1
|
Chen S, Tong X, Huo Y, Liu S, Yin Y, Tan ML, Cai K, Ji W. Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406192. [PMID: 39003609 DOI: 10.1002/adma.202406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Bioelectricity provides electrostimulation to regulate cell/tissue behaviors and functions. In the human body, bioelectricity can be generated in electromechanically responsive tissues and organs, as well as biomolecular building blocks that exhibit piezoelectricity, with a phenomenon known as the piezoelectric effect. Inspired by natural bio-piezoelectric phenomenon, efforts have been devoted to exploiting high-performance synthetic piezoelectric biomaterials, including molecular materials, polymeric materials, ceramic materials, and composite materials. Notably, piezoelectric biomaterials polarize under mechanical strain and generate electrical potentials, which can be used to fabricate electronic devices. Herein, a review article is proposed to summarize the design and research progress of piezoelectric biomaterials and devices toward bionanotechnology. First, the functions of bioelectricity in regulating human electrophysiological activity from cellular to tissue level are introduced. Next, recent advances as well as structure-property relationship of various natural and synthetic piezoelectric biomaterials are provided in detail. In the following part, the applications of piezoelectric biomaterials in tissue engineering, drug delivery, biosensing, energy harvesting, and catalysis are systematically classified and discussed. Finally, the challenges and future prospects of piezoelectric biomaterials are presented. It is believed that this review will provide inspiration for the design and development of innovative piezoelectric biomaterials in the fields of biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Siying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Tong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Mei-Ling Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
2
|
Yao G, Gan X, Lin Y. Flexible self-powered bioelectronics enables personalized health management from diagnosis to therapy. Sci Bull (Beijing) 2024; 69:2289-2306. [PMID: 38821746 DOI: 10.1016/j.scib.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Flexible self-powered bioelectronics (FSPBs), incorporating flexible electronic features in biomedical applications, have revolutionized the human-machine interface since they hold the potential to offer natural and seamless human interactions while overcoming the limitations of battery-dependent power sources. Furthermore, as biosensors or actuators, FSPBs can dynamically monitor physiological signals to reveal real-time health abnormalities and provide timely and precise treatments. Therefore, FSPBs are increasingly shaping the landscape of health monitoring and disease treatment, weaving a sophisticated and personalized bond between humans and health management. Here, we examine the recent advanced progress of FSPBs in developing working mechanisms, design strategies, and structural configurations toward personalized health management, emphasizing its role in clinical medical scenarios from biophysical/biochemical sensors for sensing diagnosis to robust/biodegradable actuators for intervention therapy. Future perspectives on the challenges and opportunities in emerging multifunctional FSPBs for the next-generation health management systems are also forecasted.
Collapse
Affiliation(s)
- Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| | - Xingyi Gan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
3
|
Lin Q, Zhang Y, Chen L, Zhang H, An C, Li C, Wang Q, Song J, He W, Wang H. Glycine/alginate-based piezoelectric film consisting of a single, monolithic β-glycine spherulite towards flexible and biodegradable force sensor. Regen Biomater 2024; 11:rbae047. [PMID: 38903560 PMCID: PMC11187499 DOI: 10.1093/rb/rbae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Development of piezoelectric biomaterials with high piezoelectric performance, while possessing excellent flexibility, biocompatibility, and biodegradability still remains a great challenge. Herein, a flexible, biocompatible and biodegradable piezoelectric β-glycine-alginate-glycerol (Gly-Alg-Glycerol) film with excellent in vitro and in vivo sensing performance was developed. Remarkably, a single, monolithic β-glycine spherulite, instead of more commonly observed multiple spherulites, was formed in alginate matrix, thereby resulting in outstanding piezoelectric property, including high piezoelectric constant (7.2 pC/N) and high piezoelectric sensitivity (1.97 mV/kPa). The Gly-Alg-Glycerol film exhibited superior flexibility, enabling complex shape-shifting, e.g. origami pigeon, 40% tensile strain, and repeated bending and folding deformation without fracture. In vitro, the flexible Gly-Alg-Glycerol film sensor could detect subtle pulse signal, sound wave and recognize shear stress applied from different directions. In addition, we have demonstrated that the Gly-Alg-Glycerol film sensor sealed by polylactic acid and beeswax could serve as an in vivo sensor to monitor physiological pressure signals such as heartbeat, respiration and muscle movement. Finally, the Gly-Alg-Glycerol film possessed good biocompatibility, supporting the attachment and proliferation of rat mesenchymal stromal cells, and biodegradability, thereby showing great potential as biodegradable piezoelectric biomaterials for biomedical sensing applications.
Collapse
Affiliation(s)
- Qiaoxia Lin
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Yonggang Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Luhua Chen
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Haoyue Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Chuanfeng An
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Chengze Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qifan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Jinhui Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Huanan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| |
Collapse
|
4
|
Yue O, Wang X, Xie L, Bai Z, Zou X, Liu X. Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307369. [PMID: 38196276 PMCID: PMC10953594 DOI: 10.1002/advs.202307369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Implantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial "tissue batteries" (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological-activity monitoring, diagnosis, and therapy. ATBs are on-demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near-term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material-screening, structural-design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human-body (biofuel cells, thermoelectric nanogenerators, bio-potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency-ultrasound energy harvesters, ultrasound-induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio-safety, flexibility, and high-volume energy density as crucial components in long-term implantable bioelectronic devices.
Collapse
Affiliation(s)
- Ouyang Yue
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Long Xie
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xiaoliang Zou
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| |
Collapse
|
5
|
Zheng N, Sun X, Shi Y, Chen L, Wang L, Cai H, Han C, Liao T, Yang C, Zuo Z, He C. The valence state of iron-based nanomaterials determines the ferroptosis potential in a zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158715. [PMID: 36113792 DOI: 10.1016/j.scitotenv.2022.158715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Many nanomaterials containing different valences of iron have been designed for applications in biomedicine, energy, catalyzers, nanoenzymes, and so on. However, the toxic effects of the valence state of iron in iron-based nanomaterials are still unclear. Here, three different-valence iron-based nanomaterials (nFe@Fe3O4, nFe3O4 and nFe2O3) were synthesized and exposed to zebrafish embryos and mammalian cardiomyocytes. All of them induced ferroptosis along with an increase in valence through iron overload and the Fenton reaction. Specifically, we exposed Tg (cmlc2:EGFP) zebrafish to the three iron-based nanomaterials and found that nFe@Fe3O4 treatments led to enlarged ventricles, while nFe3O4 and nFe2O3 increased atrial size, which was consistent with the results from hematoxylin-eosin staining and in situ hybridization. Moreover, we used ferroptosis inhibitors (ferrostatin-1 or deferoxamine) to treat zebrafish along with nanoparticles exposure and found that the cardiac developmental defects caused by nFe3O4 and nFe2O3, but not nFe@Fe3O4, could be completely rescued by ferroptosis inhibitors. We further found that nFe@Fe3O4, rather than nFe3O4 and nFe2O3, reduced the dissolved oxygen in the medium, which resulted in hypoxia and acceleration of heart tube formation and ventricular enlargement, and both were fully rescued by oxygen donors combined with ferroptosis inhibitors. Consistently, these findings were also observed in mammalian cardiomyocytes. In summary, our study demonstrates that the valence state of iron-based nanomaterials determines the ferroptosis potential. Our study also clarifies that high-valence iron-based nanomaterials induce an enlarged atrium via ferroptosis, while low-valence ones increase the ventricular size through both hypoxia and ferroptosis, which is helpful to understand the potential adverse effects of different valences of iron-based nanomaterials on environmental health and assure the responsible and sustainable development of nanotechnology.
Collapse
Affiliation(s)
- Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yiyue Shi
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Luheng Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Luanjin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Haoxing Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Changshun Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Tingting Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Department of Pediatric, Women and Children's Hospital, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Owida HA. Biomechanical Sensing Systems for Cardiac Activity Monitoring. Int J Biomater 2022; 2022:8312564. [PMID: 36438068 PMCID: PMC9699781 DOI: 10.1155/2022/8312564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular disease is consistently ranked high among the causes of death on a global scale. Monitoring of cardiovascular signs throughout the course of a long period of time and in real time is necessary in order to discover anomalies and begin early intervention at the appropriate time. To this purpose, a significant amount of interest among researchers has been directed toward the creation of flexible sensors that may be worn or implanted and are capable of constant, immediate observation of a variety of main physiological indicators. The real-time readings of the heart and arteries' pressure fluctuations can be reflected directly by mechanical sensors, which are one of the many types of sensors. Potential benefits of mechanical sensors include excellent accuracy and considerable versatility. Capacitive, piezoresistive, piezoelectric, and triboelectric principles are the foundations of the four types of mechanical sensors that are discussed in this article as recent developments for the purpose of monitoring the cardiovascular system. The biomechanical systems that are present in the cardiovascular system are then detailed, along with their monitoring, and this includes blood and endocardial pressure, pulse wave, and heart rhythm. In conclusion, we examine the usefulness of the use of continuous health monitoring for the treatment of vascular disease and highlight the difficulties associated with its translation into clinical practice.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
7
|
Tang C, Liu Z, Li L. Mechanical Sensors for Cardiovascular Monitoring: From Battery-Powered to Self-Powered. BIOSENSORS 2022; 12:651. [PMID: 36005046 PMCID: PMC9405976 DOI: 10.3390/bios12080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide. Long-term and real-time monitoring of cardiovascular indicators is required to detect abnormalities and conduct early intervention in time. To this end, the development of flexible wearable/implantable sensors for real-time monitoring of various vital signs has aroused extensive interest among researchers. Among the different kinds of sensors, mechanical sensors can reflect the direct information of pressure fluctuations in the cardiovascular system with the advantages of high sensitivity and suitable flexibility. Herein, we first introduce the recent advances of four kinds of mechanical sensors for cardiovascular system monitoring, based on capacitive, piezoresistive, piezoelectric, and triboelectric principles. Then, the physio-mechanical mechanisms in the cardiovascular system and their monitoring are described, including pulse wave, blood pressure, heart rhythm, endocardial pressure, etc. Finally, we emphasize the importance of real-time physiological monitoring in the treatment of cardiovascular disease and discuss its challenges in clinical translation.
Collapse
Affiliation(s)
- Chuyu Tang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Li
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Al-Suhaimi EA, Aljafary MA, Alfareed TM, Alshuyeh HA, Alhamid GM, Sonbol B, Almofleh A, Alkulaifi FM, Altwayan RK, Alharbi JN, Binmahfooz NM, Alhasani ES, Tombuloglu H, Rasdan AS, lardhi AA, Baykal A, Homeida AM. Nanogenerator-Based Sensors for Energy Harvesting From Cardiac Contraction. FRONTIERS IN ENERGY RESEARCH 2022; 10. [DOI: 10.3389/fenrg.2022.900534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Biomedical electric devices provide great assistance for health and life quality. However, their maintainable need remains a serious issue for the restricted duration of energy storage. Therefore, scientists are investigating alternative technologies such as nanogenerators that could harvest the mechanical energy of the human heart to act as the main source of energy for the pacemaker. Cardiac contraction is not a source for circulation; it utilizes body energy as an alternative energy source to recharge pacemaker devices. This is a key biomedical innovation to protect patients’ lives from possible risks resulting from repeated surgery. A batteryless pacemaker is possible via an implantable energy collecting tool, exchanging the restriction of the current batteries for a sustainable self-energy resource technique. In this context, the physiology of heart energy in the preservation of blood distribution pulse generation and the effects of cardiac hormones on the heart’s pacemaker shall be outlined. In this review, we summarized different technologies for the implantable energy harvesters and self-powered implantable medical devices with emphasis on nanogenerator-based sensors for energy harvesting from cardiac contraction. It could conclude that recent hybrid bio-nanogenerator systems of both piezoelectric and triboelectric devices based on biocompatible biomaterials and clean energy are promising biomedical devices for harvesting energy from cardiac and body movement. These implantable and wearable nanogenerators become self-powered biomedical tools with high efficacy, durability, thinness, flexibility, and low cost. Although many studies have proven their safety, there is a need for their long-term biosafety and biocompatibility. A further note on the biocompatibility of bio-generator sensors shall be addressed.
Collapse
|
9
|
From Triboelectric Nanogenerator to Polymer-Based Biosensor: A Review. BIOSENSORS 2022; 12:bios12050323. [PMID: 35624624 PMCID: PMC9138307 DOI: 10.3390/bios12050323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Nowadays, self-powered wearable biosensors that are based on triboelectric nanogenerators (TENGs) are playing an important role in the continuous efforts towards the miniaturization, energy saving, and intelligence of healthcare devices and Internets of Things (IoTs). In this review, we cover the remarkable developments in TENG−based biosensors developed from various polymer materials and their functionalities, with a focus on wearable and implantable self-powered sensors for health monitoring and therapeutic devices. The functions of TENGs as power sources for third-party biosensors are also discussed, and their applications in a number of related fields are concisely illustrated. Finally, we conclude the review with a discussion of the challenges and problems of leveraging TENG−based intelligent biosensors.
Collapse
|
10
|
Li J, Hacker TA, Wei H, Long Y, Yang F, Ni D, Rodgers A, Cai W, Wang X. Long-term in vivo operation of implanted cardiac nanogenerators in swine. NANO ENERGY 2021; 90:106507. [PMID: 34737918 PMCID: PMC8562697 DOI: 10.1016/j.nanoen.2021.106507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Implantable nanogenerators (i-NG) provide power to cardiovascular implantable electronic devices (CIEDs) by harvesting biomechanical energy locally eliminating the need for batteries. However, its long-term operation and biological influences on the heart have not been tested. Here, we evaluate a soft and flexible i-NG system engineered for long-term in vivo cardiac implantation. It consisted of i-NG, leads, and receivers, and was implanted on the epicardium of swine hearts for 2 months. The i-NG system generated electric current throughout the testing period. Biocompatibility and biosafety were established based on normal blood and serum test results and no tissue reactions. Heart function was unchanged over the testing period as validated by normal electrocardiogram (ECG), transthoracic ultrasound, and invasive cardiac functional measures. This research demonstrates the safety, long term operation and therefore the feasibility of using i-NGs to power the next generation CIEDs.
Collapse
Affiliation(s)
- Jun Li
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Timothy A. Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hao Wei
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fan Yang
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Allison Rodgers
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|