targeted contrast agents are applied. Because of nonlinear correlation between the contrast agent concentration in tissue and the MRI signal obtained in vivo, quantification of certain biological or pathophysiological processes by MRI remains a challenge. Up to now, no technology has been able to provide a spatially resolved quantification of MRI agents directly within the tissue, which would allow a more precise verification of in vivo imaging results. MALDI imaging mass spectrometry for spatially resolved in situ quantification of gadolinium(III) agents, in correlation to in vivo MRI, were evaluated. Enhanced kinetics of Gadofluorine M were determined dynamically over time in a mouse model of myocardial infarction. MALDI imaging was able to corroborate the in vivo imaging MRI signals and enabled in situ quantification of the gadolinium probe with high spatial resolution.
Collapse
Affiliation(s)
- Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Barry JA, Groseclose MR, Robichaud G, Castellino S, Muddiman DC. Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 377:448-155. [PMID: 26056514 PMCID: PMC4456684 DOI: 10.1016/j.ijms.2014.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Determining the distribution of a drug and its metabolites within tissue is a key facet of evaluating drug candidates. Drug distribution can have a significant implication in appraising drug efficacy and potential toxicity. The specificity and sensitivity of mass spectrometry imaging (MSI) make it a perfect complement to the analysis of drug distributions in tissue. The detection of lapatinib as well as several of its metabolites in liver tissue was determined by MSI using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) coupled to high resolving power Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. IR-MALDESI required minimal sample preparation while maintaining high sensitivity. The effect of the electrospray solvent composition on IR-MALDESI MSI signal from tissue analysis was investigated and an empirical comparison of IR-MALDESI and UV-MALDI for MSI analysis is also presented.
Collapse
Affiliation(s)
- Jeremy A. Barry
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - M. Reid Groseclose
- Department of Drug Metabolism& Pharmacokinetics, Platform Science & Technology, GlaxoSmithKline, Research Triangle Park, North Carolina
| | - Guillaume Robichaud
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Stephen Castellino
- Department of Drug Metabolism& Pharmacokinetics, Platform Science & Technology, GlaxoSmithKline, Research Triangle Park, North Carolina
| | - David C. Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
- Author for Correspondence David C. Muddiman, Ph.D. W.M. Keck FT-ICR Mass Spectrometry Laboratory Department of Chemistry North Carolina State University Raleigh, North Carolina 27695 Phone: 919-513-0084 Fax: 919-513-7993
| |
Collapse
|
11
|
Acquadro E, Caron I, Tortarolo M, Bucci EM, Bendotti C, Corpillo D. Human SOD1-G93A specific distribution evidenced in murine brain of a transgenic model for amyotrophic lateral sclerosis by MALDI imaging mass spectrometry. J Proteome Res 2014; 13:1800-9. [PMID: 24579824 DOI: 10.1021/pr400942n] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease caused by the degeneration of motor neurons. The transgenic mouse model carrying the human SOD1G93A mutant gene (hSOD1G93A mouse) represents one of the most reliable and widely used model of this pathology. In the present work, the innovative technique of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was applied in the study of pathological alterations at the level of small brain regions such as facial and trigeminal nuclei, which in rodents are extremely small and would be difficult to analyze with classical proteomics approaches. Comparing slices from three mice groups (transgenic hSOD1G93A, transgenic hSOD1WT, and nontransgenic, Ntg), this technique allowed us to evidence the accumulation of hSOD1G93A in the facial and trigeminal nuclei, where it generates aggregates. This phenomenon is likely to be correlated to the degeneration observed in these regions. Moreover, a statistical analysis allowed us to highlight other proteins as differentially expressed among the three mice groups analyzed. Some of them were identified by reverse-phase HPLC fractionation of extracted proteins and mass spectrometric analysis before and after trypsin digestion. In particular, the 40S ribosomal protein S19 (RPS19) was upregulated in the parenkyma and reactive glial cells in facial nuclei of hSOD1G93A mice when compared to transgenic hSOD1WT and nontransgenic ones.
Collapse
Affiliation(s)
- Elena Acquadro
- ABLE Bioscences, BioIndustry Park Silvano Fumero S.p.A., Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Anderson D, Kodukula K. Biomarkers in pharmacology and drug discovery. Biochem Pharmacol 2014; 87:172-88. [DOI: 10.1016/j.bcp.2013.08.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
|
13
|
Römpp A, Schäfer KC, Guenther S, Wang Z, Köstler M, Leisner A, Paschke C, Schramm T, Spengler B. High-resolution atmospheric pressure infrared laser desorption/ionization mass spectrometry imaging of biological tissue. Anal Bioanal Chem 2013; 405:6959-68. [DOI: 10.1007/s00216-013-7180-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 01/18/2023]
|
14
|
Quaas A, Bahar AS, von Loga K, Seddiqi AS, Singer JM, Omidi M, Kraus O, Kwiatkowski M, Trusch M, Minner S, Burandt E, Stahl P, Wilczak W, Wurlitzer M, Simon R, Sauter G, Marx A, Schlüter H. MALDI imaging on large-scale tissue microarrays identifies molecular features associated with tumour phenotype in oesophageal cancer. Histopathology 2013; 63:455-62. [PMID: 23855813 DOI: 10.1111/his.12193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/15/2013] [Indexed: 01/06/2023]
Abstract
AIMS Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) and tissue microarray (TMA) technologies were jointly utilized to search for molecular features associated with clinicopathological parameters in oesophageal cancer. METHODS AND RESULTS Two TMAs from formalin-fixed tissue samples, including 300 adenocarcinomas and 177 squamous cell carcinomas with clinical follow-up data, were analysed. MALDI-MSI analysis revealed 72 distinct mass per charge (m/z) signals associated with tumour cells, 48 of which were found in squamous cell carcinomas only, and 12 of which were specific for adenocarcinomas. In adenocarcinomas, six signals were linked to early-stage (pT1-T2) tumours (two signals) and the presence (one signal) or absence (three signals) of lymph node metastasis. In squamous cell carcinomas, 24 signals were strongly linked to different phenotypic features, including tumour stage (four signals), histological grade (four signals), and lymph node metastasis (three signals). CONCLUSIONS The high number of m/z signals that were found to be significantly linked to one or more phenotypic features of oesophageal cancer highlights the power of MALDI-MSI in the analysis of high-density TMAs. The data also emphasise substantial biological differences between adenocarcinomas and squamous cell carcinomas.
Collapse
Affiliation(s)
- Alexander Quaas
- Institute of Pathology, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Römpp A, Spengler B. Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 2013; 139:759-83. [PMID: 23652571 PMCID: PMC3656243 DOI: 10.1007/s00418-013-1097-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2013] [Indexed: 01/06/2023]
Abstract
Mass spectrometry (MS) imaging links molecular information and the spatial distribution of analytes within a sample. In contrast to most histochemical techniques, mass spectrometry imaging can differentiate molecular modifications and does not require labeling of targeted compounds. We have recently introduced the first mass spectrometry imaging method that provides highly specific molecular information (high resolution and accuracy in mass) at cellular dimensions (high resolution in space). This method is based on a matrix-assisted laser desorption/ionization (MALDI) imaging source working at atmospheric pressure which is coupled to an orbital trapping mass spectrometer. Here, we present a number of application examples and demonstrate the benefit of ‘mass spectrometry imaging with high resolution in mass and space.’ Phospholipids, peptides and drug compounds were imaged in a number of tissue samples at a spatial resolution of 5–10 μm. Proteins were analyzed after on-tissue tryptic digestion at 50-μm resolution. Additional applications include the analysis of single cells and of human lung carcinoma tissue as well as the first MALDI imaging measurement of tissue at 3 μm pixel size. MS image analysis for all these experiments showed excellent correlation with histological staining evaluation. The high mass resolution (R = 30,000) and mass accuracy (typically 1 ppm) proved to be essential for specific image generation and reliable identification of analytes in tissue samples. The ability to combine the required high-quality mass analysis with spatial resolution in the range of single cells is a unique feature of our method. With that, it has the potential to supplement classical histochemical protocols and to provide new insights about molecular processes on the cellular level.
Collapse
Affiliation(s)
- Andreas Römpp
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Schubertstrasse 60, 35392 Giessen, Germany.
| | | |
Collapse
|
16
|
Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013; 113:2309-42. [PMID: 23394164 PMCID: PMC3624074 DOI: 10.1021/cr3004295] [Citation(s) in RCA: 515] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeremy L. Norris
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| | - Richard M. Caprioli
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| |
Collapse
|
17
|
Metabolite structure analysis by high-resolution MS: supporting drug-development studies. Bioanalysis 2013; 5:463-79. [DOI: 10.4155/bio.13.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Effective characterization of drug metabolites in complex biological matrices is facilitated by mass spectrometers with high resolving power, mass accuracy and sensitivity. This review begins with an overview of high-resolution MS terminology and the different types of instrumentation that are currently available. Metabolite structure analysis offers unique challenges and, therefore, the different types of approaches used to solve problems are highlighted through specific examples. Overall, this review describes the value that high-resolution MS brings to drug-metabolism studies.
Collapse
|
18
|
Gonzalez DJ, Xu Y, Yang YL, Esquenazi E, Liu WT, Edlund A, Duong T, Du L, Molnár I, Gerwick WH, Jensen PR, Fischbach M, Liaw CC, Straight P, Nizet V, Dorrestein PC. Observing the invisible through imaging mass spectrometry, a window into the metabolic exchange patterns of microbes. J Proteomics 2012; 75:5069-5076. [PMID: 22641157 DOI: 10.1016/j.jprot.2012.05.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/17/2012] [Accepted: 05/19/2012] [Indexed: 01/20/2023]
Abstract
Many microbes can be cultured as single-species communities. Often, these colonies are controlled and maintained via the secretion of metabolites. Such metabolites have been an invaluable resource for the discovery of therapeutics (e.g. penicillin, taxol, rapamycin, epothilone). In this article, written for a special issue on imaging mass spectrometry, we show that MALDI-imaging mass spectrometry can be adapted to observe, in a spatial manner, the metabolic exchange patterns of a diverse array of microbes, including thermophilic and mesophilic fungi, cyanobacteria, marine and terrestrial actinobacteria, and pathogenic bacteria. Dependent on media conditions, on average and based on manual analysis, we observed 11.3 molecules associated with each microbial IMS experiment, which was split nearly 50:50 between secreted and colony-associated molecules. The spatial distributions of these metabolic exchange factors are related to the biological and ecological functions of the organisms. This work establishes that MALDI-based IMS can be used as a general tool to study a diverse array of microbes. Furthermore the article forwards the notion of the IMS platform as a window to discover previously unreported molecules by monitoring the metabolic exchange patterns of organisms when grown on agar substrates.
Collapse
Affiliation(s)
- David J Gonzalez
- Department of Pediatrics, University of California, San Diego, United States
| | - Yuquan Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States
| | - Yu-Liang Yang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States
| | - Eduardo Esquenazi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, United States
| | - Wei-Ting Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, United States
| | - Anna Edlund
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, United States
| | - Tram Duong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, United States
| | - István Molnár
- Natural Products Center, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, United States
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, United States
| | - Michael Fischbach
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Paul Straight
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, United States
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States; Department of Chemistry and Biochemistry, University of California, San Diego, United States; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, United States.
| |
Collapse
|
19
|
Goodwin RJA, Mackay CL, Nilsson A, Harrison DJ, Farde L, Andren PE, Iverson SL. Qualitative and quantitative MALDI imaging of the positron emission tomography ligands raclopride (a D2 dopamine antagonist) and SCH 23390 (a D1 dopamine antagonist) in rat brain tissue sections using a solvent-free dry matrix application method. Anal Chem 2011; 83:9694-701. [PMID: 22077717 DOI: 10.1021/ac202630t] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The distributions of positron emission tomography (PET) ligands in rat brain tissue sections were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). The detection of the PET ligands was possible following the use of a solvent-free dry MALDI matrix application method employing finely ground dry α-cyano-4-hydroxycinnamic acid (CHCA). The D2 dopamine receptor antagonist 3,5-dichloro-N-{[(2S)-1-ethylpyrrolidin-2-yl]methyl}-2-hydroxy-6-methoxybenzamide (raclopride) and the D1 dopamine receptor antagonist 7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol (SCH 23390) were both detected at decreasing abundance at increasing period postdosing. Confirmation of the compound identifications and distributions was achieved by a combination of mass-to-charge ratio accurate mass, isotope distribution, and MS/MS fragmentation imaging directly from tissue sections (performed using MALDI TOF/TOF, MALDI q-TOF, and 12T MALDI-FT-ICR mass spectrometers). Quantitative data was obtained by comparing signal abundances from tissues to those obtained from quantitation control spots of the target compound applied to adjacent vehicle control tissue sections (analyzed during the same experiment). Following a single intravenous dose of raclopride (7.5 mg/kg), an average tissue concentration of approximately 60 nM was detected compared to 15 nM when the drug was dosed at 2 mg/kg, indicating a linear response between dose and detected abundance. SCH 23390 was established to have an average tissue concentration of approximately 15 μM following a single intravenous dose at 5 mg/kg. Both target compounds were also detected in kidney tissue sections when employing the same MSI methodology. This study illustrates that a MSI may well be readily applied to PET ligand research development when using a solvent-free dry matrix coating.
Collapse
|
20
|
Römpp A, Guenther S, Takats Z, Spengler B. Mass spectrometry imaging with high resolution in mass and space (HR2 MSI) for reliable investigation of drug compound distributions on the cellular level. Anal Bioanal Chem 2011; 401:65-73. [DOI: 10.1007/s00216-011-4990-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 11/30/2022]
|
21
|
From pixel to voxel: a deeper view of biological tissue by 3D mass spectral imaging. Bioanalysis 2011; 3:313-32. [PMID: 21320052 DOI: 10.4155/bio.10.201] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Three dimensional mass spectral imaging (3D MSI) is an exciting field that grants the ability to study a broad mass range of molecular species ranging from small molecules to large proteins by creating lateral and vertical distribution maps of select compounds. Although the general premise behind 3D MSI is simple, factors such as choice of ionization method, sample handling, software considerations and many others must be taken into account for the successful design of a 3D MSI experiment. This review provides a brief overview of ionization methods, sample preparation, software types and technological advancements driving 3D MSI research of a wide range of low- to high-mass analytes. Future perspectives in this field are also provided to conclude that the outlook for 3D MSI is positive and promises ever-growing applications in the biomedical field with continuous developments of this powerful analytical tool.
Collapse
|
22
|
Greer T, Sturm R, Li L. Mass spectrometry imaging for drugs and metabolites. J Proteomics 2011; 74:2617-31. [PMID: 21515430 DOI: 10.1016/j.jprot.2011.03.032] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/20/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
Mass spectrometric imaging (MSI) is a powerful analytical technique that provides two- and three-dimensional spatial maps of multiple compounds in a single experiment. This technique has been routinely applied to protein, peptide, and lipid molecules with much less research reporting small molecule distributions, especially pharmaceutical drugs. This review's main focus is to provide readers with an up-to-date description of the substrates and compounds that have been analyzed for drug and metabolite composition using MSI technology. Additionally, ionization techniques, sample preparation, and instrumentation developments are discussed.
Collapse
Affiliation(s)
- Tyler Greer
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705–2222, USA
| | | | | |
Collapse
|
23
|
McDonnell LA, Corthals GL, Willems SM, van Remoortere A, van Zeijl RJM, Deelder AM. Peptide and protein imaging mass spectrometry in cancer research. J Proteomics 2010; 73:1921-44. [PMID: 20510389 DOI: 10.1016/j.jprot.2010.05.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/28/2010] [Accepted: 05/16/2010] [Indexed: 12/12/2022]
Abstract
MALDI mass spectrometry is able to acquire protein profiles directly from tissue that can describe the levels of hundreds of distinct proteins. MALDI imaging MS can simultaneously reveal how each of these proteins varies in heterogeneous tissues. Numerous studies have now demonstrated how MALDI imaging MS can generate different protein profiles from the different cell types in a tumor, which can act as biomarker profiles or enable specific candidate protein biomarkers to be identified. MALDI imaging MS can be directly applied to patient samples where its utility is to accomplish untargeted multiplex analysis of the tissue's protein content, enabling the different regions of the tissue to be differentiated on the basis of previously unknown protein profiles/biomarkers. The technique continues to rapidly develop and is now approaching the cusp whereby its potential to provide new diagnostic/prognostic tools for cancer patients can be routinely investigated. Here the latest methodological developments are summarized and its application to a range of tumors is reported in detail. The prospects of MALDI imaging MS are then described from the perspectives of modern pathological practice and MS-based proteomics, to ensure the outlook addresses real clinical needs and reflects the real capabilities of MS-based proteomics of complex tissue samples.
Collapse
Affiliation(s)
- Liam A McDonnell
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The use of MS imaging (MSI) to resolve the spatial and pharmacodynamic distributions of compounds in tissues is emerging as a powerful tool for pharmacological research. Unlike established imaging techniques, only limited a priori knowledge is required and no extensive manipulation (e.g., radiolabeling) of drugs is necessary prior to dosing. MS provides highly multiplexed detection, making it possible to identify compounds, their metabolites and other changes in biomolecular abundances directly off tissue sections in a single pass. This can be employed to obtain near cellular, or potentially subcellular, resolution images. Consideration of technical limitations that affect the process is required, from sample preparation through to analyte ionization and detection. The techniques have only recently been adapted for imaging and novel variations to the established MSI methodologies will further enhance the application of MSI for pharmacological research.
Collapse
|
25
|
Imaging of gadolinium spatial distribution in tumor tissue by laser ablation inductively coupled plasma mass spectrometry. Mol Imaging Biol 2009; 12:361-6. [PMID: 19921340 DOI: 10.1007/s11307-009-0282-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/06/2009] [Accepted: 09/08/2009] [Indexed: 01/27/2023]
Abstract
PURPOSE Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was utilized in postmortem imaging of gadolinium (Gd) spatial distribution in a mouse tumor model postadministration of PEGylated Gd liposomal nanoparticles. PROCEDURES PEGylated liposomal nanoparticles were formulated using a paramagnetic lipid incorporating Gd, in addition to a fluorescent lipid, and injected intravenously into Balb/C nude mice bearing IGROV-1 tumors. At postinjection (2 h), the tumors and selective organs were imaged by magnetic resonance imaging (MRI) and, after excision, by histology and LA-ICP-MS. RESULTS The presence of Gd within tumor tissue was confirmed by LA-ICP-MS and when correlated to histology was found to be prevalent in regions of higher vascularity. The presence of Gd in the kidneys was also confirmed. CONCLUSIONS We have demonstrated, in a novel manner, the use of LA-ICP-MS for the spatial detection of Gd in tumor tissue. LA-ICP-MS is valuable in providing spatio-specific information of MRI contrast agents and more importantly Gd in tumor tissue.
Collapse
|