1
|
Alemayehu AB, Settineri NS, Lanza AE, Ghosh A. Rhenium-Sulfido and -Dithiolato Corroles: Reflections on Chalcophilicity. Inorg Chem 2024. [PMID: 39680845 DOI: 10.1021/acs.inorgchem.4c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The high-temperature (∼180 °C) reaction between free-base meso-triarylcorroles and Re2(CO)10, followed by exposure to PCl3 and thiols (or elemental sulfur), affords rhenium-sulfido (ReS) corroles in 67-76% yields. The use of shorter reaction times, lower temperatures (∼130 °C), and a dithiol (e.g., ethane-1,2-dithiol) also allows the isolation of rhenium-dithiolato corroles, presumptive intermediates on the path to ReS corroles. The ReS corroles exhibit high thermal stability and two reversible oxidations and reductions in their cyclic voltammograms, with redox potentials nearly identical to those observed for analogous ReO corroles. The electrochemical HOMO-LUMO gaps of the complexes, at 2.2 eV, are consistent with ligand-centered oxidation and reduction. The UV-vis spectra of ReS corroles, on the other hand, differ significantly from those of their ReO counterparts. Scalar-relativistic DFT calculations suggest that this difference reflects low-energy LUMO+2 and LUMO+3 levels, consisting of Re-S π-antibonding interactions; the ReO corroles, in contrast, exhibit a larger LUMO+1/LUMO+2 gap, as expected for a relatively classical Gouterman-type metalloporphyrin analogue. The high stability of ReS corroles is consistent with geochemists' view of rhenium as a moderately chalcophilic element (i.e., one that partitions into sulfide melts) as well as with a recent quantitative analysis of thiophilicity, which indicates that rhenium's oxophilicity and thiophilicity are essentially evenly balanced.
Collapse
Affiliation(s)
| | - Nicholas S Settineri
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Arianna E Lanza
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Abhik Ghosh
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
2
|
Varak P, Ravikanth M. Pyrrolizinofluorene-embedded dithiacalixcorrole(1.0. 1. 1)s. Org Biomol Chem 2024; 22:8125-8132. [PMID: 39292177 DOI: 10.1039/d4ob01276c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
An unprecedented synthesis of pyrrolizinofluorene moiety embedded dithiacalixcorrole(1.0.1.1)s via [3 + 2] condensation of fluorene-based tripyrrane and appropriate bithiophene diol under TFA-catalyzed conditions is reported. Single crystal X-ray structural analysis revealed that the fluorene unit was inverted and involved in the intramolecular C-N bond formation, resulting in the generation of an unusual pyrrolizinofluorene moiety as part of the dithiacalixcorrole(1.0.1.1) framework. These macrocycles exhibit strong absorption in the UV-visible region and electrochemical studies revealed their electron-rich nature.
Collapse
Affiliation(s)
- Pooja Varak
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
3
|
Giovanelli L, Ksari Y, Mrezguia H, Salomon E, Minissale M, Alemayehu AB, Ghosh A. Inverse Photoemission Spectroscopy of Coinage Metal Corroles: Comparison with Solution-Phase Electrochemistry. ACS ORGANIC & INORGANIC AU 2024; 4:485-491. [PMID: 39371327 PMCID: PMC11450770 DOI: 10.1021/acsorginorgau.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 10/08/2024]
Abstract
A combined direct and inverse photoemission study of coinage metal corroles suggests that the latter technique, in favorable cases, can provide some additional information relative to electrochemical measurements. Thus, whereas inverse photoemission spectroscopy (IPES) provides relative electron affinities for electron addition to different unoccupied orbitals, electrochemical reduction potentials shed light on the energetics of successive electron additions. While all three coinage metal triphenylcorrole (TPC) complexes exhibit similar ionization potentials, they exhibit dramatically different inverse photoemission spectra. For Cu[TPC], the lowest-energy IPES feature (0.74 eV) is found to be exceedingly close to the Fermi level; it is significantly higher for Ag[TPC] (1.65 eV) and much higher for Au[TPC] (2.40 eV). These differences qualitatively mirror those observed for electrochemical reduction potentials and are related to a partially metal-centered LUMO in the case of Cu- and Ag[TPC] and a fully corrole-based LUMO in the case of Au[TPC]; the latter orbital corresponds to the LUMO+1 in the case of Ag[TPC].
Collapse
Affiliation(s)
- Luca Giovanelli
- Aix-Marseille
Université, CNRS, IM2NP, Marseille 13397, France
| | - Younal Ksari
- Aix-Marseille
Université, CNRS, IM2NP, Marseille 13397, France
| | - Hela Mrezguia
- Aix-Marseille
Université, CNRS, IM2NP, Marseille 13397, France
| | - Eric Salomon
- Aix-Marseille
Université, CNRS, PIIM, Marseille 13397, France
| | - Marco Minissale
- Aix-Marseille
Université, CNRS, PIIM, Marseille 13397, France
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
4
|
Curtis CJ, Habenšus I, Conradie J, Bardin AA, Nannenga BL, Ghosh A, Tomat E. Gold Tripyrrindione: Redox Chemistry and Reactivity with Dichloromethane. Inorg Chem 2024; 63:17188-17197. [PMID: 39215706 PMCID: PMC11583832 DOI: 10.1021/acs.inorgchem.4c02903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The identification of ligands that stabilize Au(III) centers has led to the isolation of complexes for applications in catalysis, gold-based therapeutics, and functional materials. Herein, we report the coordination of gold by tripyrrin-1,14-dione, a linear tripyrrole with the scaffold of naturally occurring metabolites of porphyrin-based protein cofactors (e.g., heme). Tripyrrindione H3TD2 binds Au(III) as a trianionic tridentate ligand to form square planar complex [Au(TD2)(H2O)], which features an adventitious aqua ligand. Two reversible ligand-based oxidations of this complex allow access to the other known redox states of the tripyrrindione framework. Conversely, (spectro)electrochemical measurements and DFT analysis indicate that the reduction of the complex is likely metal-based. The chemical reduction of [Au(TD2)(H2O)] leads to a reactive species that utilizes dichloromethane in the formation of a cyclometalated organo-Au(III) complex. Both the aqua and the organometallic Au(III) complexes were characterized in the solid state by microcrystal electron diffraction (MicroED) methods, which were critical for the analysis of the microcrystalline sample of the organo-gold species. Overall, this study illustrates the synthesis of Au(III) tripyrrindione as well as its redox profile and reactivity leading to gold alkylation chemistry.
Collapse
Affiliation(s)
- Clayton J. Curtis
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | - Iva Habenšus
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, Republic of South Africa
- Department of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Andrey A. Bardin
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Brent L. Nannenga
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Abhik Ghosh
- Department of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Larsen S, Adewuyi JA, Thomas KE, Conradie J, Rousselin Y, Ung G, Ghosh A. Electronic Structure of Metallophlorins: Lessons from Iridium and Gold Phlorin Derivatives. Inorg Chem 2024; 63:9842-9853. [PMID: 38743029 PMCID: PMC11134504 DOI: 10.1021/acs.inorgchem.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Phlorins have long remained underexplored relative to their fully conjugated counterparts, such as porphyrins, hydroporphyrins, and corroles. Herein, we have attempted to bridge that knowledge gap with a scalar-relativistic density functional theory (DFT) study of unsubstituted iridium and gold phlorin derivatives and a multitechnique experimental study of iridium-bispyridine and gold complexes of 5,5-dimethyl-10,15,20-tris(pentafluorophenyl)phlorin. Theory and experiments concur that the phlorin derivatives exhibit substantially smaller HOMO-LUMO gaps, as reflected in a variety of observable properties. Thus, the experimentally studied Ir and Au complexes absorb strongly in the near-infrared (NIR), with absorption maxima at 806 and 770 nm, respectively. The two complexes are also weakly phosphorescent with emission maxima at 950 and 967 nm, respectively. They were also found to photosensitize singlet oxygen formation, with quantum yields of 40 and 28%, respectively. The near-infrared (NIR) absorption and emission are consonants with smaller electrochemical HOMO-LUMO gaps of ∼1.6 V, compared to values of ∼2.1 V, for electronically innocent porphyrins and corroles. Interestingly, both the first oxidation and reduction potentials of the Ir complex are some 600 mV shifted to more negative potentials relative to those of the Au complex, indicating an exceptionally electron-rich macrocycle in the case of the Ir complex.
Collapse
Affiliation(s)
- Simon Larsen
- Department
of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Joseph A. Adewuyi
- Department
of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Kolle E. Thomas
- Department
of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Jeanet Conradie
- Department
of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Yoann Rousselin
- ICMUB,
UMR CNRS 6302, Université Bourgogne Franche-Comte, BP 47870, Dijon Cedex 21078, France
| | - Gaël Ung
- Department
of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Abhik Ghosh
- Department
of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
6
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
7
|
Johannessen K, Johansen MAL, Einrem RF, M cCormick M cPherson LJ, Alemayehu AB, Borisov SM, Ghosh A. Influence of Fluorinated Substituents on the Near-Infrared Phosphorescence of 5d Metallocorroles. ACS ORGANIC & INORGANIC AU 2023; 3:241-245. [PMID: 37810408 PMCID: PMC10557119 DOI: 10.1021/acsorginorgau.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 10/10/2023]
Abstract
The influence of fluorinated substituents on the luminescent properties of rhenium-oxo, osmium-nitrido, and gold triarylcorroles was studied via a comparison of four ligands: triphenylcorrole (TPC), tris(p-trifluoromethylphenyl)corrole (TpCF3PC), tris{3,5-bis(trifluoromethyl)phenyl}corrole (T3,5-CF3PC), and tris(pentafluorophenyl)corrole (TPFPC). For each metal series examined, fluorinated substituents were found to enhance the luminescent properties, with the phosphorescence quantum yields and triplet decay times increasing in the order TPC < TpCF3PC < T3,5-CF3PC < TPFPC. Among the 11 complexes examined, the highest phosphorescence quantum yield, 2.2%, was recorded for Re[TPFPC](O).
Collapse
Affiliation(s)
| | | | - Rune F. Einrem
- Department
of Chemistry, UiT−The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Laura J. McCormick McPherson
- EPSRC
National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT−The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Abhik Ghosh
- Department
of Chemistry, UiT−The Arctic University
of Norway, 9037 Tromsø, Norway
| |
Collapse
|
8
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
9
|
Queer in Chem: Q&A with Professor Abhik Ghosh. Commun Chem 2023; 6:208. [PMID: 37777682 PMCID: PMC10542345 DOI: 10.1038/s42004-023-00966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023] Open
|
10
|
Ghosh A, Conradie J. B12 and F430 models: Metal- versus ligand-centered redox in cobalt and nickel tetradehydrocorrin derivatives. J Inorg Biochem 2023; 243:112199. [PMID: 36996695 DOI: 10.1016/j.jinorgbio.2023.112199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
DFT calculations with the well-tested OLYP and B3LYP* exchange-correlation functionals (along with D3 dispersion corrections and all-electron ZORA STO-TZ2P basis sets) and careful use of group theory have led to significant insights into the question of metal- versus ligand-centered redox in Co and Ni B,C-tetradehydrocorrin complexes. For the cationic complexes, both metals occur in their low-spin M(II) forms. In contrast, the charge-neutral states vary for the two metals: while the Co(I) and CoII-TDC•2- state are comparable in energy for cobalt, a low-spin NiII-TDC•2- state is clearly preferred for nickel. The latter behavior stands in sharp contrast to other corrinoids that reportedly stabilize a Ni(I) center.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa.
| |
Collapse
|
11
|
Larsen S, Adewuyi JA, Ung G, Ghosh A. Transition-Metal Isocorroles as Singlet Oxygen Sensitizers. Inorg Chem 2023; 62:7483-7490. [PMID: 37141580 DOI: 10.1021/acs.inorgchem.3c00782] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Building on a highly efficient synthesis of pyrrole-appended isocorroles, we have worked out conditions for manganese, palladium, and platinum insertion into free-base 5/10-(2-pyrrolyl)-5,10,15-tris(4-methylphenyl)isocorrole, H2[5/10-(2-py)TpMePiC]. Platinum insertion proved exceedingly challenging but was finally accomplished with cis-Pt(PhCN)2Cl2. All the complexes proved weakly phosphorescent in the near-infrared under ambient conditions, with a maximum phosphorescence quantum yield of 0.1% observed for Pd[5-(2-py)TpMePiC]. The emission maximum was found to exhibit a strong metal ion dependence for the 5-regioisomeric complexes but not for the 10-regioisomers. Despite the low phosphorescence quantum yields, all the complexes were found to sensitize singlet oxygen formation with moderate to good efficiency, with singlet oxygen quantum yields ranging over 21-52%. With significant absorption in the near-infrared and good singlet oxygen-sensitizing ability, metalloisocorroles deserve examination as photosensitizers in the photodynamic therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Simon Larsen
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Joseph A Adewuyi
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Abhik Ghosh
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
12
|
Dalmau D, Urriolabeitia EP. Luminescence and Palladium: The Odd Couple. Molecules 2023; 28:molecules28062663. [PMID: 36985639 PMCID: PMC10054068 DOI: 10.3390/molecules28062663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The synthesis, photophysical properties, and applications of highly fluorescent and phosphorescent palladium complexes are reviewed, covering the period 2018–2022. Despite the fact that the Pd atom appears closely related with an efficient quenching of the fluorescence of different molecules, different synthetic strategies have been recently optimized to achieve the preservation and even the amplification of the luminescent properties of several fluorophores after Pd incorporation. Beyond classical methodologies such as orthopalladation or the use of highly emissive ligands as porphyrins and related systems (for instance, biladiene), new concepts such as AIE (Aggregation Induced Emission) in metallacages or in coordination-driven supramolecular compounds (CDS) by restriction of intramolecular motions (RIM), or complexes showing TADF (Thermally Activated Delayed Fluorescence), are here described and analysed. Without pretending to be comprehensive, selected examples of applications in areas such as the fabrication of lighting devices, biological markers, photodynamic therapy, or oxygen sensing are also here reported.
Collapse
|
13
|
Momeni BZ, Abd-El-Aziz AS. Recent advances in the design and applications of platinum-based supramolecular architectures and macromolecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Corrole and squeezed coordination. Nat Chem 2022; 14:1474. [PMID: 36376391 DOI: 10.1038/s41557-022-01096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Alemayehu AB, Ghosh A. Phenol- and resorcinol-appended metallocorroles and their derivatization with fluorous tags. Sci Rep 2022; 12:19256. [PMID: 36357501 PMCID: PMC9649713 DOI: 10.1038/s41598-022-23889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Boron tribromide-mediated demethylation of rhenium-oxo and gold meso-tris(4-methoxyphenyl)corrole and meso-tris(3,5-dimethoxyphenylcorrole), M[TpOMePC] and M[T(3,5-OMe)PC] (M = ReO, Au), have yielded the corresponding phenol- and resorcinol-appended metallocorroles, M[TpOHPC] and M[T(3,5-OH)PC], in good yields. The latter compounds proved insoluble in dichloromethane and chloroform but soluble in THF. The M[T(3,5-OH)PC] derivatives also proved moderately soluble in 0.05 M aqueous KOH. Unlike oxidation-prone aminophenyl-substituted corroles, the phenol- and resorcinol-appended metallocorroles could be readily handled in air without special precautions. The phenolic metallocorroles could be readily alkylated with 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl iodide ("FtI") to afford the fluorous-tagged metallocorroles M[TpOFtPC] and M[T(3,5-OFt)PC] in > 90% yields. The simplicity of the synthetic protocols promise a wide range of phenolic and fluorous-tagged porphyrin analogues with potential applications to diverse fields such as sensors, catalysis, and photodynamic therapy, among others.
Collapse
Affiliation(s)
- Abraham B. Alemayehu
- grid.10919.300000000122595234Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- grid.10919.300000000122595234Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
16
|
Abstract
The Gouterman four-orbital model conceptualizes porphyrin UV-visible spectra as dominated by four frontier molecular orbitals-two nearly degenerate HOMOs and two exactly degenerate LUMOS under D 4h symmetry. These are well separated from all the other molecular orbitals, and normal spectra involve transitions among these MOs. Unusual spectra occur when additional orbitals appear in this energy range, typically as a consequence of the central coordinated atom. For example, metals with empty d orbitals in a suitable energy range may lead to charge transfer from porphyrin (ligand) to metal, that is, so-called LMCT transitions. Metals with filled p or d orbitals may lead to charge transfer from metal to porphyrin, MLCT transitions. These cases lead to additional peaks and/or significant redshifts in the spectra and were classified as hyperporphyrins by Gouterman. Cases in which spectra are blueshifted were classified as hypsoporphyrins; they are common for relatively electronegative late transition metal porphyrins. Many of the same principles apply to porphyrin analogues, especially corroles. In this Perspective, we focus on two newer classes of hyperporphyrins: one reflecting substituent effects in protonated or deprotonated free-base tetraphenyporphyrins and the other reflecting "noninnocent" interactions between central metal ions and corroles. Hyperporphyrin effects on spectra can be dramatic, yet they can be generated by relatively simple changes and subtle structural variations, such as acid-base reactions or the selection of a central metal ion. These concepts suggest strategies for engineering porphyrin or porphyrinoid dyes for specific applications, especially those requiring far-red or near-infrared absorption or emission.
Collapse
Affiliation(s)
- Carl C. Wamser
- Department
of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - Abhik Ghosh
- Department
of Chemistry and Arctic Center for Sustainable Energy, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
17
|
Terner J, Thomas KE, Vazquez-Lima H, Ghosh A. Structure-sensitive marker bands of metallocorroles: A resonance Raman study of manganese and Gold Corrole derivatives. J Inorg Biochem 2022; 231:111783. [DOI: 10.1016/j.jinorgbio.2022.111783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/30/2022]
|
18
|
Zhang X, Zhang X, Zhu W, Liang X. Boosting Electrocatalyzed Hydrogen Evolutions with Electropolymerized Thiophene Substituted CoIIICorroles. Dalton Trans 2022; 51:6177-6185. [DOI: 10.1039/d2dt00515h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a A3 type and a A2B type meso-thiophene-substituted CoIIIcorroles are prepared and the electronic structures are investigated. Interestingly, these two CoIIIcorroles are facilely polymerized under electrochemical conditions, and are...
Collapse
|
19
|
Phung QM, Muchammad Y, Yanai T, Ghosh A. A DMRG/CASPT2 Investigation of Metallocorroles: Quantifying Ligand Noninnocence in Archetypal 3d and 4d Element Derivatives. JACS AU 2021; 1:2303-2314. [PMID: 34984418 PMCID: PMC8717376 DOI: 10.1021/jacsau.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 05/03/2023]
Abstract
Hybrid density functional theory (B3LYP) and density matrix renormalization group (DMRG) theory have been used to quantitatively compare the degree of ligand noninnocence (corrole radical character) in seven archetypal metallocorroles. The seven complexes, in decreasing order of corrole noninnocent character, are Mn[Cor]Cl > Fe[Cor]Cl > Fe[Cor](NO) > Mo[Cor]Cl2 > Ru[Cor](NO) ≈ Mn[Cor]Ph ≈ Fe[Cor]Ph ≈ 0, where [Cor] refers to the unsubstituted corrolato ligand. DMRG-based second-order perturbation theory calculations have also yielded detailed excited-state energetics data on the compounds, shedding light on periodic trends involving middle transition elements. Thus, whereas the ground state of Fe[Cor](NO) (S = 0) is best described as a locally S = 1/2 {FeNO}7 unit antiferromagnetically coupled to a corrole A' radical, the calculations confirm that Ru[Cor](NO) may be described as simply {RuNO}6-Cor3-, that is, having an innocent corrole macrocycle. Furthermore, whereas the ferromagnetically coupled S = 1{FeNO}7-Cor•2- state of Fe[Cor](NO) is only ∼17.5 kcal/mol higher than the S = 0 ground state, the analogous triplet state of Ru[Cor](NO) is higher by a far larger margin (37.4 kcal/mol) relative to the ground state. In the same vein, Mo[Cor]Cl2 exhibits an adiabatic doublet-quartet gap of 36.1 kcal/mol. The large energy gaps associated with metal-ligand spin coupling in Ru[Cor](NO) and Mo[Cor]Cl2 reflect the much greater covalent character of 4d-π interactions relative to analogous interactions involving 3d orbitals. As far as excited-state energetics is concerned, DMRG-CASPT2 calculations provide moderate validation for hybrid density functional theory (B3LYP) for qualitative purposes, but underscore the possibility of large errors (>10 kcal/mol) in interstate energy differences.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasin Muchammad
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Abhik Ghosh
- Department
of Chemistry, UiT-The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
20
|
Lemon CM, Marletta MA. Designer Heme Proteins: Achieving Novel Function with Abiological Heme Analogues. Acc Chem Res 2021; 54:4565-4575. [PMID: 34890183 PMCID: PMC8754152 DOI: 10.1021/acs.accounts.1c00588] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heme proteins have proven to be a convenient platform for the development of designer proteins with novel functionalities. This is achieved by substituting the native iron porphyrin cofactor with a heme analogue that possesses the desired properties. Replacing the iron center of the porphyrin with another metal provides one inroad to novel protein function. A less explored approach is substitution of the porphyrin cofactor with an alternative tetrapyrrole macrocycle or a related ligand. In general, these ligands exhibit chemical properties and reactivity that are distinct from those of porphyrins. While these techniques have most prominently been utilized to develop artificial metalloenzymes, there are many other applications of this methodology to problems in biochemistry, health, and medicine. Incorporation of synthetic cofactors into protein environments represents a facile way to impart water solubility and biocompatibility. It circumvents the laborious synthesis of water-soluble cofactors, which often introduces substantial charge that leads to undesired bioaccumulation. To this end, the incorporation of unnatural cofactors in heme proteins has enabled the development of designer proteins as optical oxygen sensors, MRI contrast agents, spectroscopic probes, tools to interrogate protein function, antibiotics, and fluorescent proteins.Incorporation of an artificial cofactor is frequently accomplished by denaturing the holoprotein with removal of the heme; the refolded apoprotein is then reconstituted with the artificial cofactor. This process often results in substantial protein loss and does not necessarily guarantee that the refolded protein adopts the native structure. To circumvent these issues, our laboratory has pioneered the use of the RP523 strain of E. coli to incorporate artificial cofactors into heme proteins using expression-based methods. This strain lacks the ability to biosynthesize heme, and the bacterial cell wall is permeable to heme and related molecules. In this way, heme analogues supplemented in the growth medium are incorporated into heme proteins. This approach can also be leveraged for the direct expression of the apoprotein for subsequent reconstitution.These methodologies have been exploited to incorporate non-native cofactors into heme proteins that are resistant to harsh environmental conditions: the heme nitric oxide/oxygen binding protein (H-NOX) from Caldanaerobacter subterraneus (Cs) and the heme acquisition system protein A (HasA) from Pseudomonas aeruginosa (Pa). The exceptional stability of these proteins makes them ideal scaffolds for biomedical applications. Optical oxygen sensing has been accomplished using a phosphorescent ruthenium porphyrin as the artificial heme cofactor. Paramagnetic manganese and gadolinium porphyrins yield high-relaxivity, protein-based MRI contrast agents. A fluorescent phosphorus corrole serves as a heme analogue to produce fluorescent proteins. Iron complexes of nonporphyrin cofactors bound to HasA inhibit the growth of pathogenic bacteria. Moreover, HasA can deliver a gallium phthalocyanine into the bacterial cytosol to serve as a sensitizer for photochemical sterilization. Together, these examples illustrate the potential for designer heme proteins to address burgeoning problems in the areas of health and medicine. The concepts and methodologies presented in this Account can be extended to the development of next-generation biomedical sensing and imaging agents to identify and quantify clinically relevant metabolites and other key disease biomarkers.
Collapse
|
21
|
Conradie J, Alemayehu AB, Ghosh A. Iridium(VII)-Corrole Terminal Carbides Should Exist as Stable Compounds. ACS ORGANIC & INORGANIC AU 2021; 2:159-163. [PMID: 36855452 PMCID: PMC9955125 DOI: 10.1021/acsorginorgau.1c00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scalar-relativistic DFT calculations with multiple exchange-correlation functionals and large basis sets foreshadow the existence of stable iridium(VII)-corrole terminal carbide derivatives. For the parent compound Ir[Cor](C), OLYP/STO-TZ2P calculations predict a short Ir-C bond distance of 1.69 Å, a moderately domed macrocycle with no indications of ligand noninnocence, a surprisingly low electron affinity of ∼1.1 eV, and a substantial singlet-triplet gap of ∼1.8 eV. These results, and their essential invariance with respect to the choice of the exchange-correlation functional, lead us to posit that Ir(VII)-corrole terminal carbide complexes should be isolable and indefinitely stable under ambient conditions.
Collapse
Affiliation(s)
- Jeanet Conradie
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9037 Tromsø, Norway,Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9037 Tromsø, Norway,
| |
Collapse
|
22
|
Ghosh A, Conradie J. The Dog That Didn't Bark: A New Interpretation of Hypsoporphyrin Spectra and the Question of Hypsocorroles. J Phys Chem A 2021; 125:9962-9968. [PMID: 34762440 PMCID: PMC8630793 DOI: 10.1021/acs.jpca.1c08425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Nearly a half-century after Gouterman classified the UV-vis-NIR spectra of porphyrin derivatives as normal, hyper, or hypso, we propose a heretofore unsuspected "mechanism" underlying hypso spectra. Hypsoporphyrins, which exhibit blueshifted optical spectra relative to normal porphyrins (such as Zn porphyrins), typically involve dn transition metal ions, where n > 6. The spectral blueshifts have been traditionally ascribed to elevated porphyrin eg LUMO (lowest unoccupied molecular orbital) energy levels as a result of antibonding interactions with metal dπ orbitals. Herein, we have found instead that the blueshifts reflect a lowering of the a2u HOMO (highest occupied molecular orbital) energy levels. Electronegative metals such as Pd and Pt transfer smaller quantities of electron density to the porphyrin nitrogens, compared to a more electropositive metal such as Zn. With large amplitudes at the porphyrin nitrogens, the a2u HOMOs of Pd(II) and Pt(II) porphyrins accordingly exhibit lower orbital energies than those of Zn(II) porphyrins, thus explaining the hypso effect. Hypso spectra are also observed for corroles: compared with six-coordinate Al(III) corroles, which may be thought of exhibiting normal spectra, Au(III) corroles, for instance, exhibit blueshifted or hypso spectra.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department
of Chemistry, UiT—The Arctic University
of Norway, Tromsø N-9037, Norway
| | - Jeanet Conradie
- Department
of Chemistry, UiT—The Arctic University
of Norway, Tromsø N-9037, Norway
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic
of South Africa
| |
Collapse
|
23
|
Conradie J, Vazquez-Lima H, Alemayehu AB, Ghosh A. Comparing Isoelectronic, Quadruple-Bonded Metalloporphyrin and Metallocorrole Dimers: Scalar-Relativistic DFT Calculations Predict a >1 eV Range for Ionization Potential and Electron Affinity. ACS PHYSICAL CHEMISTRY AU 2021; 2:70-78. [PMID: 36855506 PMCID: PMC9955219 DOI: 10.1021/acsphyschemau.1c00030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A scalar-relativistic DFT study of isoelectronic, quadruple-bonded Group 6 metalloporphyrins (M = Mo, W) and Group 7 metallocorroles (M = Tc, Re) has uncovered dramatic differences in ionization potential (IP) and electron affinity (EA) among the compounds. Thus, both the IPs and EAs of the corrole derivatives are 1 eV or more higher than those of the porphyrin derivatives. These differences largely reflect the much lower orbital energies of the δ- and δ*-orbitals of the corrole dimers relative to those of the porphyrin dimers, which in turn reflect the higher (+III as opposed to +II) oxidation states of the metals in the former compounds. Significant differences have also been determined between Mo and W porphyrin dimers and between Tc and Re corrole dimers. These differences are thought to largely reflect greater relativistic destabilization of the 5d orbitals of W and Re relative to the 4d orbitals of Mo and Tc. The calculated differences in IP and EA should translate to major differences in electrochemical redox potentials-a prediction that in our opinion is well worth confirming.
Collapse
Affiliation(s)
- Jeanet Conradie
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway,Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Hugo Vazquez-Lima
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway,; Telephone: +47 45476145
| |
Collapse
|
24
|
Einrem RF, Jonsson ET, Teat SJ, Settineri NS, Alemayehu AB, Ghosh A. Regioselective formylation of rhenium-oxo and gold corroles: substituent effects on optical spectra and redox potentials. RSC Adv 2021; 11:34086-34094. [PMID: 35497316 PMCID: PMC9042328 DOI: 10.1039/d1ra05525a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Vilsmeier-Haack formylation of ReO and Au meso-triarylcorroles over 16-18 hours affords moderate to good yields (47-65%) of the ReO-3-formyl and Au-3,17-diformyl derivatives in a highly regioselective manner. Formylation was found to effect substantial upshifts for redox potentials (especially the reduction potentials) as well as significant to dramatic redshifts for both the Soret and Q bands.
Collapse
Affiliation(s)
- Rune F Einrem
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Einar Torfi Jonsson
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720-8229 USA
| | - Nicholas S Settineri
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720-8229 USA
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| |
Collapse
|
25
|
Vazquez-Lima H, Conradie J, Johansen MAL, Martinsen SR, Alemayehu AB, Ghosh A. Heavy-element-ligand covalence: ligand noninnocence in molybdenum and tungsten Viking-helmet Corroles. Dalton Trans 2021; 50:12843-12849. [PMID: 34473174 DOI: 10.1039/d1dt01970h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extensive DFT calculations with several exchange-correlation functionals indicate that molybdenum-dichlorido Viking helmet corroles are noninnocent with significant MoIV-corrole˙2- character. The effect is mediated by a Mo(4d)-corrole(π) orbital interaction similar to that postulated for MnCl, FeCl and FeNO corroles. The effect also appears to operate in tungsten-dichlorido corroles but is weaker relative to that for Mo. In contrast, MoO triarylcorroles do not exhibit a significant degree of corrole radical character. Furthermore, the Soret absorption maxima of a series of MoCl2 tris(para-X-phenyl)corrole derivatives were found to redshift dramatically with increasing electron-donating character of the para substituent X, essentially clinching the case for a noninnocent macrocycle in MoCl2 corroles.
Collapse
Affiliation(s)
- Hugo Vazquez-Lima
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway. .,Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Edif. IC9, CU, San Manuel, 72570 Puebla, Puebla, Mexico
| | - Jeanet Conradie
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway. .,Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Martin A L Johansen
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | | | - Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
26
|
Matson BD, Thomas KE, Alemayehu AB, Ghosh A, Sarangi R. X-ray absorption spectroscopy of exemplary platinum porphyrin and corrole derivatives: metal- versus ligand-centered oxidation. RSC Adv 2021; 11:32269-32274. [PMID: 35495496 PMCID: PMC9041989 DOI: 10.1039/d1ra06151h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/11/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
A combination of Pt L3-edge X-ray absorption spectroscopy (EXAFS and XANES) and DFT (TPSS) calculations have been performed on powder samples of the archetypal platinum porphyrinoid complexes PtII[TpCF3PP], PtIV[TpCF3PP]Cl2, and PtIV[TpCF3PC](Ar)(py), where TpCF3PP2- = meso-tetrakis(p-trifluoromethylphenyl)porphyrinato and TpCF3PC3- = meso-tris(p-trifluoromethylphenyl)corrolato. The three complexes yielded Pt L3-edge energies of 11 566.0 eV, 11 567.2 eV, and 11 567.6 eV, respectively. The 1.2 eV blueshift from the Pt(ii) to the Pt(iv) porphyrin derivative is smaller than expected for a formal two-electron oxidation of the metal center. A rationale was provided by DFT-based Hirshfeld which showed that the porphyrin ligand in the Pt(iv) complex is actually substantially oxidized relative to that in the Pt(ii) complex. The much smaller blueshift of 0.4 eV, going from PtIV[TpCF3PP]Cl2, and PtIV[TpCF3PC](Ar)(py), is ascribable to the significantly stronger ligand field in the latter compound.
Collapse
Affiliation(s)
- Benjamin D Matson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| | - Kolle E Thomas
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Abhik Ghosh
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| |
Collapse
|
27
|
Braband H, Benz M, Spingler B, Conradie J, Alberto R, Ghosh A. Relativity as a Synthesis Design Principle: A Comparative Study of [3 + 2] Cycloaddition of Technetium(VII) and Rhenium(VII) Trioxo Complexes with Olefins. Inorg Chem 2021; 60:11090-11097. [PMID: 34255507 PMCID: PMC8388117 DOI: 10.1021/acs.inorgchem.1c00995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The difference in [3 + 2] cycloaddition reactivity between fac-[MO3(tacn)]+ (M = Re, 99Tc; tacn = 1,4,7-triazacyclononane) complexes has been reexamined
with a selection of unsaturated substrates including sodium 4-vinylbenzenesulfonate,
norbornene, 2-butyne, and 2-methyl-3-butyn-2-ol (2MByOH). None of
the substrates was found to react with the Re cation in water at room
temperature, whereas the 99Tc reagent cleanly yielded the [3 + 2] cycloadducts. Interestingly,
a bis-adduct was obtained as the sole product for 2MByOH, reflecting
the high reactivity of a 99TcO-enediolato monoadduct. On
the basis of scalar relativistic and nonrelativistic density functional
theory calculations of the reaction pathways, the dramatic difference
in reactivity between the two metals has now been substantially attributed to differences in relativistic effects, which are much
larger for the 5d metal. Furthermore, scalar-relativistic ΔG values were found to decrease along the series propene
> norbornene > 2-butyne > dimethylketene, indicating major variations
in the thermodynamic driving force as a function of the unsaturated
substrate. The suggestion is made that scalar-relativistic effects,
consisting of greater destabilization of the valence electrons of
the 5d elements compared with those of the 4d elements, be viewed
as a new design principle for novel 99mTc/Re radiopharmaceuticals,
as well as more generally in heavy-element coordination chemistry. Room temperature cycloaddition reactivity of fac-[99TcO3(tacn)]+ (tacn = 1,4,7-triazacyclononane)
with a variety of unsaturated substrates and the lack of such reactivity
for fac-[ReO3(tacn)]+ appears
largely attributable to much stronger relativistic effects for Re
relative to Tc, based on relativistic density functional theory calculations.
Collapse
Affiliation(s)
- Henrik Braband
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Michael Benz
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Jeanet Conradie
- Department of Chemistry, UiT-The Arctic University of Norway, Tromsø N-9037, Norway.,Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, Tromsø N-9037, Norway
| |
Collapse
|