1
|
Song K, Liu H, Chen B, Gong C, Ding J, Wang T, Liu E, Ma L, Zhao N, He F. Toward Efficient Utilization of Photogenerated Charge Carriers in Photoelectrochemical Systems: Engineering Strategies from the Atomic Level to Configuration. Chem Rev 2024. [PMID: 39570635 DOI: 10.1021/acs.chemrev.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Photoelectrochemical (PEC) systems are essential for solar energy conversion, addressing critical energy and environmental issues. However, the low efficiency in utilizing photogenerated charge carriers significantly limits overall energy conversion. Consequently, there is a growing focus on developing strategies to enhance photoelectrode performance. This review systematically explores recent advancements in PEC system modifications, spanning from atomic and nanoscopic levels to configuration engineering. We delve into the relationships between PEC structures, intrinsic properties, kinetics of photogenerated charge carriers, and their utilization. Additionally, we propose future directions and perspectives for developing more efficient PEC systems, offering valuable insights into potential innovations in the field.
Collapse
Affiliation(s)
- Kai Song
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, 030024, P. R. China
| | - Houjiang Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Chuangchuang Gong
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Jiawei Ding
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Tengfei Wang
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, 030024, P. R. China
| | - Enzuo Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Liying Ma
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
2
|
Service E, Moehl T, Tilley SD. Operation of Amorphous TiO 2-Protected Photocathodes Described with the Maxwell Equivalent Circuit. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60084-60093. [PMID: 39437321 PMCID: PMC11551960 DOI: 10.1021/acsami.4c07588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The use of amorphous TiO2 (a-TiO2), deposited by atomic layer deposition, is a common strategy to protect semiconductors from degradation when used in water-splitting photoelectrochemical (PEC) cells. Electrochemical impedance spectroscopy (EIS) is a suitable technique to study these PEC cells because it is capable of deconvoluting multiple processes occurring during operation, therefore providing information about mechanisms leading to the overall device performance. When biased under hydrogen evolution conditions, EIS shows that two simultaneous processes occur in a-TiO2-protected photocathodes, which introduces an ambiguity in choosing the correct equivalent circuit to describe the operating device. In this report, a model p-Si|a-TiO2|Pt photocathode system is used to show that the Maxwell circuit best describes the operating mechanism, as opposed to the more commonly used Voight and nested circuits. This indicates that, under hydrogen evolution conditions, both faradaic and nonfaradaic processes are occurring. Whereas the faradaic process corresponds to the hydrogen evolution reaction itself, the nonfaradaic process is traced to the p-Si|a-TiO2 interface.
Collapse
Affiliation(s)
- Erin Service
- Department
of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Thomas Moehl
- Department
of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - S. David Tilley
- Department
of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
3
|
Becker K, Wang L, Osterloh FE. Charge Transfer Kinetics and Thermodynamics Control the Energy Conversion Efficiency of a Gallium Phosphide Solar Hydrogen Photocathode. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:16915-16929. [PMID: 39416808 PMCID: PMC11480882 DOI: 10.1021/acs.jpcc.4c04955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
P-type gallium phosphide (GaP) photocathodes for hydrogen evolution from water have a theoretical energy conversion efficiency of 12% based on the 2.4 eV optical band gap of the material. The performance of actual GaP photocathodes is much lower, for reasons not entirely clear. Here we use vibrating Kelvin probe surface photovoltage (VKP-SPV), open circuit potential (OCP) measurements, and photoelectrochemical (PEC) experiments to evaluate the kinetic and thermodynamic factors that control energy conversion with GaP photocathodes for the hydrogen evolution reaction (HER). We find that the open circuit photovoltage of the bare GaP-H2O junction is limited by recombination at surface states and that an CdS overlayer increases both photovoltage and photocurrent due to formation of a n-p-junction. An optimized GaP/CdS/Pt photocathode drives hydrogen evolution with a quantum efficiency of 62% at 400 nm and 0.0 V RHE and an open circuit photovoltage of 0.43 V at 250 mW cm-2. The Pt cocatalyst increases the photocurrent due to improve HER kinetics but reduces the photovoltage by promoting recombination. Added hydrogen or oxygen gas raise or lower the photovoltage by modifying the electrostatic barrier (band bending) in GaP. This shows that the GaP/CdS junction is not "buried" but behaves like a Schottky junction whose charge separating properties are controlled by the electrochemical potential of the electrolyte. The dynamic junction properties need to be considered in the design of optimized hydrogen evolution photoelectrodes and photocatalysts. Additionally, the work reveals that PEC or OCP measurements tend to underestimate the photovoltage because they do not account for changes in the electrochemical potential at the electrode-liquid contact. In contrast, the VKP-SPV method provides the open circuit photovoltage value directly. By combining the photovoltage data with OCP data, the minority carrier electrochemical potential at the electrode-liquid contact can be measured in a contactless way. This provides an improved understanding of illuminated photoelectrodes for the production of solar fuels.
Collapse
Affiliation(s)
- Kathleen Becker
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Li Wang
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Frank E. Osterloh
- Department of Chemistry, University
of California, Davis, California 95616, United States
| |
Collapse
|
4
|
Liu D, Kuang Y. Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311692. [PMID: 38619834 DOI: 10.1002/adma.202311692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/06/2024] [Indexed: 04/16/2024]
Abstract
This comprehensive review delves into the intricacies of the photoelectrochemical (PEC) water splitting process, specifically focusing on the design, fabrication, and optimization of particle-based photoelectrodes for efficient green hydrogen production. These photoelectrodes, composed of semiconductor materials, potentially harness light energy and generate charge carriers, driving water oxidation and reduction reactions. The versatility of particle-based photoelectrodes as a platform for investigating and enhancing various semiconductor candidates is explored, particularly the emerging complex oxides with compelling charge transfer properties. However, the challenges presented by many factors influencing the performance and stability of these photoelectrodes, including particle size, shape, composition, morphology, surface modification, and electrode configuration, are highlighted. The review introduces the fundamental principles of semiconductor photoelectrodes for PEC water splitting, presents an exhaustive overview of different synthesis methods for semiconductor powders and their assembly into photoelectrodes, and discusses recent advances and challenges in photoelectrode material development. It concludes by offering promising strategies for improving photoelectrode performance and stability, such as the adoption of novel architectures and heterojunctions.
Collapse
Affiliation(s)
- Deyu Liu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
| | - Yongbo Kuang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19(A)Yuquan Road, Beijing, 100049, China
| |
Collapse
|
5
|
Zhang H, Li S, Xu J, Sun X, Xia J, She G, Yu J, Ru C, Luo J, Meng X, Mu L, Shi W. Dissolution-Induced Surface Reconstruction of Ni 0.95Pt 0.05Si/p-Si Photocathode for Efficient Photoelectrochemical H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311738. [PMID: 38477695 DOI: 10.1002/smll.202311738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p-Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution-induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p-Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm-2 and a remarkable applied bias photon-to-current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm-2) illumination. The anti-corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p-Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost-effective conversion of solar energy to chemical energy.
Collapse
Affiliation(s)
- Haoyue Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengyang Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Engineered Nanosystems Group, School of Science, Aalto University, Espoo, 02150, Finland
| | - Jing Xu
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 10009, China
| | - Xianglie Sun
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 10009, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiacheng Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhou Ru
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Luo
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 10009, China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
King AJ, Weber AZ, Bell AT. Understanding Photovoltage Enhancement in Metal-Insulator Semiconductor Photoelectrodes with Metal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36380-36391. [PMID: 38968444 DOI: 10.1021/acsami.4c05928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
A metal-insulator-semiconductor (MIS) structure holds great potential to promote photoelectrochemical (PEC) reactions, such as water splitting and CO2 reduction, for the storage of solar energy in chemical bonds. The semiconductor absorbs photons, creating electron-hole pairs; the insulator facilitates charge separation; and the metal collects the desired charge and facilitates its use in the electrochemical reaction. Despite these attractive features, MIS photoelectrodes are significantly limited by their photovoltage, a combination of the voltage generated from photon absorption minus the potential drop across the insulator. Herein, we use multiscale continuum modeling of the carrier, electrolyte, and interfacial transport to identify strategies for mitigating the deleterious potential drop across the insulator and enabling high MIS photovoltages. To this end, we model Ni/SiO2/n-Si photoanodes that employ a planar Ni film or Ni nanoparticles (np-MIS) and validate both models using experimental polarization curves and photovoltage measurements from the literature. The simulations reveal that the insulator potential drop is lower and hence achieves higher photovoltages for np-MIS structures than MIS structures because the electrolyte screens charge trapped at defect states between the semiconductor and the insulator. This electrolyte charge screening phenomenon can be further leveraged by using low loadings or small nanoparticles, which not only minimize the interfacial potential drop but also improve the photocurrent by enabling more light absorption. These insights contribute to the optimization of the np-MIS structures for sustainable energy conversion.
Collapse
Affiliation(s)
- Alex J King
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adam Z Weber
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Dhillon M, Naskar A, Kaushal N, Bhansali S, Saha A, Basu AK. A novel GO hoisted SnO 2-BiOBr bifunctional catalyst for the remediation of organic dyes under illumination by visible light and electrocatalytic water splitting. NANOSCALE 2024; 16:12445-12458. [PMID: 38775017 DOI: 10.1039/d4nr01154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
It is imperative to develop affordable multi-functional catalysts based on transition metals for various applications, such as dye degradation or the production of green energy. For the first time, we propose a simple chemical bath method to create a SnO2-BiOBr-rGO heterojunction with remarkable photocatalytic and electrocatalytic activities. After introducing graphene oxide (GO) into the SnO2-BiOBr nanocomposite, the charge separation, electron mobility, surface area, and electrochemical properties were significantly improved. The X-ray diffraction results show the successful integration of GO into the SnO2-BiOBr nanocomposite. Systematic material characterization by scanning and transmission electron microscopy showed that the photocatalysts are composed of uniformly distributed SnO2 nanoparticles (∼11 nm) on the regular nanosheets of BiOBr (∼94 nm) and rGO. The SnO2-BiOBr-rGO photocatalyst has outstanding photocatalytic activity when it comes to reducing a variety of organic dyes like rhodamine B (RhB) and methylene blue (MB). Within 90 minutes of visible light illumination, degradation of a maximum of 99% for MB and 99.8% for RhB was noted. The oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance was also tested for the ternary nanocomposite, and significantly lower overpotential values of 0.34 and -0.11 V (vs. RHE) at 10 mA cm-2 were observed for the OER and HER, respectively. Furthermore, the Tafel slope values are 34 and 39 mV dec-1 for the OER and HER, respectively. The catalytic degradation of dyes with visible light and efficient OER and HER performance offer this work a broad spectrum of potential applications.
Collapse
Affiliation(s)
- Manshu Dhillon
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Mohali 140306, India
| | - Abhishek Naskar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Mohali 140306, India
| | - Neha Kaushal
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India
- Academy of Scientific and Innovative Research (AcSIR-CSIO), Ghaziabad-201002, India
| | - Shekhar Bhansali
- Electrical and Computer Engineering, Florida International University, Miami, FL 33199, USA
| | - Avishek Saha
- Academy of Scientific and Innovative Research (AcSIR-CSIO), Ghaziabad-201002, India
- CSIR-National Chemical Laboratory (NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Aviru Kumar Basu
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Mohali 140306, India
| |
Collapse
|
8
|
Wei S, Xia X, Bi S, Hu S, Wu X, Hsu HY, Zou X, Huang K, Zhang DW, Sun Q, Bard AJ, Yu ET, Ji L. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting. Chem Soc Rev 2024; 53:6860-6916. [PMID: 38833171 DOI: 10.1039/d3cs00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation. This review discusses the structural composition and interfacial intricacies of MIS photoelectrodes tailored for PEC water splitting. The application of MIS heterostructures across various semiconductor light-absorbing layers, including traditional photovoltaic-grade semiconductors, metal oxides, and emerging materials, is presented first. Subsequently, this review elucidates the reaction mechanisms and respective merits of vacuum and non-vacuum deposition techniques in the fabrication of the insulator layers. In the context of the metal layers, this review extends beyond the conventional scope, not only by introducing metal-based cocatalysts, but also by exploring the latest advancements in molecular and single-atom catalysts integrated within MIS photoelectrodes. Furthermore, a systematic summary of carrier transfer mechanisms and interface design principles of MIS photoelectrodes is presented, which are pivotal for optimizing energy band alignment and enhancing solar-to-chemical conversion efficiency within the PEC system. Finally, this review explores innovative derivative configurations of MIS photoelectrodes, including back-illuminated MIS photoelectrodes, inverted MIS photoelectrodes, tandem MIS photoelectrodes, and monolithically integrated wireless MIS photoelectrodes. These novel architectures address the limitations of traditional MIS structures by effectively coupling different functional modules, minimizing optical and ohmic losses, and mitigating recombination losses.
Collapse
Affiliation(s)
- Shice Wei
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuewen Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuai Bi
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shen Hu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuefeng Wu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Hsien-Yi Hsu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xingli Zou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Kai Huang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - David W Zhang
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Qinqqing Sun
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Allen J Bard
- Department of Chemistry, The University of Texas at Austin, Texas 78713, USA
| | - Edward T Yu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78758, USA.
| | - Li Ji
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| |
Collapse
|
9
|
Zhao Y, Sépulveda B, Descamps J, Faye F, Duque M, Esteve J, Santinacci L, Sojic N, Loget G, Léger Y. Near-IR Photoinduced Electrochemiluminescence Imaging with Structured Silicon Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11722-11729. [PMID: 38393292 DOI: 10.1021/acsami.3c19029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Infrared (IR) imaging devices that convert IR irradiation (invisible to the human eye) to a visible signal are based on solid-state components. Here, we introduce an alternative concept based on light-addressable electrochemistry (i.e., electrochemistry spatially confined under the action of a light stimulus) that involves the use of a liquid electrolyte. In this method, the projection of a near-IR image (λexc = 850 or 840 nm) onto a photoactive Si-based photoanode, immersed into a liquid phase, triggers locally the photoinduced electrochemiluminescence (PECL) of the efficient [Ru(bpy)3]2+-TPrA system. This leads to the local conversion of near-IR light to visible (λPECL = 632 nm) light. We demonstrate that compared to planar Si photoanodes, the use of a micropillar Si array leads to a large enhancement of local light generation and considerably improves the resolution of the PECL image by preventing photogenerated minority carriers from diffusing laterally. These results are important for the design of original light conversion devices and can lead to important applications in photothermal imaging and analytical chemistry.
Collapse
Affiliation(s)
- Yiran Zhao
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes 35000, France
| | - Borja Sépulveda
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Barcelona 08193, Spain
| | - Julie Descamps
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| | - Fatoumata Faye
- INSA Rennes, CNRS, Institut FOTON-UMR6082, Univ Rennes, Rennes F-35000, France
| | - Marcos Duque
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Barcelona 08193, Spain
| | - Jaume Esteve
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Barcelona 08193, Spain
| | | | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| | - Gabriel Loget
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes 35000, France
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| | - Yoan Léger
- INSA Rennes, CNRS, Institut FOTON-UMR6082, Univ Rennes, Rennes F-35000, France
| |
Collapse
|
10
|
Li R, Yoc-Bautista MG, Weng S, Cai Z, Zhao B, Cronin SB. Voltage-Induced Inversion of Band Bending and Photovoltages at Semiconductor/Liquid Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9355-9361. [PMID: 38319802 DOI: 10.1021/acsami.3c14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
At semiconductor/liquid interfaces, the surface potential and photovoltages are produced by a combination of band bending and quasi-Fermi-level splitting at the semiconductor surface, which are usually treated in a qualitative fashion. As such, it is important to develop quantitative metrics for the band energies and photovoltaics at these interfaces. Here, we present a spectroscopic method for monitoring the photovoltages produced at semiconductor/liquid junctions. The surface reporter molecule mercaptobenzonitrile (MBN) is functionalized on the photoelectrode surface (p-type silicon) and is measured using in situ surface-enhanced Raman scattering (SERS) spectroscopy with a water immersion lens under electrochemical working conditions. In particular, the vibrational frequency of the C≡N stretch mode (ωCN) around 2225 cm-1 is sensitive to the local electric field in solution at the electrode/electrolyte interface via the vibrational Stark effect. Over the applied potential range from -0.8 to 0.6 V vs Ag/AgCl, we observe ωCN to increase from 2220 to 2229 cm-1 (at low laser power). As the incident laser power is increased from 83.5 μW to 13.3 mW, we observe additional shifts of ΔωCN = ±1 cm-1, corresponding to photovoltages produced at the semiconductor/liquid interface ΔV = ±0.2 V. Based on Mott-Schottky measurements, the flat band potential (FBP) occurs at -0.39 V vs Ag/AgCl. For applied potentials above the FBP, we observe ΔωCN > 0 (i.e., blue-shifts ∼1 cm-1) corresponding to positive photovoltages, whereas for applied potentials below the flat band potential, we observe ΔωCN < 0 (i.e., red-shifts ∼1 cm-1) corresponding to negative photovoltages. These spectroscopic observations reveal voltage-induced changes in the band bending at the semiconductor/liquid junction that, thus far, have been difficult to measure.
Collapse
|
11
|
Liu S, Wu L, Tang D, Xue J, Dang K, He H, Bai S, Ji H, Chen C, Zhang Y, Zhao J. Transition from Sequential to Concerted Proton-Coupled Electron Transfer of Water Oxidation on Semiconductor Photoanodes. J Am Chem Soc 2023; 145:23849-23858. [PMID: 37861695 DOI: 10.1021/jacs.3c09410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Accelerating proton transfer has been demonstrated as key to boosting water oxidation on semiconductor photoanodes. Herein, we study proton-coupled electron transfer (PCET) of water oxidation on five typical photoanodes [i.e., α-Fe2O3, BiVO4, TiO2, plasmonic Au/TiO2, and nickel-iron oxyhydroxide (Ni1-xFexOOH)-modified silicon (Si)] by combining the rate law analysis of H2O molecules with the H/D kinetic isotope effect (KIE) and operando spectroscopic studies. An unexpected and universal half-order kinetics is observed for the rate law analysis of H2O, referring to a sequential proton-electron transfer pathway, which is the rate-limiting factor that causes the sluggish water oxidation performance. Surface modification of the Ni1-xFexOOH electrocatalyst is observed to break this limitation and exhibits a normal first-order kinetics accompanied by much enhanced H/D KIE values, facilitating the turnover frequency of water oxidation by 1 order of magnitude. It is the first time that Ni1-xFexOOH is found to be a PCET modulator. The rate law analysis illustrates an effective strategy for modulating PCET kinetics of water oxidation on semiconductor surfaces.
Collapse
Affiliation(s)
- Siqin Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Daojian Tang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Xue
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kun Dang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanbin He
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuming Bai
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Yeh YH, Chang CL, Tseng ZC, Hsiao VKS, Huang CY. Enhancing the Photoelectrochemical Performance of a Nanoporous Silicon Photocathode through Electroless Nickel Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2552. [PMID: 37764581 PMCID: PMC10536183 DOI: 10.3390/nano13182552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Renewable energy sources, particularly solar energy, are key to our efforts to decarbonize. This study investigates the photoelectrochemical (PEC) behavior of nanoporous silicon (NPSi) and its Ni-coated hybrid system. The methods involve the application of a Ni coating to NPSi, a process aimed at augmenting catalytic activity, light absorption, and carrier transport. Scanning electron microscopy was used to analyze the morphological changes on NPSi surfaces due to the Ni coating. Results demonstrate that the Ni coating creates unique structures on NPSi surfaces, with peak PEC performance observed at 15 min of coating time and 60 °C. These conditions were found to promote electron-hole pair separation and uniform Ni coverage. A continuous 50-min white light illumination experiment confirmed stable PEC fluctuations, showing the interplay of NPSi's characteristics and Ni's catalytic effect. This study provides practical guidance for the design of efficient water-splitting catalysts, contributing to the broader field of renewable energy conversion.
Collapse
Affiliation(s)
- Yao-Hung Yeh
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli 54561, Taiwan
| | - Chiao-Li Chang
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli 54561, Taiwan
| | - Zi-Chun Tseng
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli 54561, Taiwan
| | - Vincent K S Hsiao
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli 54561, Taiwan
| | - Chun-Ying Huang
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli 54561, Taiwan
| |
Collapse
|
13
|
King AJ, Weber AZ, Bell AT. Theory and Simulation of Metal-Insulator-Semiconductor (MIS) Photoelectrodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23024-23039. [PMID: 37154402 DOI: 10.1021/acsami.2c21114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A metal-insulator-semiconductor (MIS) structure is an attractive photoelectrode-catalyst architecture for promoting photoelectrochemical reactions, such as the formation of H2 by proton reduction. The metal catalyzes the generation of H2 using electrons generated by photon absorption and charge separation in the semiconductor. The insulator layer between the metal and the semiconductor protects the latter element from photo-corrosion and, also, significantly impacts the photovoltage at the metal surface. Understanding how the insulator layer determines the photovoltage and what properties lead to high photovoltages is critical to the development of MIS structures for solar-to-chemical energy conversion. Herein, we present a continuum model for charge-carrier transport from the semiconductor to the metal with an emphasis on mechanisms of charge transport across the insulator. The polarization curves and photovoltages predicted by this model for a Pt/HfO2/p-Si MIS structure at different HfO2 thicknesses agree well with experimentally measured data. The simulations reveal how insulator properties (i.e., thickness and band structure) affect band bending near the semiconductor/insulator interface and how tuning them can lead to operation closer to the maximally attainable photovoltage, the flat-band potential. This phenomenon is understood by considering the change in tunneling resistance with insulator properties. The model shows that the best MIS performance is attained with highly symmetric semiconductor/insulator band offsets (e.g., BeO, MgO, SiO2, HfO2, or ZrO2 deposited on Si) and a low to moderate insulator thickness (e.g., between 0.8 and 1.5 nm). Beyond 1.5 nm, the density of filled interfacial trap sites is high and significantly limits the photovoltage and the solar-to-chemical conversion rate. These conclusions are true for photocathodes and photoanodes. This understanding provides critical insight into the phenomena enhancing and limiting photoelectrode performance and how this phenomenon is influenced by insulator properties. The study gives guidance toward the development of next-generation insulators for MIS structures that achieve high performance.
Collapse
Affiliation(s)
- Alex J King
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adam Z Weber
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Yang H, Cheng W, Lu X, Chen Z, Liu C, Tian L, Li Z. Coupling Transition Metal Compound with Single-Atom Site for Water Splitting Electrocatalysis. CHEM REC 2023; 23:e202200237. [PMID: 36538728 DOI: 10.1002/tcr.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Single-atom site catalysts (SACs) provide an ideal platform to identify the active centers, explore the catalytic mechanism, and establish the structure-property relationships, and thus have attracted increasing interests for electrocatalytic energy conversion. Substantial endeavors have been devoted to the construction of carbon-supported SACs, and their progress have been comprehensively reviewed. Compared with carbon-supported SACs, transition metal compounds (TMCs)-supported SACs are still in their infancy in the field of electrocatalysis. However, they have also aroused ever-increasing attention for driving electrocatalytic water splitting, and emerged as an indispensable class of SACs in recent years, predominately owing to their inherently structural features, such as rich anchoring sites, surface defects, and lattice vacancy. Herein, in this review, we have systematically summarized the recent advances of a variety of TMC supported SACs toward electrocatalytic water splitting. The advanced characterization techniques and theoretical analyses for identifying and monitoring the atomic structure of SACs are firstly manifested. Subsequently, the anchoring and stabilization mechanisms for TMC supported SACs are also highlighted. Thereafter, the advances of TMC supported SACs for driving water electrolysis are systematically unraveled.
Collapse
Affiliation(s)
- Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Chao Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| |
Collapse
|
15
|
Liu D, Yan Y, Li H, Liu D, Yang Y, Li T, Du Y, Yan S, Yu T, Zhou W, Cui P, Zou Z. A Template Editing Strategy to Create Interlayer-Confined Active Species for Efficient and Durable Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203420. [PMID: 36398539 DOI: 10.1002/adma.202203420] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Substantial overpotentials and insufficient and unstable active sites of oxygen evolution reaction (OER) electrocatalysts limit their efficiency and stability in OER-related energy conversion and storage technologies. Here, a template editing strategy is proposed to graft highly active catalytic species onto highly conductive rigid frameworks to tackle this challenge. As a successful attempt, two types of NiO6 units of layered Ni BDC (BDC stands for 1,4-benzenedicarboxylic acid) metal organic frameworks are selectively edited by chemical etching-assisted electroxidation to create layered γ-NiOOH with intercalated Ni-O species. In such an interlayer-confined intercalated architecture, the large interlayer space with high ion permeability offers an ideal reaction region to sufficiently expose the OER active sites comprising high-density intercalated Ni-O species, which also suppresses the undesirable γ to β phase transformation, thus exhibiting efficient and durable OER activity. As a result, water oxidation can occur at an extremely low overpotential of 130 mV and affords 1000 h stability at 100 mA cm-2 . The strategy conceptually shows the possibility of achieving stable homogeneous-like catalysis in heterogeneous catalysis.
Collapse
Affiliation(s)
- Depei Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yuandong Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
| | - Hu Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
| | - Duanduan Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yandong Yang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
| | - Taozhu Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
| | - Yu Du
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
| | - Tao Yu
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Wei Zhou
- Department of Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, the Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, P. R. China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| |
Collapse
|
16
|
Recent Advances in In Situ/Operando Surface/Interface Characterization Techniques for the Study of Artificial Photosynthesis. INORGANICS 2022. [DOI: 10.3390/inorganics11010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
(Photo-)electrocatalytic artificial photosynthesis driven by electrical and/or solar energy that converts water (H2O) and carbon dioxide (CO2) into hydrogen (H2), carbohydrates and oxygen (O2), has proven to be a promising and effective route for producing clean alternatives to fossil fuels, as well as for storing intermittent renewable energy, and thus to solve the energy crisis and climate change issues that we are facing today. Basic (photo-)electrocatalysis consists of three main processes: (1) light absorption, (2) the separation and transport of photogenerated charge carriers, and (3) the transfer of photogenerated charge carriers at the interfaces. With further research, scientists have found that these three steps are significantly affected by surface and interface properties (e.g., defect, dangling bonds, adsorption/desorption, surface recombination, electric double layer (EDL), surface dipole). Therefore, the catalytic performance, which to a great extent is determined by the physicochemical properties of surfaces and interfaces between catalyst and reactant, can be changed dramatically under working conditions. Common approaches for investigating these phenomena include X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), scanning probe microscopy (SPM), wide angle X-ray diffraction (WAXRD), auger electron spectroscopy (AES), transmission electron microscope (TEM), etc. Generally, these techniques can only be applied under ex situ conditions and cannot fully recover the changes of catalysts in real chemical reactions. How to identify and track alterations of the catalysts, and thus provide further insight into the complex mechanisms behind them, has become a major research topic in this field. The application of in situ/operando characterization techniques enables real-time monitoring and analysis of dynamic changes. Therefore, researchers can obtain physical and/or chemical information during the reaction (e.g., morphology, chemical bonding, valence state, photocurrent distribution, surface potential variation, surface reconstruction), or even by the combination of these techniques as a suite (e.g., atomic force microscopy-based infrared spectroscopy (AFM-IR), or near-ambient-pressure STM/XPS combined system (NAP STM-XPS)) to correlate the various properties simultaneously, so as to further reveal the reaction mechanisms. In this review, we briefly describe the working principles of in situ/operando surface/interface characterization technologies (i.e., SPM and X-ray spectroscopy) and discuss the recent progress in monitoring relevant surface/interface changes during water splitting and CO2 reduction reactions (CO2RR). We hope that this review will provide our readers with some ideas and guidance about how these in situ/operando characterization techniques can help us investigate the changes in catalyst surfaces/interfaces, and further promote the development of (photo-)electrocatalytic surface and interface engineering.
Collapse
|
17
|
Lv J, Xie J, Mohamed AGA, Zhang X, Feng Y, Jiao L, Zhou E, Yuan D, Wang Y. Solar utilization beyond photosynthesis. Nat Rev Chem 2022; 7:91-105. [PMID: 37117911 DOI: 10.1038/s41570-022-00448-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Natural photosynthesis is an efficient biochemical process which converts solar energy into energy-rich carbohydrates. By understanding the key photoelectrochemical processes and mechanisms that underpin natural photosynthesis, advanced solar utilization technologies have been developed that may be used to provide sustainable energy to help address climate change. The processes of light harvesting, catalysis and energy storage in natural photosynthesis have inspired photovoltaics, photoelectrocatalysis and photo-rechargeable battery technologies. In this Review, we describe how advanced solar utilization technologies have drawn inspiration from natural photosynthesis, to find sustainable solutions to the challenges faced by modern society. We summarize the uses of advanced solar utilization technologies, such as converting solar energy to electrical and chemical energy, electrochemical storage and conversion, and associated thermal tandem technologies. Both the foundational mechanisms and typical materials and devices are reported. Finally, potential future solar utilization technologies are presented that may mimic, and even outperform, natural photosynthesis.
Collapse
|
18
|
Versatile Bifunctional and Supported IrNi Oxide Catalyst for Photoelectrochemical Water Splitting. Catalysts 2022. [DOI: 10.3390/catal12091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Designing a high-performance electrocatalyst that operates with photon-level energy is of the utmost importance in order to address the world’s urgent energy concerns. Herein, we report IrNi nanoparticles uniformly distributed on cost-effective activated carbon support with a low mass loading of 3% by weight to drive the overall water splitting reaction under light illumination over a wide pH range. The prepared IrNi nanomaterials were extensively characterized by SEM/EDX, TEM, XRD, Raman, and UV-visible absorption spectroscopy. The experimental results demonstrate that when the Ir:Ni ratio is 4:1, the water splitting rate is high at 32 and 25 mA cm−2 for hydrogen (at −1.16 V) and oxygen evolution reactions (at 1.8 V) in alkaline electrolyte, respectively, upon the light irradiation (100 mW cm−2). The physical and electrochemical characterization of metal and alloy combinations show that the cumulative effect of relatively high crystallinity (among the materials used in this study), reduced charge recombination rate, and improved oxygen vacancies observed with the 4Ir1Ni@AC electrode is the reason for the superior activity obtained. A high level of durability for hydrogen and oxygen evolution under light illumination is seen in the chronoamperometric study over 15 h of operation. Overall water splitting examined in 0.1 M of NaOH medium at a 50 mV s−1 scan rate showed a cell voltage of 1.94 V at a 10 mA cm−2 current density.
Collapse
|
19
|
Yang X, Liu Y, Guo R, Xiao J. Ru doping boosts electrocatalytic water splitting. Dalton Trans 2022; 51:11208-11225. [PMID: 35730677 DOI: 10.1039/d2dt01394k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heteroatom doping plays a crucial role in improving the electrocatalytic performance of catalysts towards water splitting. Owing to the existence of Ru-O moieties, Ru is thus emerging as an ideal dopant for promoting the electrocatalytic performance for water splitting by modifying the electronic structure, introducing extra active sites, improving electronic conductivity, and inducing a strong synergistic effect. Benefitting from these advantages, Ru-doped nanomaterials have been widely investigated and employed as advanced electrocatalysts for water splitting, and many excellent Ru-doped electrocatalysts have been successfully developed. In an effort to obtain a better understanding of the influence of Ru doping on the electrocatalytic water splitting performance of nanocatalysts, we herein summarize the recent progress of Ru-doped electrocatalysts by focusing on the synthesis strategies and advantageous merits. Applications of these new materials in water electrolysis technology are also discussed with emphasis on future directions in this active field of research.
Collapse
Affiliation(s)
- Xin Yang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418000, PR China.
| | - Yan Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418000, PR China.
| | - Ruike Guo
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418000, PR China.
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, PR China.
| |
Collapse
|
20
|
Zhao Y, Descamps J, Ababou-Girard S, Bergamini JF, Santinacci L, Léger Y, Sojic N, Loget G. Metal-Insulator-Semiconductor Anodes for Ultrastable and Site-Selective Upconversion Photoinduced Electrochemiluminescence. Angew Chem Int Ed Engl 2022; 61:e202201865. [PMID: 35233901 DOI: 10.1002/anie.202201865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/27/2022]
Abstract
Photoinduced electrochemiluminescence (PECL) allows the electrochemically assisted conversion of low-energy photons into high-energy photons at an electrode surface. This concept is expected to have important implications, however, it is dramatically limited by the stability of the surface, impeding future developments. Here, a series of metal-insulator-semiconductor (MIS) junctions, using photoactive n-type Si (n-Si) as a light absorber covered by a few-nanometer-thick protective SiOx /metal (SiOx /M, with M=Ru, Pt, and Ir) overlayers are investigated for upconversion PECL of the model co-reactant system involving the simultaneous oxidation of tris(bipyridine)ruthenium(II) and tri-n-propylamine. We show that n-Si/SiOx /Pt and n-Si/SiOx /Ir exhibit high photovoltages and record stabilities in operation (35 h for n-Si/SiOx /Ir) for the generation of intense PECL with an anti-Stokes shift of 218 nm. We also demonstrate that these surfaces can be employed for spatially localized PECL. These unprecedented performances are extremely promising for future applications of PECL.
Collapse
Affiliation(s)
- Yiran Zhao
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, 35000, Rennes, France
| | - Julie Descamps
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Soraya Ababou-Girard
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251, 35000, Rennes, France
| | - Jean-François Bergamini
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, 35000, Rennes, France
| | | | - Yoan Léger
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON-UMR 6082, 35000, Rennes, France
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Gabriel Loget
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, 35000, Rennes, France
| |
Collapse
|
21
|
Zhao Y, Descamps J, Ababou‐Girard S, Bergamini J, Santinacci L, Léger Y, Sojic N, Loget G. Metal‐Insulator‐Semiconductor Anodes for Ultrastable and Site‐Selective Upconversion Photoinduced Electrochemiluminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiran Zhao
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 35000 Rennes France
| | - Julie Descamps
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| | - Soraya Ababou‐Girard
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 35000 Rennes France
| | - Jean‐François Bergamini
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 35000 Rennes France
| | | | - Yoan Léger
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON-UMR 6082 35000 Rennes France
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| | - Gabriel Loget
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 35000 Rennes France
| |
Collapse
|
22
|
Qiao Z, Ding C. Recent Progress on Polyvinyl Alcohol-Based Materials for Energy Conversion. NEW J CHEM 2022. [DOI: 10.1039/d1nj04344g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic energy conversion shows a promising “bridge” to mitigate energy shortage issues and minimizes the ecological implications by synergy with the sustainable energy sources, which calls for low-cost, highly active,...
Collapse
|
23
|
Zhao E, Du K, Yin P, Ran J, Mao J, Ling T, Qiao S. Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104363. [PMID: 34850603 PMCID: PMC8728826 DOI: 10.1002/advs.202104363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Indexed: 05/08/2023]
Abstract
Powered by inexhaustible solar energy, photoelectrochemical (PEC) hydrogen/ammonia production and reduction of carbon dioxide to high added-value chemicals in eco-friendly and mild conditions provide a highly attractive solution to carbon neutrality. Recently, substantial advances have been achieved in PEC systems by improving light absorption and charge separation/transfer in PEC devices. However, less attention is given to the atomic design of photoelectrocatalysts to facilitate the final catalytic reactions occurring at photoelectrode surface, which largely limits the overall photo-to-energy conversion of PEC system. Fundamental catalytic mechanisms and recent progress in atomic design of PEC materials are comprehensively reviewed by engineering of defect, dopant, facet, strain, and single atom to enhance the activity and selectivity. Finally, the emerging challenges and research directions in design of PEC systems for future photo-to-energy conversions are proposed.
Collapse
Affiliation(s)
- Erling Zhao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Kun Du
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Peng‐Fei Yin
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Jingrun Ran
- School of Chemical Engineering and Advanced MaterialsThe University of AdelaideAdelaideSA5005Australia
| | - Jing Mao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Shi‐Zhang Qiao
- School of Chemical Engineering and Advanced MaterialsThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
24
|
Samira S, Hong J, Camayang JCA, Sun K, Hoffman AS, Bare SR, Nikolla E. Dynamic Surface Reconstruction Unifies the Electrocatalytic Oxygen Evolution Performance of Nonstoichiometric Mixed Metal Oxides. JACS AU 2021; 1:2224-2241. [PMID: 34977894 PMCID: PMC8715492 DOI: 10.1021/jacsau.1c00359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 05/26/2023]
Abstract
Compositionally versatile, nonstoichiometric, mixed ionic-electronic conducting metal oxides of the form A n+1B n O3n+1 (n = 1 → ∞; A = rare-earth-/alkaline-earth-metal cation; B = transition-metal (TM) cation) remain a highly attractive class of electrocatalysts for catalyzing the energy-intensive oxygen evolution reaction (OER). The current design strategies for describing their OER activities are largely derived assuming a static, unchanged view of their surfaces, despite reports of dynamic structural changes to 3d TM-based perovskites during OER. Herein, through variations in the A- and B-site compositions of A n+1B n O3n+1 oxides (n = 1 (A2BO4) or n = ∞ (ABO3); A = La, Sr, Ca; B = Mn, Fe, Co, Ni), we show that, in the absence of electrolyte impurities, surface restructuring is universally the source of high OER activity in these oxides and is dependent on the initial oxide composition. Oxide surface restructuring is induced by irreversible A-site cation dissolution, resulting in in situ formation of a TM oxyhydroxide shell on top of the parent oxide core that serves as the active surface for OER. The rate of surface restructuring is found to depend on (i) composition of A-site cations, with alkaline-earth-metal cations dominating lanthanide cation dissolution, (ii) oxide crystal phase, with n = 1 A2BO4 oxides exhibiting higher rates of A-site dissolution in comparison to n = ∞ ABO3 perovskites, (iii) lattice strain in the oxide induced by mixed rare-earth- and alkaline-earth-metal cations in the A-site, and (iv) oxide reducibility. Among the in situ generated 3d TM oxyhydroxide structures from A n+1B n O3n+1 oxides, Co-based structures are characterized by superior OER activity and stability, even in comparison to as-synthesized Co-oxyhydroxide, pointing to the generation of high active surface area structures through oxide restructuring. These insights are critical toward the development of revised design criteria to include surface dynamics for effectively describing the OER activity of nonstoichiometric mixed-metal oxides.
Collapse
Affiliation(s)
- Samji Samira
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Jiyun Hong
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - John Carl A. Camayang
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Kai Sun
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam S. Hoffman
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R. Bare
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eranda Nikolla
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
25
|
Wu D, Hao J, Wang W, Yu Y, Fu XZ, Luo JL. Energy-saving H 2 Generation Coupled with Oxidative Alcohol Refining over Bimetallic Phosphide Ni 2 P-CoP Junction Bifunctional Electrocatalysts. CHEMSUSCHEM 2021; 14:5450-5459. [PMID: 34585535 DOI: 10.1002/cssc.202101841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The realization of large-scale H2 production from electrocatalytic water splitting is severely impeded by the kinetically sluggish and economically less viable anodic oxygen evolution reaction. Here, an efficient strategy was established for the concurrent H2 production and oxidative alcohols refining into value-added formate by utilizing self-supported Ni2 P-CoP bifunctional electrocatalysts. Benefiting from high intrinsic activity, abundant active sites, and synergistic promoting effects of bimetallic phosphides, the constructed two-electrode electrolyzer required a cell voltage of around 1.3 V to achieve 10 mA cm-2 , which is more than 200 mV lower than that of pure water splitting. Moreover, simultaneous productions of H2 with near-unity conversion efficiency and formate at high faradaic efficiencies of 99.8 and 89.6 % oxidatively produced from methanol and glycerol, respectively, were achieved with excellent durability. This work presents a general and economic approach toward the fabrication of cost-effective electrocatalysts for energy-efficient and profitable large-scale renewable energy integration.
Collapse
Affiliation(s)
- Dan Wu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
| | - Jie Hao
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
- Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, P. R. China
| | - Weilin Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
| | - Yan Yu
- Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, P. R. China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
| |
Collapse
|
26
|
Karthik PE, Jothi VR, Pitchaimuthu S, Yi S, Anantharaj S. Alternating Current Techniques for a Better Understanding of Photoelectrocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pitchiah E. Karthik
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Vasanth Rajendiran Jothi
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sudhagar Pitchaimuthu
- Research Centre for Carbon Solutions, Institute of Mechanical, Processing, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - SungChul Yi
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Department of Hydrogen and Fuel Cell Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sengeni Anantharaj
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|