1
|
Mashhadi IS, Safarnejad MR, Shahmirzaie M, Aliahmadi A, Ghassempour A, Aboul-Enein HY. Determination of the epitopic peptides of fig mosaic virus and the single-chain variable fragment antibody by mass spectrometry. Anal Biochem 2023; 681:115319. [PMID: 37716512 DOI: 10.1016/j.ab.2023.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The study of antibody-antigen interactions, through epitope mapping, enhances our understanding of antibody neutralization and antigenic determinant recognition. Epitope mapping, employing monoclonal antibodies and mass spectrometry, has emerged as a rapid and precise method to investigate viral antigenic determinants. In this report, we propose an approach to improve the accuracy of epitopic peptide interaction rate recognition. To achieve this, we investigated the interaction between the nucleocapsid protein of fig mosaic virus (FMV-NP) and single-chain variable fragment antibodies (scFv-Ab). These scFv-Ab maintain high specificity similar to whole monoclonal antibodies, but they are smaller in size. We coupled this with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The experimental design involved using two different enzymes to digest FMV-NP separately. The resulting peptides were then incubated separately with the desired scFv-Ab at different incubation times and antibody concentrations. This allowed us to monitor the relative rate of epitopic peptide interaction with the antibody. The results demonstrated that, at a 1:1 ratio and after 2 h of interaction, the residues 122-136, 148-157, and 265-276 exhibited high-rate epitopic peptide binding, with reductions in peak intensity of 78%, 21%, and 22%, respectively. Conversely, the residues 250-264 showed low-rate binding, with a 15% reduction in peak intensity. This epitope mapping approach, utilizing scFv-Ab, two different enzymes, and various incubation times, offers a precise and dependable analysis for monitoring and recognizing the binding kinetics of antigenic determinants. Furthermore, this method can be applied to study any kind of antigens.
Collapse
Affiliation(s)
- Ilnaz Soleimani Mashhadi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Mohammad Reza Safarnejad
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Morteza Shahmirzaie
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Niayesh Highway, Valiasr Ave, Tehran, Iran
| | - Atousa Aliahmadi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Alireza Ghassempour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Abstract
New surveillance methods employing mass spectrometry (MS) have been developed to characterize the influenza virus and, by extension, other biopathogens at the molecular level. The structure and antigenicity of protein antigens on the surface of the viral capsid are screened in a single step employing the immunoproteomics MS-based approach. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) coupled to gel electrophoresis is used both to identify viral antigens and screen their antigenicity. Evidence that antigen-antibody complexes, and protein complexes more generally, can survive on conventional MALDI targets has allowed both the primary structure and antigenicity of viral strains to be rapidly screened and protein epitopes to be identified with molecular precision. The approach should aid in future screening of the virus and assist in the development of immunogenic peptide constructs as alternative treatments to vaccination over the whole inactivated virus. The assay adds to the repertoire of mass spectrometric approaches for examining antigen-antibody interactions, in particular, and protein complexes, in general, without the need to immobilize, tag, or recover either component.
Collapse
Affiliation(s)
- Kevin M Downard
- Infectious Disease Responses Laboratory, POWCS, Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals. Methods 2018; 144:134-151. [PMID: 29678586 DOI: 10.1016/j.ymeth.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mass spectrometry (MS)-based methods for analyzing protein higher order structures have gained increasing application in the field of biopharmaceutical development. The predominant methods used in this area include native MS, hydrogen deuterium exchange-MS, covalent labeling, cross-linking and limited proteolysis. These MS-based methods will be briefly described in this article, followed by a discussion on how these methods contribute at different stages of discovery and development of protein therapeutics.
Collapse
|
4
|
Opuni KFM, Al-Majdoub M, Yefremova Y, El-Kased RF, Koy C, Glocker MO. Mass spectrometric epitope mapping. MASS SPECTROMETRY REVIEWS 2018; 37:229-241. [PMID: 27403762 DOI: 10.1002/mas.21516] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Mass spectrometric epitope mapping has become a versatile method to precisely determine a soluble antigen's partial structure that directly interacts with an antibody in solution. Typical lengths of investigated antigens have increased up to several 100 amino acids while experimentally determined epitope peptides have decreased in length to on average 10-15 amino acids. Since the early 1990s more and more sophisticated methods have been developed and have forwarded a bouquet of suitable approaches for epitope mapping with immobilized, temporarily immobilized, and free-floating antibodies. While up to now monoclonal antibodies have been mostly used in epitope mapping experiments, the applicability of polyclonal antibodies has been proven. The antibody's resistance towards enzymatic proteolysis has been of key importance for the two mostly applied methods: epitope excision and epitope extraction. Sample consumption has dropped to low pmol amounts on both, the antigen and the antibody. While adequate in-solution sample handling has been most important for successful epitope mapping, mass spectrometric analysis has been found the most suitable read-out method from early on. The rapidity by which mass spectrometric epitope mapping nowadays is executed outperforms all alternative methods. Thus, it can be asserted that mass spectrometric epitope mapping has reached a state of maturity, which allows it to be used in any mass spectrometry laboratory. After 25 years of constant and steady improvements, its application to clinical samples, for example, for patient characterization and stratification, is anticipated in the near future. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:229-241, 2018.
Collapse
Affiliation(s)
- Kwabena F M Opuni
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Mahmoud Al-Majdoub
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Yelena Yefremova
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Reham F El-Kased
- Microbiology and Immunology Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Cornelia Koy
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Downard KM. Indirect study of non-covalent protein complexes by MALDI mass spectrometry: Origins, advantages, and applications of the "intensity-fading" approach. MASS SPECTROMETRY REVIEWS 2016; 35:559-573. [PMID: 26250984 DOI: 10.1002/mas.21480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
This review article describes the origins, advantages, and application of an indirect approach with which to study protein and other macromolecular complexes and identify the nature and site of interaction interfaces by means of conventional matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). First reported in 1999, it involves the detection of ion depletion or the absence of ions associated with a binding partner or domain in the MALDI mass spectrum of a mixture of interacting components compared to that for an untreated control. Later referred to as intensity-fading in some applications, the method offers numerous advantages over the direct detection of protein and other macromolecule complexes by MALDI-MS and even electrospray ionization (ESI) MS. The origins of this indirect method, its development for use with gel-separated components, validation using companion biochemical assays, and application to a range of protein-antibody and protein-drug complexes are reviewed together with software specifically developed to aid with data interpretation. The sensitivity of the approach for revealing how subtle differences in the structure of the binding partners can be detected by MALDI-MS is also demonstrated. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:559-573, 2016.
Collapse
|
6
|
Oxidative footprinting in the study of structure and function of membrane proteins: current state and perspectives. Biochem Soc Trans 2016; 43:983-94. [PMID: 26517913 DOI: 10.1042/bst20150130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane proteins, such as receptors, transporters and ion channels, control the vast majority of cellular signalling and metabolite exchange processes and thus are becoming key pharmacological targets. Obtaining structural information by usage of traditional structural biology techniques is limited by the requirements for the protein samples to be highly pure and stable when handled in high concentrations and in non-native buffer systems, which is often difficult to achieve for membrane targets. Hence, there is a growing requirement for the use of hybrid, integrative approaches to study the dynamic and functional aspects of membrane proteins in physiologically relevant conditions. In recent years, significant progress has been made in the field of oxidative labelling techniques and in particular the X-ray radiolytic footprinting in combination with mass spectrometry (MS) (XF-MS), which provide residue-specific information on the solvent accessibility of proteins. In combination with both low- and high-resolution data from other structural biology approaches, it is capable of providing valuable insights into dynamics of membrane proteins, which have been difficult to obtain by other structural techniques, proving a highly complementary technique to address structure and function of membrane targets. XF-MS has demonstrated a unique capability for identification of structural waters and conformational changes in proteins at both a high degree of spatial and a high degree of temporal resolution. Here, we provide a perspective on the place of XF-MS among other structural biology methods and showcase some of the latest developments in its usage for studying water-mediated transmembrane (TM) signalling, ion transport and ligand-induced allosteric conformational changes in membrane proteins.
Collapse
|
7
|
Challenges and opportunities of using liquid chromatography and mass spectrometry methods to develop complex vaccine antigens as pharmaceutical dosage forms. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:23-38. [PMID: 27071526 DOI: 10.1016/j.jchromb.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Liquid chromatographic methods, combined with mass spectrometry, offer exciting and important opportunities to better characterize complex vaccine antigens including recombinant proteins, virus-like particles, inactivated viruses, polysaccharides, and protein-polysaccharide conjugates. The current abilities and limitations of these physicochemical methods to complement traditional in vitro and in vivo vaccine potency assays are explored in this review through the use of illustrative case studies. Various applications of these state-of-the art techniques are illustrated that include the analysis of influenza vaccines (inactivated whole virus and recombinant hemagglutinin), virus-like particle vaccines (human papillomavirus and hepatitis B), and polysaccharide linked to protein carrier vaccines (pneumococcal). Examples of utilizing these analytical methods to characterize vaccine antigens in the presence of adjuvants, which are often included to boost immune responses as part of the final vaccine dosage form, are also presented. Some of the challenges of using chromatographic and LC-MS as physicochemical assays to routinely test complex vaccine antigens are also discussed.
Collapse
|
8
|
Müller P, Downard KM. Catechin inhibition of influenza neuraminidase and its molecular basis with mass spectrometry. J Pharm Biomed Anal 2015; 111:222-30. [PMID: 25910046 DOI: 10.1016/j.jpba.2015.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 01/23/2023]
Abstract
The molecular basis for the antiviral inhibitory properties of three catechins epigallocatechin gallate, epicatechin gallate and catechin-5-gallate derived from green tea was assessed in terms of their ability to interact with influenza neuraminidase. This was investigated using a molecular based MALDI mass spectrometry approach in conjunction with companion inhibition assays employing confocal microscopy. Together with computational molecular docking, all three catechins were found to bind to influenza neuraminidase in the vicinity of a structurally conserved cavity adjacent to residue 430 that has been suggested to be a secondary sialic acid binding site. In doing so, they were effective inhibitors of the enzyme preventing the release of progeny viruses from host cells at inhibitor concentrations (IC50 values) of between 100 and 173 μM. Importantly, their different binding profiles avoid the limitations of existing neuraminidase inhibitors manifested by the evolution of antiviral resistance strains.
Collapse
Affiliation(s)
- Patrick Müller
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Australia
| | - Kevin M Downard
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Australia.
| |
Collapse
|
9
|
Swaminathan K, Müller P, Downard KM. Substituent effects on the binding of natural product anthocyanidin inhibitors to influenza neuraminidase with mass spectrometry. Anal Chim Acta 2014; 828:61-9. [PMID: 24845816 DOI: 10.1016/j.aca.2014.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/30/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022]
Abstract
The binding of three closely related anthocyanins within the 430-cavity of influenza neuraminidase is studied using a combination of mass spectrometry and molecular docking. Despite their similar structures, which differ only in the number and position of the hydroxyl substituents on the phenyl group attached to the chromenylium ring, subtle differences in their binding characteristics are revealed by mass spectrometry and molecular docking that are in accord with their inhibitory properties by neuraminidase inhibition assays. The cyanidin and delphinidin, with the greatest number of hydroxyl groups, bind more strongly and are better inhibitors than pelargonidin that contains a lone hydroxyl group at the 4' position. The study demonstrates, for the first time, the sensitivity of the mass spectrometry based approach for investigating the molecular basis and relative affinity of antiviral inhibitors, with subtly different structures, to their target protein. It has broader application for the screening of other protein interactions more generally with reasonable high-throughput.
Collapse
Affiliation(s)
- Kavya Swaminathan
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Molecular Bioscience Building G08, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patrick Müller
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Molecular Bioscience Building G08, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kevin M Downard
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Molecular Bioscience Building G08, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
10
|
Al-Majdoub M, Opuni KFM, Koy C, Glocker MO. Facile Fabrication and Instant Application of Miniaturized Antibody-Decorated Affinity Columns for Higher-Order Structure and Functional Characterization of TRIM21 Epitope Peptides. Anal Chem 2013; 85:10479-87. [DOI: 10.1021/ac402559m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M. Al-Majdoub
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - K. F. M. Opuni
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - C. Koy
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - M. O. Glocker
- Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
11
|
Kordyukova LV, Serebryakova MV. Mass spectrometric approaches to study enveloped viruses: new possibilities for structural biology and prophylactic medicine. BIOCHEMISTRY (MOSCOW) 2013; 77:830-42. [PMID: 22860905 PMCID: PMC7087845 DOI: 10.1134/s0006297912080044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review considers principles of the use of mass spectrometry for the study of biological macromolecules. Some examples of protein identification, virion proteomics, testing vaccine preparations, and strain surveillance are represented. Possibilities of structural characterization of viral proteins and their posttranslational modifications are shown. The authors’ studies by MALDI-MS on S-acylation of glycoproteins from various families of enveloped viruses and on oligomerization of the influenza virus hemagglutinin transmembrane domains are summarized.
Collapse
Affiliation(s)
- L V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | |
Collapse
|
12
|
Ma L, Wang Z, Liu S, Song F, Liu Z, Liu S. Screening calmodulin-binding ligands using intensity-fading matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1527-1534. [PMID: 23722687 DOI: 10.1002/rcm.6594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/07/2013] [Accepted: 04/07/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Calmodulin (CaM) plays an important role in the regulation of metabolism, cytoskeleton and cell proliferation. CaM antagonists are a class of drugs that can bind to CaM and modulate the interactions between CaM and their target biological processes. Screening new calmodulin antagonists and developing novel methods for detecting calmodulin ligands are important for developing novel anti-cancer drugs that bind specifically to CaM. METHODS An intensity-fading matrix-assisted laser desorption/ionization mass spectrometry (IF-MALDI-MS) method for screening calmodulin ligands was established, with the non-binding drug propranolol as the internal control. The experimental sample was prepared by mixing the positive ligand trifluoperazine (or chlorpromazine), propranolol and Ca(2+)-CaM. The control sample was treated in the same way without the addition of CaM. The experimental and control samples were both analyzed by MALDI-MS. Based on the relative intensity fading (IF) of the ligand to propranolol, the MS conditions were optimized and then used to study the binding of eight alkaloids and calmodulin. Competitive experiments were performed in a similar way by adding two drugs to compare their binding affinities with calmodulin. RESULTS The matrix 2,6-dihydroxyacetophenone (DHAP) was suitable for detecting calmodulin ligands. Compared with propranolol, the relative intensities of six free drugs (berbamine, tetrandrine, papaverine, reserpine, brucine and tetrahydropalmatine) clearly faded after the addition of calmodulin, indicating that they can bind with CaM. The other two alkaloids (strychnine and piperine) had no or weak interaction with the target protein. Based on the data from the competitive binding experiments, the binding affinities of five drugs to calmodulin were obtained in the order: tetrandrine > trifluoperazine > berbamine > chlorpromazine > imipramine. CONCLUSIONS The IF-MALDI-MS method was successfully applied to screen novel calmodulin agents at both qualitative and semiquantitative levels. The new ligands may be novel leads for CaM antagonists.
Collapse
Affiliation(s)
- Lei Ma
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun Center of Mass Spectrometry, Changchun, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Swaminathan K, Dyason JC, Maggioni A, von Itzstein M, Downard KM. Binding of a natural anthocyanin inhibitor to influenza neuraminidase by mass spectrometry. Anal Bioanal Chem 2013; 405:6563-72. [PMID: 23748498 DOI: 10.1007/s00216-013-7068-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
The binding of a natural anthocyanin to influenza neuraminidase has been studied employing mass spectrometry and molecular docking. Derived from a black elderberry extract, cyanidin-3-sambubiocide has been found to be a potent inhibitor of sialidase activity. This study reveals the molecular basis for its activity for the first time. The anthocyanin is shown by parallel experimental and computational approaches to bind in the so-called 430-cavity in the vicinity of neuraminidase residues 356-364 and 395-432. Since this antiviral compound binds remote from Asp 151 and Glu 119, two residues known to regulate neuraminidase resistance, it provides the potential for the development of a new class of antivirals against the influenza virus without this susceptibility.
Collapse
Affiliation(s)
- Kavya Swaminathan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
14
|
Atmanene C, Wagner-Rousset E, Corvaïa N, Van Dorsselaer A, Beck A, Sanglier-Cianférani S. Noncovalent mass spectrometry for the characterization of antibody/antigen complexes. Methods Mol Biol 2013; 988:243-268. [PMID: 23475725 DOI: 10.1007/978-1-62703-327-5_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Monoclonal antibodies (mAbs) have taken on an increasing importance for the treatment of various diseases including cancers, immunological disorders, and other pathologies. These large biomolecules display specific structural features, which affect their efficiency and need therefore to be extensively characterized using sensitive and orthogonal analytical techniques. Among them, mass spectrometry (MS) has become the method of choice to study mAb amino acid sequences as well as their posttranslational modifications with the aim of reducing their chemistry, manufacturing, and control liabilities. This chapter will provide the reader with a description of the general approach allowing antibody/antigen systems to be characterized by noncovalent MS. In the present chapter, we describe how recent noncovalent MS technologies are used to characterize immune complexes involving both murine and humanized mAb 6F4 directed against human JAM-A, a newly identified antigenic protein (Ag) over-expressed in tumor cells. We will detail experimental conditions (sample preparation, optimization of instrumental parameters, etc.) required for the detection of noncovalent antibody/antigen complexes by MS. We will then focus on the type and the reliability of the information that we get from noncovalent MS data, with emphasis on the determination of the stoichiometry of antibody/antigen systems. Noncovalent MS appears as an additional supporting technique for therapeutic mAbs lead characterization and development.
Collapse
Affiliation(s)
- Cédric Atmanene
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, CNRS, UMR7178, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
15
|
Downard KM. An immunoproteomics approach to screen the antigenicity of the influenza virus. Methods Mol Biol 2013; 1061:141-153. [PMID: 23963935 DOI: 10.1007/978-1-62703-589-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The structure and antigenicity of protein antigens of the influenza virus are screened in a single step employing an immunoproteomics approach. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) coupled to gel electrophoresis is used both to identify viral antigens and screen their antigenicity. Earlier evidence that antigen-antibody complexes can survive on MALDI targets has allowed both the primary structure and antigenicity of viral strains to be rapidly screened with the specific localization of protein epitopes. The approach is anticipated to have a greater role in the future surveillance of the virus and should also aid in the development of immunogenic peptide constructs as alternatives to whole virus for vaccination.
Collapse
Affiliation(s)
- Kevin M Downard
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Mädler S, Boeri Erba E, Zenobi R. MALDI-ToF mass spectrometry for studying noncovalent complexes of biomolecules. Top Curr Chem (Cham) 2012; 331:1-36. [PMID: 22371170 DOI: 10.1007/128_2011_311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been demonstrated to be a valuable tool to investigate noncovalent interactions of biomolecules. The direct detection of noncovalent assemblies is often more troublesome than with electrospray ionization. Using dedicated sample preparation techniques and carefully optimized instrumental parameters, a number of biomolecule assemblies were successfully analyzed. For complexes dissociating under MALDI conditions, covalent stabilization with chemical cross-linking is a suitable alternative. Indirect methods allow the detection of noncovalent assemblies by monitoring the fading of binding partners or altered H/D exchange patterns.
Collapse
Affiliation(s)
- Stefanie Mädler
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
17
|
Moise A, André S, Eggers F, Krzeminski M, Przybylski M, Gabius HJ. Toward Bioinspired Galectin Mimetics: Identification of Ligand-Contacting Peptides by Proteolytic-Excision Mass Spectrometry. J Am Chem Soc 2011; 133:14844-7. [DOI: 10.1021/ja201967v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Adrian Moise
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Frederike Eggers
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Mickael Krzeminski
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Michael Przybylski
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 München, Germany
| |
Collapse
|
18
|
Hutchinson AT, Alexova R, Bockhorni V, Ramsland PA, Jones DR, Jennings CV, Broady K, Edmundson AB, Raison RL. Characterization of a unique conformational epitope on free immunoglobulin kappa light chains that is recognized by an antibody with therapeutic potential. Mol Immunol 2011; 48:1245-52. [DOI: 10.1016/j.molimm.2011.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
|
19
|
Liu W, Liu S, Li H, Song F, Liu Z, Liu S. Binding of alpha 1-acid glycoprotein with aconitum alkaloids: an investigation using an intensity fading matrix-assisted laser desorption/ionization Fourier transform mass spectrometry method. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:973-978. [PMID: 21416535 DOI: 10.1002/rcm.4947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/22/2010] [Accepted: 01/13/2011] [Indexed: 05/30/2023]
Abstract
Intensity fading matrix-assisted laser desorption/ionization (IF-MALDI) mass spectrometry has become an alternative screening approach for the affinity-binding analysis of proteins and peptides with ligands. In this study, an attempt has been made to study the interaction of alpha 1-acid glycoprotein (AGP) with aconitum alkaloids by IF-MALDI Fourier transform ion cyclotron resonance mass spectrometry (IF-MALDI-FT-MS). Compared with the nonbinding internal standard, clear reduction in the ion abundances of the target alkaloids was observed with the addition of AGP. Relative binding affinities of different alkaloids towards the protein could also be estimated using IF-MALDI-FT-MS. The binding affinity was also investigated by using ultrafiltration liquid chromatography with photodiode array detection coupled to electrospray ionization mass spectrometry (ultrafiltration LC-DAD/ESI-MS), and results were consistent with that of IF-MALDI-FT-MS.
Collapse
Affiliation(s)
- Wenlong Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Stefanescu R, Born R, Moise A, Ernst B, Przybylski M. Epitope structure of the carbohydrate recognition domain of asialoglycoprotein receptor to a monoclonal antibody revealed by high-resolution proteolytic excision mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:148-157. [PMID: 21472553 DOI: 10.1007/s13361-010-0010-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.
Collapse
Affiliation(s)
- Raluca Stefanescu
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
21
|
El-Kased RF, Koy C, Lorenz P, Drynda S, Guthke R, Qian Z, Koczan D, Li Y, Kekow J, Thiesen HJ, Glocker MO. Mass spectrometric and peptide chip epitope analysis on the RA33 autoantigen with sera from rheumatoid arthritis patients. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:443-451. [PMID: 20530829 DOI: 10.1255/ejms.1046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
As the potential of epitope chips for routine application in diagnostics relies on the careful selection of peptides, reliable epitope mapping results are of utmost interest to the medical community. Mass spectrometric epitope mapping in combination with peptide chip analysis showed that autoantibodies from patients who suffered from rheumatoid arthritis (RA) were directed against distinct surface structures on the full-length human autoantigen RA33 as well as against partial sequences. Using the combined mass spectrometric epitope extraction and peptide chip analysis approach, four sequence motifs on RA33 emerged as immuno-positive, showing that epitopes were not randomly distributed on the entire RA33 amino acid sequence. A sequential epitope motif ((245)GYGGG(249)) was determined on the C-terminal part of RA33 which matched with the Western blot patient screening results using the full-length protein and, thus, was regarded as a disease-associated epitope. Other epitope motifs were found on N-terminal partial sequences ((59)RSRGFGF(65), (111)KKLFVG(116)) and again on the C-terminal part ((266)NQQPSNYG(273)) of RA33. As recognition of these latter three motifs was also recorded by peptide chip analysis using control samples which were negative in the Western blot screening, these latter motifs were regarded as "cryptic epitopes". Knowledge of disease-associated epitopes is crucial for improving the design of a customized epitope peptide chip for RA and mass spectrometric epitope mapping pivotally assisted with selecting the most informative peptide(s) to be used for future diagnostic purposes.
Collapse
Affiliation(s)
- R F El-Kased
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schwahn AB, Wong JWH, Downard KM. Rapid typing and subtyping of vaccine strains of the influenza virus with high resolution mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:321-329. [PMID: 20530822 DOI: 10.1255/ejms.1056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The application of high-resolution mass spectrometry to type and subtype strains of the influenza virus within recent recommended vaccine formulations is described. Proteolytic digests of whole virus or separated hemagglutinin antigen generate conserved signature peptides of unique mass that can be used to characterise each component virus in a rapid and direct manner by the detection of their ions alone. The approach is demonstrated for two type A strains and one type B strain of human influenza viruses present in recommended seasonal vaccines in the northern and southern hemispheres from 2007 through 2010.
Collapse
Affiliation(s)
- Alexander B Schwahn
- School of Molecular & Microbial Biosciences G-08, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
23
|
Linear epitope mapping by native mass spectrometry. Anal Biochem 2009; 395:100-7. [DOI: 10.1016/j.ab.2009.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 08/16/2009] [Accepted: 08/17/2009] [Indexed: 11/17/2022]
|
24
|
Atmanene C, Wagner-Rousset E, Malissard M, Chol B, Robert A, Corvaïa N, Dorsselaer AV, Beck A, Sanglier-Cianférani S. Extending Mass Spectrometry Contribution to Therapeutic Monoclonal Antibody Lead Optimization: Characterization of Immune Complexes Using Noncovalent ESI-MS. Anal Chem 2009; 81:6364-73. [DOI: 10.1021/ac9007557] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cédric Atmanene
- Laboratoire de Spectrométrie de Masse BioOrganique
(LSMBO), IPHC-DSA, University of Strasbourg UDS,CNRS, UMR7178; 25
rue Becquerel, 67087 Strasbourg, France, and Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-En-Genevois,
France
| | - Elsa Wagner-Rousset
- Laboratoire de Spectrométrie de Masse BioOrganique
(LSMBO), IPHC-DSA, University of Strasbourg UDS,CNRS, UMR7178; 25
rue Becquerel, 67087 Strasbourg, France, and Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-En-Genevois,
France
| | - Martine Malissard
- Laboratoire de Spectrométrie de Masse BioOrganique
(LSMBO), IPHC-DSA, University of Strasbourg UDS,CNRS, UMR7178; 25
rue Becquerel, 67087 Strasbourg, France, and Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-En-Genevois,
France
| | - Bertrand Chol
- Laboratoire de Spectrométrie de Masse BioOrganique
(LSMBO), IPHC-DSA, University of Strasbourg UDS,CNRS, UMR7178; 25
rue Becquerel, 67087 Strasbourg, France, and Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-En-Genevois,
France
| | - Alain Robert
- Laboratoire de Spectrométrie de Masse BioOrganique
(LSMBO), IPHC-DSA, University of Strasbourg UDS,CNRS, UMR7178; 25
rue Becquerel, 67087 Strasbourg, France, and Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-En-Genevois,
France
| | - Nathalie Corvaïa
- Laboratoire de Spectrométrie de Masse BioOrganique
(LSMBO), IPHC-DSA, University of Strasbourg UDS,CNRS, UMR7178; 25
rue Becquerel, 67087 Strasbourg, France, and Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-En-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique
(LSMBO), IPHC-DSA, University of Strasbourg UDS,CNRS, UMR7178; 25
rue Becquerel, 67087 Strasbourg, France, and Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-En-Genevois,
France
| | - Alain Beck
- Laboratoire de Spectrométrie de Masse BioOrganique
(LSMBO), IPHC-DSA, University of Strasbourg UDS,CNRS, UMR7178; 25
rue Becquerel, 67087 Strasbourg, France, and Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-En-Genevois,
France
| | - Sarah- Sanglier-Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique
(LSMBO), IPHC-DSA, University of Strasbourg UDS,CNRS, UMR7178; 25
rue Becquerel, 67087 Strasbourg, France, and Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-En-Genevois,
France
| |
Collapse
|
25
|
Schwahn AB, Downard KM. Antigenicity of a Type A Influenza Virus Through Comparison of Hemagglutination Inhibition and Mass Spectrometry Immunoassays. J Immunoassay Immunochem 2009; 30:245-61. [DOI: 10.1080/15321810903084350] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Schwahn AB, Wong JWH, Downard KM. Subtyping of the Influenza Virus by High Resolution Mass Spectrometry. Anal Chem 2009; 81:3500-6. [DOI: 10.1021/ac900026f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander B. Schwahn
- School of Molecular & Microbial Biosciences, University of Sydney, NSW 2006, Australia, and UNSW Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Jason W. H. Wong
- School of Molecular & Microbial Biosciences, University of Sydney, NSW 2006, Australia, and UNSW Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Kevin M. Downard
- School of Molecular & Microbial Biosciences, University of Sydney, NSW 2006, Australia, and UNSW Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
27
|
Wang Z, Yu X, Cui M, Liu Z, Song F, Liu S. Investigation of calmodulin-Peptide interactions using matrix-assisted laser desorption/ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:576-583. [PMID: 19110443 DOI: 10.1016/j.jasms.2008.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 11/20/2008] [Accepted: 11/20/2008] [Indexed: 05/27/2023]
Abstract
In this report, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to study the binding interactions between calmodulin and two target peptides (melittin and substance P). Various matrix conditions were tested and the less acidic matrix DHAP and THAP were found to favor the survival of the intact calcium-calmodulin as well as the calmodulin-peptide complexes. However, the application of direct MALDI-MS to detect the intact complexes turned out to be very difficult due to the dissociation of the complexes and the formation of nonspecific aggregates. In contrast, the specific binding of the target peptides to calmodulin could be easily deduced using intensity-fading (IF) MALDI-MS. Compared with the nonbinding control, clear reduction in the ion abundances of the target peptides was observed with the addition of calmodulin. Relative binding affinities of different peptides towards the protein could also be estimated using IF-MALDI-MS. This study may extend the application of IF-MALDI-MS in the analysis of noncovalent complexes and offer a perspective into the utility of MALDI-MS as an alternative approach to study the peptides binding to calmodulin.
Collapse
Affiliation(s)
- Zhaofu Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun Center of Mass Spectrometry, Changchun, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Downard KM, Morrissey B, Schwahn AB. Mass spectrometry analysis of the influenza virus. MASS SPECTROMETRY REVIEWS 2009; 28:35-49. [PMID: 18785239 DOI: 10.1002/mas.20194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The role of mass spectrometry to probe characteristics of the influenza virus, and vaccine and antiviral drugs that target the virus, are reviewed. Genetic and proteomic approaches have been applied which incorporate high resolution mass spectrometry and mass mapping to genotype the virus and establish its evolution in terms of the primary structure of the surface protein antigens. A mass spectrometric immunoassay has been developed and applied to assess the structure and antigenicity of the virus in terms of the hemagglutinin antigen. The quantitation of the hemagglutinin antigen in vaccine preparations has also been conducted that is of importance to their efficacy. Finally, the characterization and quantitation of antiviral drugs against the virus, and their metabolites, have been monitored in blood, serum, and urine. The combined approaches demonstrate the strengths of modern mass spectrometric methods for the characterization of this killer virus. [This article was published online 10 September 2008. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected 7 November 2008.]
Collapse
Affiliation(s)
- Kevin M Downard
- School of Molecular & Microbial Biosciences, The University of Sydney, Sydney, NSW, Australia.
| | | | | |
Collapse
|
29
|
Morrissey B, Downard KM. Kinetics of Antigen−Antibody Interactions Employing a MALDI Mass Spectrometry Immunoassay. Anal Chem 2008; 80:7720-6. [DOI: 10.1021/ac801069q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bethny Morrissey
- School of Molecular and Microbial Biosciences, The University of Sydney, Australia
| | - Kevin M. Downard
- School of Molecular and Microbial Biosciences, The University of Sydney, Australia
| |
Collapse
|
30
|
Morrissey B, Streamer M, Downard KM. Antigenic characterisation of H3N2 subtypes of the influenza virus by mass spectrometry. J Virol Methods 2007; 145:106-14. [PMID: 17588679 DOI: 10.1016/j.jviromet.2007.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 05/07/2007] [Accepted: 05/09/2007] [Indexed: 11/21/2022]
Abstract
The antigenic characterisation of three H3N2 type A influenza strains by mass spectrometry is described. The approach, developed in this laboratory, employs matrix-assisted laser desorption ionisation (MALDI) mass spectrometry to analyse gel-resolved antigens, post their proteolysis and treatment with monoclonal antibodies. The primary structure and antigenicity of the component antigens of the virus can be determined in a single step. Four antigenic domains of hemagglutinin have been identified and these are localised at residues 109-125, 158-170 and 316-326 of the HA1 subunit and to residues 159-183 of the HA2 subunit. The results demonstrate the applicability of the approach for identifying antigenic determinants across various H3N2 strains with high throughput and at low sample levels. Comparative rates of antibody binding between two of the antigenic peptides have also been reported.
Collapse
Affiliation(s)
- Bethny Morrissey
- School of Molecular & Microbial Biosciences, The University of Sydney, Australia
| | | | | |
Collapse
|
31
|
Ho JWK, Morrissey B, Downard KM. A computer algorithm for the identification of protein interactions from the spectra of masses (PRISM). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:563-6. [PMID: 17161618 DOI: 10.1016/j.jasms.2006.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/01/2006] [Accepted: 11/03/2006] [Indexed: 05/12/2023]
Abstract
A new algorithm is reported to assist with the identification of protein interaction domains by comparing pairs of MALDI mass spectra recorded for protein digests treated with a binding partner versus an untreated control. Known as PRISM, for protein interactions from the spectra of masses, the algorithm imports m/z versus peak area data directly from a pair of MALDI mass spectra recorded for the control and reaction sample. The algorithm is shown to be able to successfully identify antigenic determinants for protein antigens within mixed protein digests. The algorithm has general utility for the comparative analysis of differences within any two mass spectra of any type and is easily implemented using a simple, intuitive graphical user interface (GUI).
Collapse
Affiliation(s)
- Joshua W K Ho
- School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
32
|
Yanes O, Aviles FX, Roepstorff P, Jørgensen TJD. Exploring the "intensity fading" phenomenon in the study of noncovalent interactions by MALDI-TOF mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:359-67. [PMID: 17097887 DOI: 10.1016/j.jasms.2006.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 08/10/2006] [Accepted: 10/02/2006] [Indexed: 05/12/2023]
Abstract
The difficulties to detect intact noncovalent complexes involving proteins and peptides by MALDI-TOF mass spectrometry have hindered a widespread use of this approach. Recently, "intensity fading MS" has been presented as an alternative strategy to detect noncovalent interactions in solution, in which a reduction in the relative signal intensity of low molecular mass binding partners (i.e., protease inhibitors) can be observed when their target protein (i.e., protease) is added to the sample. Here we have performed a systematic study to explore how various experimental conditions affect the intensity fading phenomenon, as well as a comparison with the strategy based on the direct detection of intact complexes by MALDI MS. For this purpose, the study is focused on two different protease-inhibitor complexes naturally occurring in solution, together with a heterogeneous mixture of nonbinding molecules derived from a biological extract, to examine the specificity of the approach, i.e., those of carboxypeptidase A (CPA) bound to potato carboxypeptidase inhibitor (PCI) and of trypsin bound to bovine pancreatic trypsin inhibitor (BPTI). Our results show that the intensity fading phenomenon occurs when the binding assay is carried out in the sub-muM range and the interacting partners are present in complex mixtures of nonbinding compounds. Thus, at these experimental conditions, the specific inhibitor-protease interaction causes a selective reduction in the relative abundance of the inhibitor. Interestingly, we could not detect any gaseous noncovalent inhibitor-protease ions at these conditions, presumably due to the lower high-mass sensitivity of MCP detectors.
Collapse
Affiliation(s)
- Oscar Yanes
- Institut de Biotecnologia i de Biomedicina, and Departament de Bioquimica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
33
|
Downard KM, Morrissey B. Fingerprinting a killer: surveillance of the influenza virus by mass spectrometry. Analyst 2007; 132:611-4. [PMID: 17592578 DOI: 10.1039/b701835e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influenza is a deadly virus that continues to kill and inflict illness and suffering the world over. Despite a global surveillance strategy, an annual response to vaccine preparation and the development of new anti-viral drugs to treat the virus ahead of, or after, infection, no cure exists. Future pandemics are a very real threat and countries have mobilised efforts to stockpile treatments and prepare for outbreaks. A new surveillance approach in which the structure and antigenicity of the virus can be rapidly screened by mass spectrometry is expected to have a greater role in the characterisation of emerging influenza strains, even at the site of an outbreak.
Collapse
Affiliation(s)
- Kevin M Downard
- School of Molecular & Microbial Biosciences G-08, The University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
34
|
Abstract
Mass spectrometry has evolved as a technique suitable for the characterization of peptides and proteins beyond their linear sequence. The advantages of mass spectrometric sample analysis are high sensitivity, high mass accuracy, rapid analysis time and low sample consumption. In epitope mapping, the molecular structure of an antigen (the epitope or antigenic determinant) that interacts with the paratope (recognition surface) of the antibody is identified. To obtain information on linear, conformational and/or discontinuous epitopes, various approaches have been developed in conjunction with mass spectrometry. These methods include limited proteolysis and epitope footprinting, epitope excision and epitope extraction for linear epitopes and probing the surface accessibility of residues by differential chemical modifications of specific amino acid side chains or by differential hydrogen/deuterium exchange of the protein backbone amides for conformational and discontinuous epitopes. Epitope mapping by mass spectrometry is applicable in basic biochemical research and, with increasing robustness, should soon find its implementation in routine clinical diagnosis.
Collapse
Affiliation(s)
- Christine Hager-Braun
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
35
|
Downard KM. Ions of the interactome: The role of MS in the study of protein interactions in proteomics and structural biology. Proteomics 2006; 6:5374-84. [PMID: 16991196 DOI: 10.1002/pmic.200600247] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The role of MS in the study of protein-protein interactions in solution is described from a proteomics perspective, in terms of high-throughput analyses of protein complexes in vivo, through to chemical and biochemical treatments ahead of MS analysis in the context of complementary experimental approaches in structural biology. The use of MS to characterise protein-protein interactions is described following the single and tandem affinity purification of protein complexes and assemblies of expressed proteins in host cells, the isolation and preservation of protein complexes on surfaces and microarrays, and their prior treatment with chemical and biochemical probes by hydrogen exchange, radical probe, chemical cross-linking, and limited proteolysis. The advantages and disadvantages of each of the approaches are presented. These new and emerging applications, which further demonstrate the power of MS, continue to ensure that the mass spectrometer will remain at the heart of discoveries in proteomics in the foreseeable future.
Collapse
Affiliation(s)
- Kevin M Downard
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia.
| |
Collapse
|
36
|
Morrissey B, Downard KM. A proteomics approach to survey the antigenicity of the influenza virus by mass spectrometry. Proteomics 2006; 6:2034-41. [PMID: 16502471 DOI: 10.1002/pmic.200500642] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A proteomics-based approach is described that combines gel electrophoresis and MS in order to identify protein interactions and the nature of the interaction interface with high-sample throughput and sensitivity. Results for protein antigens of the influenza virus have demonstrated that the approach can be successfully employed to detect determinants within the hemagglutinin antigen of two divergent type A forms of the virus in present circulation. The determinants are localised to residues 206-224 following tryptic digestion of the hemagglutinin antigen. Specific peptide-antibody complexes formed after treatment of gel-recovered antigen are shown to be able to be preserved on the MALDI target array as has been previously demonstrated in this laboratory for whole virus. The approach has broad applicability for the analysis of a wide array of protein complexes with identification of the interaction interface in a single step with high-sample throughput and at low sample levels.
Collapse
Affiliation(s)
- Bethny Morrissey
- School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, Australia
| | | |
Collapse
|
37
|
Borch J, Jørgensen TJD, Roepstorff P. Mass spectrometric analysis of protein interactions. Curr Opin Chem Biol 2005; 9:509-16. [PMID: 16125435 DOI: 10.1016/j.cbpa.2005.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 08/11/2005] [Indexed: 11/20/2022]
Abstract
Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably.
Collapse
Affiliation(s)
- Jonas Borch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
38
|
Zolessi FR, Durán R, Engström U, Cerveñansky C, Hellman U, Arruti C. Identification of the chicken MARCKS phosphorylation site specific for differentiating neurons as Ser 25 using a monoclonal antibody and mass spectrometry. J Proteome Res 2004; 3:84-90. [PMID: 14998167 DOI: 10.1021/pr034066f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MARCKS is an actin-modulating protein that can be phosphorylated in multiple sites by PKC and proline-directed kinases. We have previously described a phosphorylated form of this protein specific for differentiating chick neurons, detected with mAb 3C3. Here, we show that this antibody binds to MARCKS only when it is phosphorylated at Ser 25. These and previous data provide hints for a possible answer to the question of why this ubiquitous protein seems to be essential only for neural development.
Collapse
Affiliation(s)
- Flavio R Zolessi
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, DBCM, Facultad de Ciencias, Universidad de la República, Uruguay
| | | | | | | | | | | |
Collapse
|
39
|
Raska CS, Parker CE, Sunnarborg SW, Pope RM, Lee DC, Glish GL, Borchers CH. Rapid and sensitive identification of epitope-containing peptides by direct matrix-assisted laser desorption/ionization tandem mass spectrometry of peptides affinity-bound to antibody beads. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:1076-1085. [PMID: 14530088 DOI: 10.1016/s1044-0305(03)00405-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A method has been developed for rapid and sensitive identification of epitope-containing peptides, based on direct MALDI-MS/MS analysis of epitope-containing peptides affinity bound to affinity beads. This technique provides sequence information of the epitope that allows unambiguous identification of the epitope either by database searching or de novo sequencing. With MALDI-MS, affinity beads with bound peptides can be placed directly on the MALDI target and analyzed. Coupling a MALDI source to an orthogonal injection quadrupole time-of-flight (QqTOF) mass spectrometer allows direct sequencing of the bound peptides. In contrast to ESI-MS/MS, elution of the affinity-bound peptides followed by additional concentration and purification steps is not required, thus reducing the potential for sample loss. Direct mass spectrometric sequencing of affinity-bound peptides eliminates the need for chemical or enzymatic sequencing. Other advantages of this direct MALDI-MS/MS analysis of epitope-containing peptides bound to the affinity beads include its sensitivity (femtomole levels) and speed. In addition, direct analysis of peptides on affinity beads does not adversely affect the high mass accuracy of a QqTOF, and database searching can be performed on the MS/MS spectra obtained. In proof-of-principle experiments, this method has been demonstrated on beads containing immobilized antibodies against phosphotyrosine, the c-myc epitope tag, as well as immobilized avidin. Furthermore, de novo sequencing of epitope-containing peptides is demonstrated. The first application of this method was with anti-FLAG-tag affinity beads, where direct MALDI MS/MS was used to determine an unexpected enzymatic cleavage site on a growth factor protein.
Collapse
Affiliation(s)
- Christina S Raska
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Villanueva J, Yanes O, Querol E, Serrano L, Aviles FX. Identification of Protein Ligands in Complex Biological Samples Using Intensity-Fading MALDI-TOF Mass Spectrometry. Anal Chem 2003; 75:3385-95. [PMID: 14570188 DOI: 10.1021/ac020644k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The easy detection of biomolecular interactions in complex mixtures using a minimum amount of material is of prime interest in molecular and cellular biology research. In this work, a mass spectrometry MALDI-TOF based approach, which we call intensity-fading (IF MALDI-TOFMS), and which was designed for just such a purpose, is reported. This methodology is based on the use of the MALDI ion intensities to detect quickly the formation of complexes between nonimmobilized biomolecules in which a protein is one of the partners (protein-protein, protein-peptide, protein-organic molecule, and protein-nucleic acid complexes). The complex is detected through the decrease (fading) of the molecular ion intensities of the partners as directly compared to the MALDI mass spectrum of the mixture (problem and control molecules) following the addition of the target molecule. The potential of the approach is examined in several examples of model interactions, mainly involving small nonprotein and protein inhibitors of proteases, at both the qualitative and semiquantitative levels. Using this method, different protein ligands of proteolytic enzymes in total extracts of invertebrate organisms have been identified in a simple way. The proposed procedure should be easily applied to the high-throughput screening of biomolecules, opening a new experimental strategy in functional proteomics.
Collapse
Affiliation(s)
- Josep Villanueva
- Institut de Biotecnologia i de Biomedicina, and Departament de Bioquímica, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | | | | | |
Collapse
|
41
|
Mackun K, Downard KM. Strategy for identifying protein-protein interactions of gel-separated proteins and complexes by mass spectrometry. Anal Biochem 2003; 318:60-70. [PMID: 12782032 DOI: 10.1016/s0003-2697(03)00191-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A strategy for identifying and characterizing protein interactions among gel-separated proteins and complexes has been developed and tested. The method involves the efficient recovery of proteins or complexes from native gels without affecting their conformational integrity. The use of limited proteolysis of protein complexes, isolated from the gel or formed from the interaction of gel-recovered proteins with potential binding partners, has enabled local binding domains to be efficiently identified using a combination of microfiltration and mass spectrometric analysis. The application of mass spectrometry affords high detection sensitivities, enabling the strategy to be applied to low levels of protein and protein mixtures. The approach is demonstrated for both antigen-antibody and peptide-protein complexes for which protein-binding regions are characterized among simple peptide mixtures and proteolytic digests. The strategy can be easily adapted to achieve high sample throughput and automation using gel-excision robotics and provides a means to study protein interactions in complex biological mixtures and extracts.
Collapse
Affiliation(s)
- Kenneth Mackun
- School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
42
|
Schlosser G, Pocsfalvi G, Malorni A, Puerta A, de Frutos M, Vékey K. Detection of immune complexes by matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2741-2747. [PMID: 14673821 DOI: 10.1002/rcm.1239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to detect an immune complex formed between beta-lactoglobulin and polyclonal anti-beta-lactoglobulin antibody in the gas phase. The most important experimental parameters to detect such a specific antibody-antigen complex by MALDI were the use of solutions at near-neutral pH and of sinapinic acid matrix prepared by the dried-droplet method. Under such conditions, predominantly one but also two molecules of antigen protein were complexed by the antibody. Specific formation of the antibody-antigen complex was confirmed by performing competitive reactions. Addition of antibody to a 1:1 mixture of beta-lactoglobulin and one control protein resulted not only in the appearance of the expected antibody-antigen complex, but also in a strong decrease in the free beta-lactoglobulin signal, while the abundance of the control protein was not influenced.
Collapse
Affiliation(s)
- Gitta Schlosser
- Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
43
|
Mittelman A, Lucchese A, Sinha AA, Kanduc D. Monoclonal and polyclonal humoral immune response to EC HER-2/NEU peptides with low similarity to the host's proteome. Int J Cancer 2002; 98:741-7. [PMID: 11920645 DOI: 10.1002/ijc.10259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We are studying peptide immunogenicity as a function of the similarity level to the host's proteome. By using as a model the breast/prostate cancer-associated HER-2/neu antigen, we analyzed the monoclonal and polyclonal humoral immune responses against HER-2/neu peptide motifs not shared with the host proteome. We show here that (i) a mouse monoclonal antibody (MAb) raised against the extracellular domain (EC) of human HER-2/neu oncoprotein recognized a linear peptide motif endowed with low similarity level to the mouse proteome; (ii) likewise, human sera from breast/prostate cancer patients preferentially recognized peptide fragments from the EC of the HER-2/neu oncoprotein having sequences that are not present in the human proteome. Together with previous results obtained in other disease models (cervical cancer-associated HPV16 E7 oncoprotein and Pemphigus vulgaris auto-antigen desmoglein-3), the present data suggest that a low level of sequence similarity to the host's proteome might be an important factor in shaping the pool of B cell epitopes.
Collapse
Affiliation(s)
- Abraham Mittelman
- Department of Medicine, Division of Oncology/Hematology, New York Medical College, Valhalla NY, USA
| | | | | | | |
Collapse
|
44
|
Kelly MA, McLellan TJ, Rosner PJ. Strategic use of affinity-based mass spectrometry techniques in the drug discovery process. Anal Chem 2002; 74:1-9. [PMID: 11795774 DOI: 10.1021/ac010569y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in biomolecular mass spectrometry (Bio-MS) have made this technique an invaluable tool for analytical chemists and biochemists alike. The applicability of Bio-MS approaches in drug discovery now encompasses in vitro, cellular, and in vivo pharmacological and clinical applications in an unprecedented expansion of utility. As a result, the role of Bio-MS in pharmaceutical discovery continues to proliferate for both structural and functional characterization of biomolecules. From target characterization to lead optimization, affinity techniques have been used to purify, probe, and enrich analytes of interest. Affinity selection employed prior to MS analysis can "edit" out extraneous noise and enable the researcher to examine only what is important. These affinity-based methods can be used as an alternative strategy when classical biochemical techniques are insufficient in advancing difficult projects. We have applied various affinity techniques in conjunction with mass spectrometry throughout the drug discovery process. This perspective will describe affinity-based mass spectrometry methodologies and related concepts, illustrated with original results.
Collapse
Affiliation(s)
- Michele A Kelly
- Exploratory Medicinal Sciences, Pfizer Global R&D, Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
45
|
Michel S, Forest E, Pétillot Y, Deléage G, Heuzé-Vourc'h N, Courty Y, Lascoux D, Jolivet M, Jolivet-Reynaud C. Involvement of the C-terminal end of the prostrate-specific antigen in a conformational epitope: characterization by proteolytic degradation of monoclonal antibody-bound antigen and mass spectrometry. J Mol Recognit 2001; 14:406-13. [PMID: 11757074 DOI: 10.1002/jmr.552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prostate-specific antigen (PSA), a 237-amino acid glycoprotein, encoded by the hKLK3 gene, is widely used as a serum marker for the diagnosis and management of prostate cancer. We report here the localization of a conformational epitope recognized by the anti-total PSA monoclonal antibody (mAb) 11E5C6, by proteolytic degradation of mAb-bound antigen followed by mass spectrometric analyses of the peptides generated. These two technologies, combined with molecular display, allowed the identification of amino acid residues contained within three different peptides distant on the PSA sequence, but close in the PSA three-dimensional structure, that may be part of the mAb 11E5C6 epitope. The last four C-terminal amino acid residues are included in this epitope, as well as certain other C-terminal residues between Y225 and T232. The involvement of the PSA C-terminal end in the mAb 11E5C6 epitope was confirmed by western blotting experiments with the recombinant protein proPSA-RP1, resulting from the cloning of an alternative transcript of the hKLK3 gene, in which the PSA C-terminal end was deleted and replaced by another sequence. Although the anti-total PSA mAb 5D5A5 used as a control bound proPSA-RP1, mAb 11E5C6 did not. The requirement of the C-terminal end for the recognition by mAb 11E5C6 may be useful for the discrimination of PSA-related forms.
Collapse
Affiliation(s)
- S Michel
- bioMérieux, Département R&D unité Immunoessais, Marcy l'Etoile, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Peter JF, Tomer KB. A general strategy for epitope mapping by direct MALDI-TOF mass spectrometry using secondary antibodies and cross-linking. Anal Chem 2001; 73:4012-9. [PMID: 11534730 DOI: 10.1021/ac010258n] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The combination of limited proteolysis and MALDI-TOF mass spectrometry has become an important tool for the determination of epitopes but works best with highly purified antibodies. Here we report the use of capture antibodies to reduce the need for purification of the antibody in the mass spectrometric determination of the epitope. In this new method, a secondary Fc-specific antibody, covalently bound to Sepharose beads, is used to capture the primary antibody (the antibody of interest). After capture, the two antibodies are cross-linked. The antigen is then bound to the immobilized antibodies and subjected to proteolysis using several successive proteinases. In this study, this strategy is demonstrated with a crude mouse anti-ACTH IgG solution and adrenocorticotropin (ACTH). Comparing this strategy with previous methods where the antibody is bound directly to activated beads, the new method (1) results in a higher binding capacity of the bound antibody to ACTH, (2) does not require purification of the antibody of interest, and (3) dramatically reduces the chemical background in the MALDI mass spectra.
Collapse
Affiliation(s)
- J F Peter
- National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
47
|
Sun S, Mo W, Ji Y, Liu S. Use of nitrocellulose films for affinity-directed mass spectrometry for the analysis of antibody/antigen interactions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:1743-1746. [PMID: 11555875 DOI: 10.1002/rcm.432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Combination of affinity extraction procedures with mass spectrometric analyses is termed affinity-directed mass spectrometry, a technique that has gained broad interest in immunology and is extended here with several improvements from methods used in previous studies. A monoclonal antibody was immobilized on a nitrocellulose (NC) membrane, allowing the corresponding antigen to be selectively captured from a complex solution for analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). This method was also used to rapidly determine the approximate binding region responsible for the antibody/antigen interaction. The tryptic fragments of antigen protein in buffer were applied to the antibody immobilized on NC film and allowed to interact. The NC film was then washed to remove salts and other unbound components, and subjected to analysis by MALDI-TOFMS. Using interferon-alpha(2a) and anti-interferon-alpha(2a) monoclonal antibody IgG as a model system, we successfully extracted the antigen protein and determined the approximate binding region for the antigen/antibody interaction (i.e., the tryptic fragment responsible).
Collapse
Affiliation(s)
- S Sun
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | |
Collapse
|
48
|
Kiselar JG, Downard KM. Preservation and detection of specific antibody--peptide complexes by matrix-assisted laser desorption ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2000; 11:746-750. [PMID: 10937798 DOI: 10.1016/s1044-0305(00)00144-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The direct detection of an antibody-peptide complex is reported by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Experimental conditions have been found in which specific, noncovalent interactions in solution are maintained throughout the sample preparation and ionization process. Mass measurements based on the ion signals for the intact antibody and 1:1 antibody-peptide complex reveal that specific noncovalent associations between a monoclonal antibody and a peptide, which comprises the determinant of the corresponding antigen, are maintained in the gas phase. These results support the wider application of MALDI-MS to studies of the structure and specificity of macromolecular complexes important to immune and other biological function.
Collapse
Affiliation(s)
- J G Kiselar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461-1602, USA
| | | |
Collapse
|
49
|
Legros V, Jolivet-Reynaud C, Battail-Poirot N, Saint-Pierre C, Forest E. Characterization of an anti-Borrelia burgdorferi OspA conformational epitope by limited proteolysis of monoclonal antibody-bound antigen and mass spectrometric peptide mapping. Protein Sci 2000; 9:1002-10. [PMID: 10850810 PMCID: PMC2144631 DOI: 10.1110/ps.9.5.1002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lyme borreliosis is a multisystem disorder caused by the spirochete Borrelia burgdorferi that is transmitted to humans by the tick Ixodes dammini. The immune response against the 31 kDa OspA, which is one of the most abundant B. burgdorferi proteins, appears to be critical in preventing infection and tissue inflammation. Detailed knowledge of the immunological and molecular characteristics of the OspA protein is important for the development of reliable diagnostic assays. In this study, we characterized a new conformational epitope present within the middle part of B. burgdorferi OspA. Our approach used enzymatic proteolyses of the immune complex followed by mass spectrometric identification of the peptides bound to the antibody. It appears to be one of the first reports on the characterization of a discontinuous epitope using mass spectrometry.
Collapse
Affiliation(s)
- V Legros
- Institut de Biologie Structurale (CEA-CNRS-UJF), Laboratoire de Spectrométrie de Masse des Protéines, Grenoble, France
| | | | | | | | | |
Collapse
|
50
|
Abstract
Mass spectrometry has made important contributions to the field of immunology in the past decade. A variety of mass spectrometric-based techniques have been applied to study the structures of macromolecules that play a vital role in the immune response. These include traditional molecular mass measurements to identify post-translational modifications and structural heterogeneity, mass mapping of proteolysis products, sequencing by tandem mass spectrometry and conformational analysis. Antigen-antibody and other immune complexes have been detected by mass spectrometry, providing an avenue to study macromolecular assemblies that are important to immune function. By virtue of the ability of mass spectrometry based techniques to analyze complex biological mixtures, mass spectrometry has also been employed to identify and sequence protein epitopes important in both the humoral and cellular immune responses. This has been achieved through a combination of immunoaffinity and mass spectrometric techniques, and the coupling of high-performance chromatographs to mass spectrometers. These approaches are important for the identification of pathogens and show promise for the early diagnosis of disease associated with viral and bacterial infection and malignancy. These investigations will enable the mechanisms associated with normal and impaired immune function to be elucidated. Mass spectrometry has been utilized to characterize the structure of peptide mimics, multiple antigenic peptides and other constructs in the design of synthetic immunogens. Information derived from these studies will aid in the development of novel therapeutics and vaccines.
Collapse
Affiliation(s)
- K M Downard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1602, USA.
| |
Collapse
|