1
|
Kim YJ, Lee S, Choi S, Eom TH, Cho SH, Park S, Park SH, Kim JY, Kim J, Nam GB, Ryu JE, Park SJ, Lee SM, Lee GD, Kim J, Jang HW. Highly Durable Chemoresistive Micropatterned PdAu Hydrogen Sensors: Performance and Mechanism. ACS Sens 2024; 9:5363-5373. [PMID: 39315860 DOI: 10.1021/acssensors.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hydrogen (H2) is a promising alternative energy source for Net-zero, but the risk of explosion requires accurate and rapid detection systems. As the use of H2 energy expands, sensors require high performance in a variety of properties. Palladium (Pd) is an attractive material for H2 detection due to its high H2 affinity and catalytic properties. However, poor stability caused by volume changes and reliability due to environmental sensitivity remain obstacles. This study proposes a micropatterned thin film of PdAu with optimized composition (Pd0.62Au0.38) as a chemoresistive sensor to overcome these issues. At room temperature, the sensor has a wide detection range of 0.0002% to 5% and a fast response time of 9.5 s. Significantly, the sensor exhibits excellent durability for repeated operation (>35 h) in 5% H2 and resistance to humidity and carbon monoxide. We also report a negative resistivity change in PdAu, which is opposite to that of Pd. Density functional theory (DFT) calculations were performed to investigate the resistance change. DFT analysis revealed that H2 penetrates specific interstitial sites, causing partial lattice compression. The lattice compression causes a decrease in electrical resistance. This work is expected to contribute to the development of high-performance H2 sensors using Pd-based alloys.
Collapse
Affiliation(s)
- Yeong Jae Kim
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seonyong Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungkyun Choi
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Eom
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hwan Cho
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohyeon Park
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hyuk Park
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Young Kim
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Baek Nam
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-El Ryu
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Cambridge Massachusetts 02139, United States
| | - Seon Ju Park
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Gun-Do Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyun Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
2
|
Tankard RE, Romeggio F, Akazawa SK, Krabbe A, Sloth OF, Secher NM, Colding-Fagerholt S, Helveg S, Palmer R, Damsgaard CD, Kibsgaard J, Chorkendorff I. Stable mass-selected AuTiO x nanoparticles for CO oxidation. Phys Chem Chem Phys 2024; 26:9253-9263. [PMID: 38445363 DOI: 10.1039/d4cp00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Stability under reactive conditions poses a common challenge for cluster- and nanoparticle-based catalysts. Since the catalytic properties of <5 nm gold nanoparticles were first uncovered, optimizing their stability at elevated temperatures for CO oxidation has been a central theme. Here we report direct observations of improved stability of AuTiOx alloy nanoparticles for CO oxidation compared with pure Au nanoparticles on TiO2. The nanoparticles were synthesized using a magnetron sputtering, gas-phase aggregation cluster source, size-selected using a lateral time-of-flight mass filter and deposited onto TiO2-coated micro-reactors for thermocatalytic activity measurements of CO oxidation. The AuTiOx nanoparticles exhibited improved stability at elevated temperatures, which is attributed to a self-anchoring interaction with the TiO2 substrate. The structure of the AuTiOx nanoparticles was also investigated in detail using ion scattering spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The measurements showed that the alloyed nanoparticles exhibited a core-shell structure with an Au core surrounded by an AuTiOx shell. The structure of these alloy nanoparticles appeared stable even at temperatures up to 320 °C under reactive conditions, for more than 140 hours. The work presented confirms the possibility of tuning catalytic activity and stability via nanoparticle alloying and self-anchoring on TiO2 substrates, and highlights the importance of complementary characterization techniques to investigate and optimize nanoparticle catalyst designs of this nature.
Collapse
Affiliation(s)
- Rikke Egeberg Tankard
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Filippo Romeggio
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Stefan Kei Akazawa
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Alexander Krabbe
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Olivia Fjord Sloth
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Niklas Mørch Secher
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Sofie Colding-Fagerholt
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Stig Helveg
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Richard Palmer
- Nanomaterials Lab, Swansea University, Bay Campus, Swansea, UK
| | - Christian Danvad Damsgaard
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Gholinejad M, Bashirimousavi S, Sansano JM. Novel magnetic bimetallic AuCu catalyst for reduction of nitroarenes and degradation of organic dyes. Sci Rep 2024; 14:5852. [PMID: 38462664 PMCID: PMC10925594 DOI: 10.1038/s41598-024-56559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Herein, core-shell magnetic nanoparticles are modified with imidazolium-tagged phosphine and propylene glycol moieties and used for the stabilization of bimetallic AuCu nanoparticles. The structure and morphology of the prepared material are identified with SEM, TEM, XRD, XPS, atomic absorption spectroscopy, Fourier translation infrared spectroscopy, and a vibrating sample magnetometer. This hydrophilic magnetic bimetallic catalyst is applied in the reduction of toxic nitroarenes and reductive degradation of hazardous organic dyes such as methyl orange (MO), methyl red (MR), and rhodamine B (RhB), as well as in the degradation of tetracycline (TC). This magnetic AuCu catalyst indicated superior activity in all three mentioned reactions in comparison with its single metal Au and Cu analogs. This catalyst is recycled for 17 consecutive runs in the reduction of 4-nitrophenol to 4-aminophenol without a significant decrease in catalytic activity and recycled catalyst is characterized.
Collapse
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, P. O. Box 45195-1159, Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Saba Bashirimousavi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, P. O. Box 45195-1159, Zanjan, 45137-66731, Iran
| | - José M Sansano
- Departamento de Química Orgánica, Instituto de Síntesis Orgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, 03690, Alicante, Spain
| |
Collapse
|
4
|
Lin X, Ma X, He Y, Li S, Chen W, Li L. One-pot Construction of Metal Nanoparticles Loaded COF Catalysts for Aqueous Hydrogenation Reactions. Chemistry 2024; 30:e202303505. [PMID: 38143237 DOI: 10.1002/chem.202303505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The catalysis performance of metal nanoparticles (NPs) will be significantly deteriorated because of their spontaneous agglomeration during practical applications. Covalent-organic frameworks (COFs) materials with functional groups and well-defined channels benefit for the dispersion and anchor of metal ions and the confined growth of metal NPs, working as an ideal platform to compose catalytic systems. In this article, we report a one-pot strategy for the preparation of metal NPs loaded COFs without the need of post-modification. During the polymerization process, the pre-added metal ions were stabilized by the rapidly formed COF oligomers and hardly disturb the construction of COFs. After reduction, metal NPs are uniformly anchored on the COF matrix. Eventually, a wide spectrum of metal NPs, including Au, Pd, Pt, AuPd, CuPd, CuPt and CuPdPt, loaded COFs are successfully prepared. The versatility and metal ions anchoring mechanism are verified with four different COF matrixes. Taking AuPd NPs as example, the resultant AuPd NPs loaded COF materials can selectively decompose ammonium formate and produce hydrogen in-situ, exhibiting over 99 % conversion of hydrodechlorination for chlorobenzenes and nitro-reduction reaction for nitroaromatic compounds under ambient temperature in aqueous solution.
Collapse
Affiliation(s)
- Xiaogeng Lin
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xingyu Ma
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yasan He
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Shijun Li
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Wangzhi Chen
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Lei Li
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
5
|
Peng W, Liu J, Liu X, Wang L, Yin L, Tan H, Hou F, Liang J. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production. Nat Commun 2023; 14:4430. [PMID: 37481579 PMCID: PMC10363113 DOI: 10.1038/s41467-023-40118-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/13/2023] [Indexed: 07/24/2023] Open
Abstract
Electrocatalytic hydrogen peroxide (H2O2) production via the two-electron oxygen reduction reaction is a promising alternative to the energy-intensive and high-pollution anthraquinone oxidation process. However, developing advanced electrocatalysts with high H2O2 yield, selectivity, and durability is still challenging, because of the limited quantity and easy passivation of active sites on typical metal-containing catalysts, especially for the state-of-the-art single-atom ones. To address this, we report a graphene/mesoporous carbon composite for high-rate and high-efficiency 2e- oxygen reduction catalysis. The coordination of pyrrolic-N sites -modulates the adsorption configuration of the *OOH species to provide a kinetically favorable pathway for H2O2 production. Consequently, the H2O2 yield approaches 30 mol g-1 h-1 with a Faradaic efficiency of 80% and excellent durability, yielding a high H2O2 concentration of 7.2 g L-1. This strategy of manipulating the adsorption configuration of reactants with multiple non-metal active sites provides a strategy to design efficient and durable metal-free electrocatalyst for 2e- oxygen reduction.
Collapse
Affiliation(s)
- Wei Peng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiaxin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoqing Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Liqun Wang
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, China.
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Haotian Tan
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Computational Study of H2 Catalytic Combustion on Pd38 Cluster Model and Pd(111) Slab Model. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogen is one of the exhaust gases produced by nuclear power stations. Due to the potential danger of incomplete combustion and the emission of hydrogen, hydrogen catalytic combustion is introduced to ensure the safety of nuclear power stations. Palladium is a widely used catalyst for hydrogen catalytic combustion. H2 catalytic combustion on a Pd(111) slab model and Pd38 cluster model were simulated using density functional theory (DFT), in order to analyze the H2 oxidation mechanism on the catalyst surface.
Collapse
|
7
|
Shi Q, Pu S, Yang X, Wang P, Tang B, Lai B. Enhanced heterogeneous activation of peroxymonosulfate by boosting internal electron transfer in a bimetallic Fe3O4-MnO2 nanocomposite. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 2022; 603:271-275. [PMID: 35038718 DOI: 10.1038/s41586-022-04397-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
In oxidation reactions catalysed by supported metal nanoparticles with oxygen as the terminal oxidant, the rate of the oxygen reduction can be a limiting factor. This is exemplified by the oxidative dehydrogenation of alcohols, an important class of reactions with modern commercial applications1-3. Supported gold nanoparticles are highly active for the dehydrogenation of the alcohol to an aldehyde4 but are less effective for oxygen reduction5,6. By contrast, supported palladium nanoparticles offer high efficacy for oxygen reduction5,6. This imbalance can be overcome by alloying gold with palladium, which gives enhanced activity to both reactions7,8,9; however, the electrochemical potential of the alloy is a compromise between that of the two metals, meaning that although the oxygen reduction can be improved in the alloy, the dehydrogenation activity is often limited. Here we show that by separating the gold and palladium components in bimetallic carbon-supported catalysts, we can almost double the reaction rate compared with that achieved with the corresponding alloy catalyst. We demonstrate this using physical mixtures of carbon-supported monometallic gold and palladium catalysts and a bimetallic catalyst comprising separated gold and palladium regions. Furthermore, we demonstrate electrochemically that this enhancement is attributable to the coupling of separate redox processes occurring at isolated gold and palladium sites. The discovery of this catalytic effect-a cooperative redox enhancement-offers an approach to the design of multicomponent heterogeneous catalysts.
Collapse
|
9
|
Kumar A. Ethanol Decomposition and Dehydrogenation for Hydrogen Production: A Review of Heterogeneous Catalysts. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anand Kumar
- Department of Chemical Engineering, Qatar University, P O Box 2713, Doha, Qatar
| |
Collapse
|
10
|
Catalytic Oxidation of Benzyl Alcohol to Benzaldehyde on Au8 and Au6Pd2 Clusters: A DFT Study on the Reaction Mechanism. Catalysts 2021. [DOI: 10.3390/catal11060720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Density functional theory calculations were performed to investigate the reaction mechanism of the aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by Au and Au–Pd clusters. Two consecutive reaction mechanisms were examined with Au8 and Au6Pd2 clusters: (1) the oxidation of benzyl alcohol with dissociated O atoms on metal clusters generating benzaldehyde and H2O; and (2) oxidation with adsorbed oxygen molecules generating benzaldehyde and H2O2. The calculations show that the aerobic oxidation of benzyl alcohol energetically prefers to proceed in the former mechanism, which agrees with the experimental observation. We demonstrate that the role of Au centers around the activation of molecular oxygen to peroxide-like species, which are capable of the H–abstraction of benzyl alcohol. The roles of Pd in the Au6Pd2 cluster are: (1) increasing the electron distribution to neighboring Au atoms, which facilitates the activation of O2; and (2) stabilizing the adsorption complex and transition states by the interaction between positively charged Pd atoms and the π-bond of benzyl alcohol, both of which are the origin of the lower energy barriers than those of Au8.
Collapse
|
11
|
van der Hoeven JES, Ngan HT, Taylor A, Eagan NM, Aizenberg J, Sautet P, Madix RJ, Friend CM. Entropic Control of HD Exchange Rates over Dilute Pd-in-Au Alloy Nanoparticle Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01400] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessi E. S. van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Austin Taylor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nathaniel M. Eagan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Robert J. Madix
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Murthy PR, Zhang JC, Li WZ. The high thermal stabilizing capability of noble metals (Pd and Au) supported by SBA-15 and the impact on CO oxidation. NEW J CHEM 2021. [DOI: 10.1039/d1nj02235k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precious metal nanoparticles (NPs) are attractive for use in the field of catalysis because of their precisely controlled sizes and shapes.
Collapse
Affiliation(s)
- Palle Ramana Murthy
- State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing-Cai Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei-Zhen Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|