1
|
Mørch AM, Schneider F. Investigating Diffusion Dynamics and Interactions with Scanning Fluorescence Correlation Spectroscopy (sFCS). Methods Mol Biol 2023; 2654:61-89. [PMID: 37106176 DOI: 10.1007/978-1-0716-3135-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Activation of immune cells and formation of immunological synapses (IS) rely critically on the reorganization of the plasma membrane. These highly orchestrated processes are driven by diffusion and oligomerization dynamics, as well as by single molecule interactions. While slow macro- and meso-scale changes in organization can be observed with conventional imaging, fast nano-scale dynamics are often missed with traditional approaches, but resolving them is, nonetheless, essential to understand the underlying biological mechanisms at play. Here, we describe the use of scanning fluorescence correlation spectroscopy (sFCS) and scanning fluorescence cross-correlation spectroscopy (sFCCS) to study reorganization and changes in molecular diffusion dynamics and interactions during IS formation and in other biological settings. We focus on the practical aspects of the measurements including calibration and alignment of the optical setup, present a comprehensive protocol to perform the measurements, and provide data analysis pipelines and strategies. Finally, we show an exemplary application of the technology to studying Lck diffusion during T-cell signaling.
Collapse
Affiliation(s)
| | - Falk Schneider
- Translational Imaging Center, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
2
|
Mobility of Nucleostemin in Live Cells Is Specifically Related to Transcription Inhibition by Actinomycin D and GTP-Binding Motif. Int J Mol Sci 2021; 22:ijms22158293. [PMID: 34361059 PMCID: PMC8347349 DOI: 10.3390/ijms22158293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
In vertebrates, nucleostemin (NS) is an important marker of proliferation in several types of stem and cancer cells, and it can also interact with the tumor-suppressing transcription factor p53. In the present study, the intra-nuclear diffusional dynamics of native NS tagged with GFP and two GFP-tagged NS mutants with deleted guanosine triphosphate (GTP)-binding domains were analyzed by fluorescence correlation spectroscopy. Free and slow binding diffusion coefficients were evaluated, either under normal culture conditions or under treatment with specific cellular proliferation inhibitors actinomycin D (ActD), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), or trichostatin A (TSA). When treated with ActD, the fractional ratio of the slow diffusion was significantly decreased in the nucleoplasm. The decrease was proportional to ActD treatment duration. In contrast, DRB or TSA treatment did not affect NS diffusion. Interestingly, it was also found that the rate of diffusion of two NS mutants increased significantly even under normal conditions. These results suggest that the mobility of NS in the nucleoplasm is related to the initiation of DNA or RNA replication, and that the GTP-binding motif is also related to the large change of mobility.
Collapse
|
3
|
Poly(A)+ Sensing of Hybridization-Sensitive Fluorescent Oligonucleotide Probe Characterized by Fluorescence Correlation Methods. Int J Mol Sci 2021; 22:ijms22126433. [PMID: 34208525 PMCID: PMC8234900 DOI: 10.3390/ijms22126433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Ribonucleic acid (RNA) plays an important role in many cellular processes. Thus, visualizing and quantifying the molecular dynamics of RNA directly in living cells is essential to uncovering their role in RNA metabolism. Among the wide variety of fluorescent probes available for RNA visualization, exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes are useful because of their low fluorescence background. In this study, we apply fluorescence correlation methods to ECHO probes targeting the poly(A) tail of mRNA. In this way, we demonstrate not only the visualization but also the quantification of the interaction between the probe and the target, as well as of the change in the fluorescence brightness and the diffusion coefficient caused by the binding. In particular, the uptake of ECHO probes to detect mRNA is demonstrated in HeLa cells. These results are expected to provide new insights that help us better understand the metabolism of intracellular mRNA.
Collapse
|
4
|
Huang Y, Deng L, Su D, Huang X, Ren J. Highly sensitive detection of DNA methyltransferase activity and its inhibitor screening by coupling fluorescence correlation spectroscopy with polystyrene polymer dots. Analyst 2021; 146:3623-3632. [PMID: 33929479 DOI: 10.1039/d0an02362k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA methylation is a critical part of epigenetics and plays a vital role in maintaining normal cell function, genetic imprinting, and human tumorigenesis. Thus, it is important to develop a sensitive method for the determination of DNA methyltransferase (MTase) activity. Here, we present a simple and sensitive method based on single molecule fluorescence correlation spectroscopy (FCS) and polystyrene polymer dots (PS Pdots) for the quantitative detection of DNA adenine methylation (Dam) MTase activity and its inhibitor screening in homogeneous solution without separation. Its principle is based on the measurement of the characteristic diffusion time (τD) of unmethylated and methylated DNA-fluorescent probes by FCS. A hairpin DNA probe including the 5'-GATC-3' sequence is used by doubly labelling fluorophore Alexa Fluor 488 (Alexa 488) and biotin at the 5'- and 3'-terminus, respectively. Dam MTase catalyzed the methylation of the sequence of 5'-GATC-3', and DpnI cleaved the sequence of 5'-G-Am-TC-3'. Streptavidin conjugated PS Pdots were used to react with DNA probes without methylation to further increase the difference in τD values between methylated and unmethylated DNA-Alexa 488 probes. We used the FCS method to measure the τD values of DNA-Alexa 488 probes and further obtained the activity of Dam MTase. It is found that the τD value of the methylated DNA probe is negatively correlated with the logarithm of Dam MTase concentration in the range from 0.025 U mL-1 to 3 U mL-1. The detection limit is as low as 0.025 U mL-1. Furthermore, we evaluated the inhibition effect of drug-related DNA methylation and the half-maximal inhibitory concentration (IC50) value is consistent with a previous study. The results demonstrated that our proposed method will become a promising platform for the determination of Dam MTase activity and inhibitor screening.
Collapse
Affiliation(s)
- Yuyang Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Liyun Deng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Di Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| |
Collapse
|
5
|
Dawes ML, Soeller C, Scholpp S. Studying molecular interactions in the intact organism: fluorescence correlation spectroscopy in the living zebrafish embryo. Histochem Cell Biol 2020; 154:507-519. [PMID: 33067656 PMCID: PMC7609432 DOI: 10.1007/s00418-020-01930-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Cell behaviour and function is determined through the interactions of a multitude of molecules working in concert. To observe these molecular dynamics, biophysical studies have been developed that track single interactions. Fluorescence correlation spectroscopy (FCS) is an optical biophysical technique that non-invasively resolves single molecules through recording the signal intensity at the femtolitre scale. However, recording the behaviour of these biomolecules using in vitro-based assays often fails to recapitulate the full range of variables in vivo that directly confer dynamics. Therefore, there has been an increasing interest in observing the state of these biomolecules within living organisms such as the zebrafish Danio rerio. In this review, we explore the advancements of FCS within the zebrafish and compare and contrast these findings to those found in vitro.
Collapse
Affiliation(s)
- Michael L Dawes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Christian Soeller
- Living Systems Institute, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
6
|
Su D, Hou Y, Dong C, Ren J. Fluctuation correlation spectroscopy and its applications in homogeneous analysis. Anal Bioanal Chem 2019; 411:4523-4540. [DOI: 10.1007/s00216-019-01884-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/12/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
|
7
|
Microsphere Assisted Super-resolution Optical Imaging of Plasmonic Interaction between Gold Nanoparticles. Sci Rep 2017; 7:13789. [PMID: 29062012 PMCID: PMC5653755 DOI: 10.1038/s41598-017-14193-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Conventional far-field microscopy cannot directly resolve the sub-diffraction spatial distribution of localized surface plasmons in metal nanostructures. Using BaTiO3 microspheres as far-field superlenses by collecting the near-field signal, we can map the origin of enhanced two-photon photoluminescence signal from the gap region of gold nanosphere dimers and gold nanorod dimers beyond the diffraction limit, on a conventional far-field microscope. As the angle θ between dimer's structural axis and laser polarisation changes, photoluminescence intensity varies with a cos4θ function, which agrees quantitatively with numerical simulations. An optical resolution of about λ/7 (λ: two-photon luminescence central wavelength) is demonstrated at dimer's gap region.
Collapse
|
8
|
Pernuš A, Langowski J. Imaging Fos-Jun transcription factor mobility and interaction in live cells by single plane illumination-fluorescence cross correlation spectroscopy. PLoS One 2015; 10:e0123070. [PMID: 25875593 PMCID: PMC4397054 DOI: 10.1371/journal.pone.0123070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/27/2015] [Indexed: 11/20/2022] Open
Abstract
We collected mobility and interaction maps of c-Fos-eGFP and c-Jun-mRFP1 transcription factors within living cell nuclei. c-Fos dimerizes with c-Jun to form the transcription activator protein-1 (AP-1) which binds to the specific recognition site. To monitor this process, we used fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS), which provides diffusion coefficient and protein-protein interaction data in the whole image plane simultaneously, instead of just one point on conventional confocal FCS. We find a strong correlation between diffusional mobility and interaction: regions of strong interaction show slow mobility. Controls containing either an eGFP-mRFP dimer, separately expressing eGFP and mRPF, or c-Fos-eGFP and c-Jun-mRFP1 mutants lacking dimerization and DNA-binding domains, showed no such correlation. These results extend our earlier findings from confocal FCCS to include spatial information.
Collapse
Affiliation(s)
- Agata Pernuš
- Division Biophysics of Macromolecules, DKFZ, Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, DKFZ, Heidelberg, Germany
| |
Collapse
|
9
|
Lee W, von Hippel PH, Marcus AH. Internally labeled Cy3/Cy5 DNA constructs show greatly enhanced photo-stability in single-molecule FRET experiments. Nucleic Acids Res 2014; 42:5967-77. [PMID: 24627223 PMCID: PMC4027219 DOI: 10.1093/nar/gku199] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA constructs labeled with cyanine fluorescent dyes are important substrates for single-molecule (sm) studies of the functional activity of protein–DNA complexes. We previously studied the local DNA backbone fluctuations of replication fork and primer–template DNA constructs labeled with Cy3/Cy5 donor–acceptor Förster resonance energy transfer (FRET) chromophore pairs and showed that, contrary to dyes linked ‘externally’ to the bases with flexible tethers, direct ‘internal’ (and rigid) insertion of the chromophores into the sugar-phosphate backbones resulted in DNA constructs that could be used to study intrinsic and protein-induced DNA backbone fluctuations by both smFRET and sm Fluorescent Linear Dichroism (smFLD). Here we show that these rigidly inserted Cy3/Cy5 chromophores also exhibit two additional useful properties, showing both high photo-stability and minimal effects on the local thermodynamic stability of the DNA constructs. The increased photo-stability of the internal labels significantly reduces the proportion of false positive smFRET conversion ‘background’ signals, thereby simplifying interpretations of both smFRET and smFLD experiments, while the decreased effects of the internal probes on local thermodynamic stability also make fluctuations sensed by these probes more representative of the unperturbed DNA structure. We suggest that internal probe labeling may be useful in studies of many DNA–protein interaction systems.
Collapse
Affiliation(s)
- Wonbae Lee
- Oregon Center for Optics and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | - Peter H von Hippel
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | - Andrew H Marcus
- Oregon Center for Optics and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
10
|
Lunau N, Seelhorst K, Kahl S, Tscherch K, Stacke C, Rohn S, Thiem J, Hahn U, Meier C. Fluorescently Labeled Substrates for Monitoring α1,3‐Fucosyltransferase IX Activity. Chemistry 2013; 19:17379-90. [DOI: 10.1002/chem.201302601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Nathalie Lunau
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin‐Luther‐King‐Platz 6, 20146 Hamburg (Germany), Fax: (+49) 40‐42838‐5592
| | - Katrin Seelhorst
- Biochemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin‐Luther‐King‐Platz 6, 20146 Hamburg (Germany), Fax: (+49) 40‐42838‐2848
| | - Stefanie Kahl
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin‐Luther‐King‐Platz 6, 20146 Hamburg (Germany), Fax: (+49) 40‐42838‐5592
| | - Kathrin Tscherch
- Food Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin‐Luther‐King‐Platz 6, 20146 Hamburg (Germany)
| | - Christina Stacke
- Biochemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin‐Luther‐King‐Platz 6, 20146 Hamburg (Germany), Fax: (+49) 40‐42838‐2848
| | - Sascha Rohn
- Food Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin‐Luther‐King‐Platz 6, 20146 Hamburg (Germany)
| | - Joachim Thiem
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin‐Luther‐King‐Platz 6, 20146 Hamburg (Germany), Fax: (+49) 40‐42838‐5592
| | - Ulrich Hahn
- Biochemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin‐Luther‐King‐Platz 6, 20146 Hamburg (Germany), Fax: (+49) 40‐42838‐2848
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, Martin‐Luther‐King‐Platz 6, 20146 Hamburg (Germany), Fax: (+49) 40‐42838‐5592
| |
Collapse
|
11
|
Bacia K, Petrášek Z, Schwille P. Correcting for spectral cross-talk in dual-color fluorescence cross-correlation spectroscopy. Chemphyschem 2012; 13:1221-31. [PMID: 22344749 PMCID: PMC3495304 DOI: 10.1002/cphc.201100801] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/29/2011] [Indexed: 11/07/2022]
Abstract
Dual-color fluorescence cross-correlation spectroscopy (dcFCCS) allows one to quantitatively assess the interactions of mobile molecules labeled with distinct fluorophores. The technique is widely applied to both reconstituted and live-cell biological systems. A major drawback of dcFCCS is the risk of an artifactual false-positive or overestimated cross-correlation amplitude arising from spectral cross-talk. Cross-talk can be reduced or prevented by fast alternating excitation, but the technology is not easily implemented in standard commercial setups. An experimental strategy is devised that does not require specialized hardware and software for recognizing and correcting for cross-talk in standard dcFCCS. The dependence of the cross-talk on particle concentrations and brightnesses is quantitatively confirmed. Moreover, it is straightforward to quantitatively correct for cross-talk using quickly accessible parameters, that is, the measured (apparent) fluorescence count rates and correlation amplitudes. Only the bleed-through ratio needs to be determined in a calibration measurement. Finally, the limitations of cross-talk correction and its influence on experimental error are explored.
Collapse
Affiliation(s)
- Kirsten Bacia
- HALOmem, University of Halle, Kurt-Mothes-Str. 3, 06120 Halle, Germany.
| | | | | |
Collapse
|
12
|
Das S, Powe AM, Baker GA, Valle B, El-Zahab B, Sintim HO, Lowry M, Fakayode SO, McCarroll ME, Patonay G, Li M, Strongin RM, Geng ML, Warner IM. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal Chem 2011; 84:597-625. [DOI: 10.1021/ac202904n] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Susmita Das
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Aleeta M. Powe
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
| | - Gary A. Baker
- Department of Chemistry, University of Missouri−Columbia, Columbia, Missouri 65211-7600, United States
| | - Bertha Valle
- Department of Chemistry, Texas Southern University, Houston, Texas 77004, United States
| | - Bilal El-Zahab
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Mark Lowry
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States
| | - Sayo O. Fakayode
- Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, United States
| | - Matthew E. McCarroll
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901-4409, United States
| | - Gabor Patonay
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Min Li
- Process Development Center, Albemarle Corporation, Baton Rouge, Louisiana 70805, United States
| | - Robert M. Strongin
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States
| | - Maxwell L. Geng
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
13
|
Tian Y, Martinez MM, Pappas D. Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications. APPLIED SPECTROSCOPY 2011; 65:115A-124A. [PMID: 21396180 PMCID: PMC3071976 DOI: 10.1366/10-06224] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Over the years fluorescence correlation spectroscopy (FCS) has proven to be a useful technique that has been utilized in several fields of study. Although FCS initially suffered from poor signal-to-noise ratios, the incorporation of confocal microscopy has overcome this drawback and transformed FCS into a sensitive technique with high figures of merit. In addition, tandem methods have evolved to include dual-color cross-correlation, total internal reflection fluorescence correlation, and fluorescence lifetime correlation spectroscopy combined with time-correlated single-photon counting. In this review, we discuss several applications of FSC for biochemical, microfluidic, and cellular investigations.
Collapse
Affiliation(s)
- Yu Tian
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Michelle M. Martinez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
14
|
Wilson DM, Simeonov A. Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell Mol Life Sci 2010; 67:3621-31. [PMID: 20809131 PMCID: PMC2956791 DOI: 10.1007/s00018-010-0488-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
APE1 is a multifunctional protein that possesses several nuclease activities, including the ability to incise at apurinic/apyrimidinic (AP) sites in DNA or RNA, to excise 3'-blocking termini from DNA ends, and to cleave at certain oxidized base lesions in DNA. Pre-clinical and clinical data indicate a role for APE1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs, particularly monofunctional alkylators and antimetabolites. In an effort to improve the efficacy of therapeutic compounds, such as temozolomide, groups have begun to develop high-throughput screening assays and to identify small molecule inhibitors against APE1 repair nuclease activities. It is envisioned that such inhibitors will be used in combinatorial treatment paradigms to enhance the efficacy of DNA-interactive drugs that introduce relevant cytotoxic DNA lesions. In this review, we summarize the current state of the efforts to design potent and selective inhibitors against APE1 AP site incision activity.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, IRP, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | |
Collapse
|