1
|
Yang X, Mishra B, Yu H, Wei Y, Chen X. A bifunctional Pasteurella multocida β1-3-galactosyl/ N-acetylgalactosaminyltransferase (PmNatB) for the highly efficient chemoenzymatic synthesis of disaccharides. Org Biomol Chem 2024; 22:6004-6015. [PMID: 38993172 PMCID: PMC11290465 DOI: 10.1039/d4ob00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glycosyltransferases are nature's key biocatalysts for the formation of glycosidic bonds. Discovery and characterization of new synthetically useful glycosyltransferases are critical for the development of efficient enzymatic and chemoenzymatic strategies for producing complex carbohydrates and glycoconjugates. Herein we report the identification of Pasteurella multocida PmNatB as a bifunctional single-catalytic-domain glycosyltransferase with both β1-3-galactosyltransferase and β1-3-N-acetylgalactosaminyltransferase activities. It is a novel glycosyltransferase for constructing structurally diverse GalNAcβ3Galα/βOR and Galβ3GalNAcα/βOR disaccharides in one-pot multienzyme systems with in situ generation of UDP-sugars.
Collapse
Affiliation(s)
- Xiaohong Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Bijoyananda Mishra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Yijun Wei
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
- Department of Statistics, University of California, Davis, California 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| |
Collapse
|
2
|
Zhang J, Terreni M, Liu F, Sollogoub M, Zhang Y. Ganglioside GM3-based anticancer vaccines: Reviewing the mechanism and current strategies. Biomed Pharmacother 2024; 176:116824. [PMID: 38820973 DOI: 10.1016/j.biopha.2024.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Ganglioside GM3 is one of the most common membrane-bound glycosphingolipids. The over-expression of GM3 on tumor cells makes it defined as a tumor-associated carbohydrate antigen (TACA). The specific expression property in cancers, especially in melanoma, make it become an important target to develop anticancer vaccines or immunotherapies. However, in the manner akin to most TACAs, GM3 is an autoantigen facing with problems of low immunogenicity and easily inducing immunotolerance, which means itself only cannot elicit a powerful enough immune response to prevent or treat cancer. With a comparative understanding of the mechanisms that how immune system responses to the carbohydrate vaccines, this review summarizes the studies on the recent efforts to development GM3-based anticancer vaccines.
Collapse
Affiliation(s)
- Jiaxu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Fang Liu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France; College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Liu T, Zhang C, Zhang H, Jin J, Li X, Liang S, Xue Y, Yuan F, Zhou Y, Bian X, Wei H. A new evaluation system for drug-microbiota interactions. IMETA 2024; 3:e199. [PMID: 38898986 PMCID: PMC11183188 DOI: 10.1002/imt2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024]
Abstract
The drug response phenotype is determined by a combination of genetic and environmental factors. The high clinical conversion failure rate of gene-targeted drugs might be attributed to the lack of emphasis on environmental factors and the inherent individual variability in drug response (IVDR). Current evidence suggests that environmental variables, rather than the disease itself, are the primary determinants of both gut microbiota composition and drug metabolism. Additionally, individual differences in gut microbiota create a unique metabolic environment that influences the in vivo processes underlying drug absorption, distribution, metabolism, and excretion (ADME). Here, we discuss how gut microbiota, shaped by both genetic and environmental factors, affects the host's ADME microenvironment within a new evaluation system for drug-microbiota interactions. Furthermore, we propose a new top-down research approach to investigate the intricate nature of drug-microbiota interactions in vivo. This approach utilizes germ-free animal models, providing foundation for the development of a new evaluation system for drug-microbiota interactions.
Collapse
Affiliation(s)
- Tian‐Hao Liu
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Department of PathologyArmy Medical UniversityChongqingChina
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Chen‐Yang Zhang
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Institute of Integrated traditional Chinese and Western MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Hang Zhang
- College of Animal Science and Technology, College of Animal MedicineHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jing Jin
- Department of PathologyArmy Medical UniversityChongqingChina
| | - Xue Li
- Wuxi Hospital Affiliated to Nanjing University of Chinese MedicineWuxiJiangsuChina
| | - Shi‐Qiang Liang
- College of Animal Science and Technology, College of Animal MedicineHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yu‐Zheng Xue
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Feng‐Lai Yuan
- Institute of Integrated traditional Chinese and Western MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ya‐Hong Zhou
- Wuxi Hospital Affiliated to Nanjing University of Chinese MedicineWuxiJiangsuChina
| | - Xiu‐Wu Bian
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Department of PathologyArmy Medical UniversityChongqingChina
| | - Hong Wei
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
| |
Collapse
|
4
|
Zhou T, Hao J, Tang Q, Chandarajoti K, Ye W, Fan C, Wang X, Wang C, Zhang K, Han X, Zhou W, Ge Y. Antimicrobial activity and structure-activity relationships of molecules containing mono- or di- or oligosaccharides: An update. Bioorg Chem 2024; 148:107406. [PMID: 38728907 DOI: 10.1016/j.bioorg.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Bacterial infections are the second leading cause of death worldwide, and the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens exacerbate the threat crisis. Carbohydrates participate in bacterial infection, drug resistance and the process of host immune regulation. Numerous antimicrobials derived from carbohydrates or contained carbohydrate scaffolds that are conducive to an increase in pathogenic bacteria targeting, the physicochemical properties and druggability profiles. In the paper, according to the type and number of sugar residues contained in antimicrobial molecules collected from the literatures ranging from 2014 to 2024, the antimicrobial activities, action mechanisms and structure-activity relationships were delineated and summarized, for purpose to provide the guiding template to select the type and size of sugars in the design of oligosaccharide-based antimicrobials to fight the looming antibiotic resistance crisis.
Collapse
Affiliation(s)
- Tiantian Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat‑Yai, Songkhla, 90112, Thailand
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yuewei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
5
|
Bernardini R, Tengattini S, Li Z, Piubelli L, Bavaro T, Modolea AB, Mattei M, Conti P, Marini S, Zhang Y, Pollegioni L, Temporini C, Terreni M. Effect of glycosylation on the affinity of the MTB protein Ag85B for specific antibodies: towards the design of a dual-acting vaccine against tuberculosis. Biol Direct 2024; 19:11. [PMID: 38268026 PMCID: PMC10809592 DOI: 10.1186/s13062-024-00454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies. RESULTS Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis. To further test the specificity of the sugar AraMan for AraMan antibodies, we used Human Serum Albumin glycosylated with AraMan-IME and Ara3Man-IME. Our findings showed that this specific sugar was fully and specifically modified. Bio-panning experiments revealed that patients with active tuberculosis exhibited a higher antibody response to Ara3Man, a sugar found in lipoarabinomannan (LAM), which is a major component of the mycobacterial cell wall. Bio-panning with anti-LAM plates could eliminate this increased response, suggesting that the enhanced Ara3Man response was primarily driven by antibodies targeting LAM. These findings highlight the importance of Ara3Man as an immunodominant epitope in LAM and support its role in eliciting protective immunity against tuberculosis. Further studies evaluated the effects of glycosylation on the antibody affinity of recombinant Ag85B and its variants. The results indicated that rAg85B-K30R/K282R, when conjugated with Ara3Man-IME, demonstrated enhanced antibody recognition compared to unconjugated or non-glycosylated versions. CONCLUSIONS Coupling Ara3Man to rAg85B-K30R/K282R could lead to the development of effective dual-acting vaccines against tuberculosis, stimulating protective antibodies against both AraMan and Ag85B, two key tuberculosis antigens.
Collapse
Affiliation(s)
- Roberta Bernardini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy.
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy.
| | - Sara Tengattini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy.
| | - Zhihao Li
- Parisian Institute of Molecular Chemistry, Sorbonne University, UMR CNRS 8232, 4 Place Jussieu, Paris, 75005, France
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, Insubria, Varese, 21100, Italy
| | - Teodora Bavaro
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Anamaria Bianca Modolea
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milan, 20133, Italy
| | - Stefano Marini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Yongmin Zhang
- Parisian Institute of Molecular Chemistry, Sorbonne University, UMR CNRS 8232, 4 Place Jussieu, Paris, 75005, France
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, Insubria, Varese, 21100, Italy
| | - Caterina Temporini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| |
Collapse
|
6
|
Ramírez-López P, Martínez C, Merchán A, Perona A, Hernaiz MJ. Expanding the synthesis of a library of potent glucuronic acid glycodendrons for Dengue virus inhibition. Bioorg Chem 2023; 141:106913. [PMID: 37852115 DOI: 10.1016/j.bioorg.2023.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Multivalent glycodendrons are valuable tools to mimic many structural and functional features of cell-surface glycoconjugates and its focal position scaffolds represent important components to increase specificity and affinity. Previous work in our group described the preparation of a tetravalent glucuronic acid dendron that binds with good affinity to Dengue virus envelope protein (KD = 22 μM). Herein, the chemical synthesis and binding analysis of a new library of potent glucuronic acid dendrons bearing different functional group at the focal position and different level of multivalency are described. Their chemical synthesis was performed sequentially in three stages and with good yields. Namely a) the chemical synthesis of the oligo and polyalkynyl scaffolds, b) assembling with fully protected glucuronic acid-based azide units by using a microwave assisted copper-catalysed azide-alkyne cycloaddition reaction and c) sequential deprotection of hydroxyl and carboxylic acid groups. Surface Plasmon Resonance studies have demonstrated that the valency and the focal position functional group exert influence on the interaction with Dengue virus envelope protein. Molecular modelling studies were carried out in order to understand the binding observed. This work reports an efficient glycodendrons chemical synthesis that provides appropriate focal position functional group and multivalence, that offer an easy and versatile strategy to find new active compounds against Dengue virus.
Collapse
Affiliation(s)
- Pedro Ramírez-López
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Carlos Martínez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Alejandro Merchán
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Almudena Perona
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - María J Hernaiz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain.
| |
Collapse
|
7
|
Maria C, Rauter AP. Nucleoside analogues: N-glycosylation methodologies, synthesis of antiviral and antitumor drugs and potential against drug-resistant bacteria and Alzheimer's disease. Carbohydr Res 2023; 532:108889. [PMID: 37517197 DOI: 10.1016/j.carres.2023.108889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Nucleosides have gained significant attention since the discovery of the structure of DNA. Nucleoside analogues may be synthesized through multiple synthetic pathways, however the N-glycosylation of a nucleobase is the most common method. Amongst the different classical N-glycosylation methodologies, the Vorbrüggen glycosylation is the most popular method. This review focuses on the synthesis and therapeutic applications of several FDA approved nucleoside analogues as antiviral and anticancer agents. Moreover, this review also focuses on the potential of these compounds as new antibacterial and anti-Alzheimer's disease agents, offering an overview of the most recent research in these fields.
Collapse
Affiliation(s)
- Catarina Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Amélia P Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| |
Collapse
|
8
|
Li G, Li D, Zeng W, Qin Z, Chen J, Zhou J. Efficient production of 2-keto-L-gulonic acid from D-glucose in Gluconobacter oxydans ATCC9937 by mining key enzyme and transporter. BIORESOURCE TECHNOLOGY 2023:129316. [PMID: 37315626 DOI: 10.1016/j.biortech.2023.129316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Direct production of 2-keto-L-gulonic acid (2-KLG, the precursor of vitamin C) from D-glucose through 2,5-diketo-D-gluconic acid (2,5-DKG) is a promising alternative route. To explore the pathway of producing 2-KLG from D-glucose, Gluconobacter oxydans ATCC9937 was selected as a chassis strain. It was found that the chassis strain naturally has the ability to synthesize 2-KLG from D-glucose, and a new 2,5-DKG reductase (DKGR) was found on its genome. Several major issues limiting production were identified, including the insufficient catalytic capacity of DKGR, poor transmembrane movement of 2,5-DKG and imbalanced D-glucose consumption flux inside and outside of the host strain cells. By identifying novel DKGR and 2,5-DKG transporter, the whole 2-KLG biosynthesis pathway was systematically enhanced by balancing intracellular and extracellular D-glucose metabolic flux. The engineered strain produced 30.5 g/L 2-KLG with a conversion ratio of 39.0%. The results pave the way for a more economical large-scale fermentation process for vitamin C.
Collapse
Affiliation(s)
- Guang Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Tengattini S, Rubes D, Serra M, Piubelli L, Pollegioni L, Calleri E, Bavaro T, Massolini G, Terreni M, Temporini C. Glycovaccine Design: Optimization of Model and Antitubercular Carrier Glycosylation via Disuccinimidyl Homobifunctional Linker. Pharmaceutics 2023; 15:pharmaceutics15051321. [PMID: 37242563 DOI: 10.3390/pharmaceutics15051321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Conjugation via disuccinimidyl homobifunctional linkers is reported in the literature as a convenient approach for the synthesis of glycoconjugate vaccines. However, the high tendency for hydrolysis of disuccinimidyl linkers hampers their extensive purification, which unavoidably results in side-reactions and non-pure glycoconjugates. In this paper, conjugation of 3-aminopropyl saccharides via disuccinimidyl glutarate (DSG) was exploited for the synthesis of glycoconjugates. A model protein, ribonuclease A (RNase A), was first considered to set up the conjugation strategy with mono- to tri- mannose saccharides. Through a detailed characterization of synthetized glycoconjugates, purification protocols and conjugation conditions have been revised and optimized with a dual aim: ensure high sugar-loading and avoid the presence of side reaction products. An alternative purification approach based on hydrophilic interaction liquid chromatography (HILIC) allowed the formation of glutaric acid conjugates to be avoided, and a design of experiment (DoE) approach led to optimal glycan loading. Once its suitability was proven, the developed conjugation strategy was applied to the chemical glycosylation of two recombinant antigens, native Ag85B and its variant Ag85B-dm, that are candidate carriers for the development of a novel antitubercular vaccine. Pure glycoconjugates (≥99.5%) were obtained. Altogether, the results suggest that, with an adequate protocol, conjugation via disuccinimidyl linkers can be a valuable approach to produce high sugar-loaded and well-defined glycovaccines.
Collapse
Affiliation(s)
- Sara Tengattini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Davide Rubes
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Gabriella Massolini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|