1
|
Zhang C, Dou L, Wang X, Xu K, Chen J, Zhan F, Li G, Yang YF, She Y. Carbazolylpyridine ( cp)-based tetradentate platinum(II) complexes containing fused 6/5/6 metallocycles. Dalton Trans 2025; 54:3256-3265. [PMID: 39829288 DOI: 10.1039/d4dt02743d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A series of carbazolylpyridine (cp)-based 6/5/6 Pt(II) complexes featuring tetradentate ligands with nitrogen or oxygen atoms as bridging groups was designed and synthesized, and the bridging nitrogen atoms were derived from acridinyl (Ac), azaaceridine (AAc) and carbazole (Cz). Systematic experimental and theoretical studies reveal that the ligand structures have a significant effect on the electrochemical, photophysical and excited state properties of these complexes. Their oxidation processes mainly occur on the carbazole-Pt moieties, whereas the reduction processes typically occur on the electron-deficient pyridine (Py) moieties. Time-dependent density functional theory (TD-DFT) and natural transition orbital (NTO) calculations reveal that the cp-based Pt(II) complexes have a metal-to-ligand charge transfer (3MLCT) state mixed with ligand-centered (3LC) and intra-ligand charge-transfer (3ILCT) characteristics. Pt(cp-1) shows strong red luminescence with a dominant peak at 611 nm and an excited-state lifetime of 10.7 μs in dichloromethane at room temperature, 602 nm and 10.9 μs in toluene, and 602 nm and 8.2 μs in PMMA films. It also exhibits high photoluminescence quantum efficiencies of 85%, 84% and 60% in dichloromethane, toluene and PMMA, respectively. These studies indicate the potential application of the cp-based Pt(II) complexes as phosphorescent emitters in the field of organic light-emitting diodes (OLEDs).
Collapse
Affiliation(s)
- Chengyao Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Lijie Dou
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Xia Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Jianqiang Chen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| |
Collapse
|
2
|
Serrano-Guarinos J, Jiménez-García A, Bautista D, González-Herrero P, Vivancos Á. Synthesis, Luminescence, and Electrochemistry of Tris-Chelate Platinum(IV) Complexes with Cyclometalated N-Heterocyclic Carbene Ligands and Aromatic Diimines. Inorg Chem 2024; 63:24929-24939. [PMID: 39698802 PMCID: PMC11688666 DOI: 10.1021/acs.inorgchem.4c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Dicationic, C2-symmetrical, tris-chelate Pt(IV) complexes of general formula [Pt(trz)2(N∧N)](OTf)2, bearing two cyclometalated 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene (trz) ligands and one aromatic diimine [N∧N = 2,2'-bipyridine (bpy, 2), 4,4'-di-tert-butyl-2,2'-bipyridine (dbbpy, 3), 4,4'-dimethoxi-2,2'-bipyridine (dMeO-bpy, 4), 1,10-phenanthroline (phen, 5), 4,7-diphenyl-1,10-phenanthroline (bphen, 6), dipyrido[3,2-a:2',3'-c]phenazine (dppz, 7), or 2,3-diphenylpyrazino[2,3-f][1,10]phenanthroline (dpprzphen, 8)] are obtained through chloride abstraction from [PtCl2(trz)2] (1) using AgOTf in the presence of the corresponding diimine. Complexes 2-4 show long-lived phosphorescence from 3LC excited states involving the diimine ligand, with quantum yields that reach 0.18 in solution and 0.58 in the solid matrix at room temperature for 3. Derivatives with more extended aromatic systems show dual phosphorescent/fluorescent emissions (5, 6) or mainly fluorescence (7, 8) in solution. Comparisons with similar complexes bearing cyclometalated 2-arylpyridines instead of aryl-N-heterocyclic carbenes indicate that the {Pt(trz)2} subunit is crucial to enable efficient emissions from diimine-centered excited states. It is also shown that the introduction of protective bulky substituents on the diimine, such as the tert-butyl groups in 3, is a key strategy to reach higher emission efficiencies. The new compounds represent rare examples of luminescent Pt(IV) complexes that show quasi-reversible one-electron reductions, indicating an unusually high redox stability.
Collapse
Affiliation(s)
- José Serrano-Guarinos
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Adrián Jiménez-García
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área
Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Ángela Vivancos
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
3
|
Zhang J, Zhang Z, Su M, Xu X, Gao R, Yu B, Yan X. Cyclometalated N-Difluoromethylbenzimidazolylidene Platinum(II) Complexes with Built-in Secondary Coordination Spheres: Photophysical Properties and Bioimaging. Inorg Chem 2024. [PMID: 39546802 DOI: 10.1021/acs.inorgchem.4c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Bidentate Pt(II) complexes with cyclometalated N-heteroarene or N-heterocyclic carbene (NHC) ligands have been extensively studied as phosphorescent emitters over the past two decades. Herein, we introduce a difluoromethyl group (CF2H) into the wingtip of NHCs, where CF2H acts as a lipophilic hydrogen bond (HB) donor. Their cyclometalated Pt(II) complexes show excellent PLQYs (up to 93%) and phosphorescence lifetimes mainly due to the rigid structure with hydrogen bonding between the CF2H group and the adjacent O atom at the β-diketonate ligand. Bioimaging studies demonstrate high cellular uptake efficiency and deep tumor penetration capability of complex 7 in HeLa cells and multicellular tumor spheroids, highlighting their potential as bioimaging probes.
Collapse
Affiliation(s)
- Jingli Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Mengrui Su
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Xu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China
| | - Rongyao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Bingran Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
4
|
Xia Q, Li Z, Song J, Chang Y, Lu Z, Zhao J, Zhang C, Hang XC. High-Performance Multicolor Organic Light-Emitting Diodes Based on a Pt(II) Carbene Complex Featuring Hemiligand Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57491-57500. [PMID: 39378394 DOI: 10.1021/acsami.4c12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Utilizing a single organic light-emitting diode (OLED) architecture for multicolor emissions can significantly simplify manufacturing progress and broaden applications. Here, we report on a carbene-based Pt(II) complex, designated as Pt(pyiOppy), which exhibits an unusual dimeric packing mode solely by hemiligand π···π stacking. This feature is distinct from the well-known Pt···Pt or Pt···ligand interactions. The dimer persists in new types of orbital combinations, along with its triplet transition state, which are evidenced for the first time. Pt(pyiOppy), under various doping concentrations in a solid matrix, demonstrates multicolor emissions ranging from green to red, all exhibiting high photoluminescent quantum efficiencies (48-97%). The devices incorporating Pt(pyiOppy) can emit green, yellow, orange, and red lights, covering a CIE coordinate range of (0.28-0.65, 0.61-0.34). All the devices also achieve appreciable maximum external quantum efficiencies (9.4-17.2%) and impressive lifetimes of hundreds of hours (LT70 at 1000 cd/m2). These findings showcase a new type of Pt(II) aggregate enabling well-controlled, multicolor high-performance phosphorescent OLEDs.
Collapse
Affiliation(s)
- Qinghua Xia
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, Yanshan Branch of Sinopec Beijing Research Institute of Chemical Industry, No. 15, Fenghuangting Road, Fangshan District, Beijing 102500, China
| | - Zhenchun Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyu Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yu Chang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenzhong Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Cong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Chun Hang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
5
|
Kundu D, Rio ND, Crassous J. Chiral Organometallic Complexes Derived from Helicenic N-Heterocyclic Carbenes (NHCs): Design, Structural Diversity, and Chiroptical and Photophysical Properties. Acc Chem Res 2024; 57:2941-2952. [PMID: 39361380 DOI: 10.1021/acs.accounts.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
ConspectusRecently, helicene derivatives have emerged as an important class of molecules with potential applications spanning over asymmetric catalysis, biological activity, magnetism, spin filtering, solar cells, and polymer science. To harness their full potential, especially as emissive components in circularly polarized organic light-emitting diodes (CP-OLEDs), generating structural chemical diversity and understanding the resulting photophysical and chiroptical properties are crucial. In this Account, we shed light on chemical engineering combining helicene and N-heterocyclic carbene (NHC) chemistries to create transition-metal complexes with unique architectures and describe their photophysical and chiroptical attributes. The σ-donating and π-accepting capabilities of the helically chiral π-conjugated NHCs endow the complexes with remarkable structural and electronic features. These characteristics manifest in phenomena such as chirality induction, very long-lived phosphorescence, and strong chiroptical signatures (electronic circular dichroism and circularly polarized luminescence).We describe the different classes of ligands primarily developed in our group by classifying them according to their connection between the helicenic moiety and the imidazole precursor. This connection is essential in determining the degree of π-conjugation and characterizing the emissive state. We comprehensively discuss 6-coordinate, 4-coordinate, and 2-coordinate complexes, delving into their structural nuances and examining how the interplay between metals and auxiliary ligands shapes their photophysical properties, with interpretations enriched by DFT calculations. Helicenes are known to promote intersystem crossing thanks to strong spin-orbit coupling, while metals offer robust frameworks leading to a variety of molecular architectures with specific topologies together with distinct excited-state properties. The electronic configurations and energy levels of the ligand and metal orbitals thus significantly modulate the photophysical and chiroptical behaviors of these complexes. In-depth analysis of chiroptical properties, notably electronic circular dichroism and circularly polarized luminescence, emphasizes the influence of different stereogenic elements on the chiroptical responses across various energy ranges with appealing "match-mismatch" effects. Finally, we describe future prospects of helicene NHCs, particularly in the context of emerging research on cost-effective and abundant transition metals for materials science and for photocatalysis. Indeed, the inherent long-lived MLCT, excited-state delocalization, structural rigidity, and intrinsic chirality of these complexes present intriguing avenues for future investigations.
Collapse
Affiliation(s)
- Debsouri Kundu
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France
| | - Natalia Del Rio
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France
| | - Jeanne Crassous
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France
| |
Collapse
|
6
|
Qiao L, Kong X, Li K, Yuan L, Shen Y, Zhang Y, Zhou L. Phosphorescent Pd II-Pd II Emitter-Based Red OLEDs with an EQE max of 20.52. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404621. [PMID: 39031006 PMCID: PMC11425235 DOI: 10.1002/advs.202404621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Three dinuclear Pd(II) complexes (1, 2, and 3) with intense red phosphorescence at room temperature are here synthesized using strong ligand field strength compounds. All three complexes are characterized by nuclear magnetic resonance, high-resolution mass spectrometry, and elemental analyses. Complexes 2 and 3 are characterized by single-crystal X-ray diffraction. The crystalline data of 2 and 3 reveal complex double-layer structures, with Pd-Pd distances of 2.8690(9) Å and 2.8584(17) Å, respectively. Furthermore, complexes 1, 2, and 3 show phosphorescence at room temperature in their solid states at the wavelengths of 678, 601, and 672 nm, respectively. In addition, they show phosphorescence at 634, 635, and 582 nm, respectively, in the 2 wt.% (PMMA) films, and phosphorescence at 670, 675, and 589 nm, respectively, in the deoxygenated CH2Cl2 solutions. Among three complexes, complex 1 shows red emission at 634 nm with phosphorescent quantum yield Ф = 67% in the 2 wt.% PMMA film. Furthermore, complex 1-based organic light-emitting diode is fabricated using a vapor-phase deposition process, and their maximum external quantum efficiency reaches 20.52%, which is the highest percentage obtained by using the dinuclear Pd(II) complex triplet emitters with the CIE coordinates of (0.62, 0.38).
Collapse
Affiliation(s)
- Lige Qiao
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Xiangjun Kong
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Kechun Li
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Lequn Yuan
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
7
|
Glosz D, Jędrzejowska K, Niedzielski G, Kobylarczyk J, Zakrzewski JJ, Hooper JGM, Gryl M, Koshevoy IO, Podgajny R. Influence of O-H⋅⋅⋅Pt interactions on photoluminescent response in the (Et 4N) 2{[Pt(bph)(CN) 2][phenylene-1,4-diresorcinol]} framework. Chemistry 2024; 30:e202400797. [PMID: 38751354 DOI: 10.1002/chem.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/28/2024]
Abstract
Tunable photoluminescence (PL) is one of the hot topics in current materials science, and research performed on the molecular phases is at the forefront of this field. We present the new (Et4N)2[PtII(bph)(CN)2]⋅rez3⋅1/3H2O (Pt2rez3) (bph=biphenyl-2,2'-diyl; rez3=3,3",5,5"-tetrahydroxy-1,1':4',1"-terphenyl, phenylene-1,4-diresorcinol coformer, a linear quaternary hydrogen bond donor) co-crystal salt based on the recently appointed promising [PtII(bph)(CN)2]2- luminophore. Within the extended hydrogen-bonded subnetwork [PtII(bph)(CN)2]2- complexes and rez3 coformer molecules form two types of contacts: the rez3O-H⋅⋅⋅Ncomplex ones in the equatorial plane of the complex and non-typical rez3O-H⋅⋅⋅Pt ones along its axial direction. The combined structural, PL, and DFT approach identified the rez3O-H⋅⋅⋅Pt synthons to be crucial in promoting the noticeable uniform redshift of bph ligand centered (LC) emission compared to the LC emission of the (Et4N)2[PtII(bph)(CN)2]⋅H2O (Pt2) precursor, owing to the direct interference of the phenol group with the PtII-bph orbital system via altering the CT processes within. The high-resolution emission spectra for Pt2 and Pt2rez3 were successfully reproduced at 77 K by using the Franck-Cordon expressions. The possibility to tune PL properties along the plausible continuum of rez3O-H⋅⋅⋅Pt synthons is indicated, considering various scenarios of molecular occupation of the space above and below the complex plane.
Collapse
Affiliation(s)
- Dorota Glosz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Katarzyna Jędrzejowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Grzegorz Niedzielski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Jedrzej Kobylarczyk
- Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - James G M Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Marlena Gryl
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| |
Collapse
|
8
|
Hruzd M, Durand R, Gauthier S, le Poul P, Robin-le Guen F, Achelle S. Photoluminescence of Platinum(II) Complexes with Diazine-Based Ligands. CHEM REC 2024; 24:e202300335. [PMID: 38847061 DOI: 10.1002/tcr.202300335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
In the last past twenty years, research on luminescent platinum (II) complexes has been intensively developed for useful application such as organic light emitting diodes (OLEDs). More recently, new photoluminescent complexes based on diazine ligands (pyrimidine, pyrazine, pyridazine, quinazoline and quinoxaline) have been developed in this context. This review will summarize the photophysical properties of most of the phosphorescent diazine Pt(II) complexes described in the literature and compare the results to pyridine analogues whenever possible. Based on the emission color, and the photoluminescence quantum yield (PLQY) values, the relationship between structure modification, and photophysical properties are highlighted. Tuning of emission color, quantum yields in solution and solid state and, for some complexes, aggregation induced emission (AIE) or thermally activated delayed fluorescence (TADF) properties are described. When emitting OLEDs have been built from diazine Pt(II) complexes, the external quantum efficiency (EQE) values and luminance for different emission wavelengths and in some cases, chromaticity coordinates obtained from devices, are given. Finally, this review highlights the growing interest in studies of new luminescent diazine Pt(II) complexes for OLED applications.
Collapse
Affiliation(s)
- Mariia Hruzd
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| | - Raphaël Durand
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| | - Sébastien Gauthier
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| | - Pascal le Poul
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| | - Françoise Robin-le Guen
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| | - Sylvain Achelle
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| |
Collapse
|
9
|
Thakur V, Thomas JM, Adnan M, Sivasankar C, Vijaya Prakash G, Thirupathi N. Syntheses, structural, photophysical and theoretical studies of heteroleptic cycloplatinated guanidinate(1-) complexes bearing acetylacetonate and picolinate ancillary ligands. RSC Adv 2024; 14:13291-13305. [PMID: 38655486 PMCID: PMC11037393 DOI: 10.1039/d4ra00828f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Cycloplatination of symmetrical N,N',N''-triarylguanidines, (ArNH)2C[double bond, length as m-dash]NAr with cis-[Pt(TFA)2(S(O)Me2)2] in toluene afforded cis-[Pt(TAG)(TFA)(S(O)Me2)] (TAG = triarylguanidinate(1-)-κC,κN; TFA = OC(O)CF3; 6-9) in 75-82% yields. The reactions of 6-9 and the previously known cis-[Pt(TAG)X(S(O)Me2)] (X = Cl (1) and TFA (2-5)) with acetylacetone (acacH) or 2-picolinic acid (picH) in the presence of a base afforded [Pt(TAG)(acac)] (acac = acetylacetonate-κ2O,O'; 10-18) and [Pt(TAG)(pic)] (pic = 2-picolinate-κN,κO; 19) in high yields. The new complexes were characterised by analytical, IR and multinuclear NMR spectroscopies. Further, molecular structures of 11, 12, 13·0.5 toluene and 14-19 were determined by single crystal X-ray diffraction. Absorption spectra of 10-19 in solution and their emission spectra in crystalline form were measured. Platinacycles 10-19 are bluish green light emitter in the crystalline form, and emit in the λPL = 488-529 nm range (11 and 13-19) while 12 emits at λPL = 570 nm. Unlike other platinacycles, the emission band of 12 is broad, red shifted, and this pattern is ascribed to the presence of an intermolecular N-H⋯Pt interaction involving the endocyclic amino unit of the six-membered [Pt(TAG)] ring and the Pt(ii) atom in the adjacent molecule in an asymmetric unit of the crystal lattice. Lifetime measurements were carried out for all platinacycles in crystalline form, which revealed lifetime in the order of nanoseconds. The origin of absorption and emission properties of 11, 15, 18 and 19 were studied by TD-DFT calculations.
Collapse
Affiliation(s)
- Vasudha Thakur
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Jisha Mary Thomas
- Department of Chemistry, Catalysis and Energy Laboratory, Pondicherry University Puducherry 605 014 India
| | - Mohammad Adnan
- Department of Physics, Nanophotonics Laboratory, Indian Institute of Technology-Delhi New Delhi 110 016 India
| | - Chinnappan Sivasankar
- Department of Chemistry, Catalysis and Energy Laboratory, Pondicherry University Puducherry 605 014 India
| | - G Vijaya Prakash
- Department of Physics, Nanophotonics Laboratory, Indian Institute of Technology-Delhi New Delhi 110 016 India
| | | |
Collapse
|
10
|
Riesebeck T, Strassner T. Phosphorescent Platinum(II) Complexes with a Spiro-fused Xanthene Unit: Synthesis and Photophysical Properties. Chemistry 2024; 30:e202304263. [PMID: 38450788 DOI: 10.1002/chem.202304263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 03/08/2024]
Abstract
Novel platinum(II) complexes, derived from the spiro[fluorene-9,9'-xanthene] (SFX) motif, were synthesized and combined with different auxiliary ligands such as acetylacetonate (acac), bis(2,4,6-trimethylphenyl)propane-1,3-dionate (mesacac) and dihydrobis(3,5-dimethylpyrazole-1-yl) borate. The final products were obtained in yields of up to 36 % and characterized by NMR, X-ray and combustion analysis. These complexes have structured green-blue emission spectra with Commission Internationale de l'Éclairage (CIExy) coordinates of (0.21;0.46). Excellent photoluminescence quantum yields (PLQYs) ranging from 87 %-91 % were found. The emission lifetimes vary from 33 μs to 43 μs. Calculations on the B3LYP/6-311++G** level of theory reveal, that the nature of the emissive state is dependent on the positional regioisomerism of the SFX motif. The 2-SFX complexes demonstrate ligand-centered (3LC) emission, while the 2'-SFX regioisomer with the mesacac ligand shows a strong 3MLCT character.
Collapse
Affiliation(s)
- Tim Riesebeck
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| |
Collapse
|
11
|
Nguyen YH, Wu Y, Dang VQ, Jiang C, Teets TS. Combined Nucleophilic and Electrophilic Functionalization to Optimize Blue Phosphorescence in Cyclometalated Platinum Complexes. J Am Chem Soc 2024; 146:9224-9229. [PMID: 38517326 DOI: 10.1021/jacs.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Ligand-based functionalization strategies have emerged as powerful approaches to tune and optimize blue phosphorescence, which can involve nucleophilic addition to coordinated ligands or electrophilic functionalization via the coordination of exogenous Lewis acids. Whereas both have been used separately to enhance the photophysical properties of organometallic compounds with high-energy triplet states, in this work, we show that these two strategies can be used together on the same platform. Isocyanide-supported cyclometalated platinum compounds undergo nucleophilic addition with diethylamine to form a strong σ-donor acyclic diaminocarbene-supporting ligand. In a subsequent step, a cyanide ancillary ligand is converted into a more strongly π-acidic isocyanoborate via the coordination of a borane Lewis acid. Importantly, both of these ligand-based functionalization steps improve the quantum yields and lifetimes of the blue-phosphorescent complexes. This synergy results in complexes with photoluminescence quantum yields up to 0.40 for deep blue and 0.75 for sky blue regions and PL lifetimes on the order of 10-5 s.
Collapse
Affiliation(s)
- Yennie H Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Yanyu Wu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Vinh Q Dang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
12
|
Yan J, Feng ZQ, Wu Y, Zhou DY, Yiu SM, Chan CY, Pan Y, Lau KC, Liao LS, Chi Y. Blue Electrophosphorescence from Iridium(III) Phosphors Bearing Asymmetric Di-N-aryl 6-(trifluoromethyl)-2H-imidazo[4,5-b]pyridin-2-ylidene Chelates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305273. [PMID: 37461316 DOI: 10.1002/adma.202305273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 09/22/2023]
Abstract
Efficient blue phosphors remain a formidable challenge for organic light-emitting diodes (OLEDs). To circumvent this obstacle, a series of Ir(III)-based carbene complexes bearing asymmetric di-N-aryl 6-(trifluoromethyl)-2H-imidazo[4,5-b]pyridin-2-ylidene chelates, namely, f-ct6a‒c, are synthesized, and their structures and photophysical properties are comprehensively investigated. Moreover, these emitters can undergo interconversion in refluxing 1,2,4-trichlorobenzene, catalyzed by a mixture of sodium acetate (NaOAc) and p-toluenesulfonic acid monohydrate (TsOH·H2O) without decomposition. All Ir(III) complexes present good photoluminescence quantum yield (ΦPL = 83-88%) with peak maximum (max.) at 443-452 nm and narrowed full width at half maximum (FWHM = 66-73 nm). Among all the fabricated OLED devices, f-ct6b delivers a max. external quantum efficiency (EQE) of 23.4% and Commission Internationale de L'Eclairage CIEx , y coordinates of (0.14, 0.12), whereas the hyper-OLED device based on f-ct6a and 5H,9H,11H,15H-[1,4] benzazaborino [2,3,4-kl][1,4]benzazaborino[4',3',2':4,5][1,4]benzazaborino[3,2-b]phenazaborine-7,13-diamine, N7,N7,N13,N13,5,9,11,15-octaphenyl (ν-DABNA) exhibits max. EQE of 26.2% and CIEx , y of (0.12, 0.13). Finally, the corresponding tandem OLED with f-ct6b as dopant gives a max. luminance of over 10 000 cd m-2 and max. EQE of 42.1%, confirming their candidacies for making true-blue OLEDs.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zi-Qi Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yixin Wu
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Dong-Ying Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shek-Man Yiu
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Chin-Yiu Chan
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yi Pan
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Kai Chung Lau
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yun Chi
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
13
|
Haketa Y, Murakami Y, Maeda H. Ion-pairing assemblies of π-extended anion-responsive organoplatinum complexes. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2313958. [PMID: 38414575 PMCID: PMC10898271 DOI: 10.1080/14686996.2024.2313958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
PtII complexes of π-extended dipyrrolyldiketones were synthesized as anion-responsive π-electronic molecules. The dipyrrolyldiketone PtII complexes exhibited red-shifted absorption and photoluminescence properties. In the solid state, [1 + 1]-type anion complexes formed charge-by-charge ion-pairing assemblies when combined with countercations. Detailed theoretical studies of the packing structures revealed favorable interactions between the planar anion complexes and π-electronic cations.
Collapse
Affiliation(s)
- Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yu Murakami
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
14
|
Haketa Y, Komatsu K, Sei H, Imoba H, Ota W, Sato T, Murakami Y, Tanaka H, Yasuda N, Tohnai N, Maeda H. Enhanced solid-state phosphorescence of organoplatinum π-systems by ion-pairing assembly. Chem Sci 2024; 15:964-973. [PMID: 38239682 PMCID: PMC10793596 DOI: 10.1039/d3sc04564a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Anion binding and ion pairing of dipyrrolyldiketone PtII complexes as anion-responsive π-electronic molecules resulted in photophysical modulations, as observed in solid-state phosphorescence properties. Modifications to arylpyridine ligands in the PtII complexes significantly impacted the assembling behaviour and photophysical properties of anion-free and anion-binding (ion-pairing) forms. The PtII complexes, in the presence of guest anions and their countercations, formed various anion-binding modes and ion-pairing assembled structures depending on constituents and forms (solutions and crystals). The PtII complexes emitted strong phosphorescence in deoxygenated solutions but showed extremely weak phosphorescence in the solid state owing to self-association. In contrast, the solid-state ion-pairing assemblies with tetraalkylammonium cations exhibited enhanced phosphorescence owing to the formation of hydrogen-bonding 1D-chain PtII complexes dispersed by stacking with aliphatic cations. Theoretical studies revealed that the enhanced phosphorescence in the solid-state ion-pairing assembly was attributed to preventing the delocalisation of the electron wavefunction over PtII complexes.
Collapse
Affiliation(s)
- Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Kaifu Komatsu
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Hiroi Sei
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Japan
| | - Hiroki Imoba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Japan
| | | | - Tohru Sato
- Fukui Institute for Fundamental Chemistry, Kyoto University Kyoto 606-8103 Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Yu Murakami
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Nobuhiro Yasuda
- Beamline Division, Japan Synchrotron Radiation Research Institute Sayo 679-5198 Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| |
Collapse
|
15
|
López-López JC, Nguyen YH, Jiang C, Teets TS. Luminescent Platinum Complexes with π-Extended Aryl Acetylide Ligands Supported by Isocyanides or Acyclic Diaminocarbenes. Inorg Chem 2023; 62:17843-17850. [PMID: 37845787 DOI: 10.1021/acs.inorgchem.3c02641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In this work, we present a series of luminescent platinum acetylide complexes with acetylides that are electronically modified and/or π-extended. Six isocyanide-supported complexes with the general formula cis-[Pt(CNAr)2(C≡CR)2] and six acyclic diaminocarbene (ADC) complexes of the form trans-[Pt(ADC)2(C≡CR)2], all using the same five acetylide ligands, are described. The compounds are characterized by multinuclear NMR, FT-IR, and single-crystal X-ray diffraction. In most cases, the phosphorescence arises from an acetylide-centered 3(π → π*) excited state, although in one of the isocyanide compounds there is evidence for a charge-transfer excited state. The photoluminescence wavelength depends strongly on the substitution pattern and extent of the π conjugation on the acetylide, with maxima spanning the range of ca. 460-540 nm. Most photoluminescence lifetimes are long, beyond 50 μs, and quantum yields are low to moderate, 0.043-0.27. The photoluminescence quantum yields and lifetimes in these compounds do not systematically improve in the ADC complexes compared to the isocyanide versions, suggesting the neutral ligand σ-donor character does not play a large role in the excited-state dynamics when the triplet excited state is delocalized over a large π system.
Collapse
Affiliation(s)
- Juan Carlos López-López
- University of Houston, Department of Chemistry, Lamar Fleming Jr. Building, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, Edificio 19, 30100 Murcia, Spain
| | - Yennie H Nguyen
- University of Houston, Department of Chemistry, Lamar Fleming Jr. Building, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Chenggang Jiang
- University of Houston, Department of Chemistry, Lamar Fleming Jr. Building, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- University of Houston, Department of Chemistry, Lamar Fleming Jr. Building, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
16
|
Khan AAT, Gobeze HB, Islam T, Arman HD, Schanze KS. Effect of bromine substitution on blue phosphorescent trans-(N-heterocyclic carbene)Pt(II) acetylide complexes. Dalton Trans 2023; 52:11535-11542. [PMID: 37540137 DOI: 10.1039/d3dt01483e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
N-heterocyclic carbene complexes of the type trans-(NHC)2PtII(CC-Ar)2 (where Ar = phenyl or substituted phenyl) are of interest as violet and blue phosphors. These complexes emit efficient phosphorescence in solution and in the solid state, and they have been applied as phosphors in organic light emitting diodes. This study explores the effect of bromine substitution on the trans-(NHC)2PtII(CC-Ar)2 chromophore through photophysical studies of a pair of complexes in which the phenyl groups feature either 3,5-dibromo- or 4-monobromo-substituents (IPt-DB and IPt-MB, respectively). The Br atoms were introduced as heavy atom(s) with the aim to enhance spin-orbit coupling and increase the radiative and non-radiative decay rates of the phosphorescent triplet state. Both IPt-MB and IPt-DB exhibit sky-blue phosphorescence in solution and in PMMA matrix. Interestingly, the emission quantum yield and lifetime of IPt-MB are substantially lower compared to IPt-DB in solution. This effect is attributed to a substantially larger non-radiative decay rate in the mono-bromo complex. Analysis of the photophysical data, combined with DFT and TD-DFT calculations, suggest that the difference in photophysical properties of the two complexes is related to the position of the Br-substituents on the phenyl acetylide rings. In short, in IPt-MB, the Br-substituents are located para-to the Pt-CC-unit, and this gives rise to stronger electron-vibrational coupling in the excited state, enhancing the rate of non-radiative decay.
Collapse
Affiliation(s)
- Amran A T Khan
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Habtom B Gobeze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Tanjila Islam
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
17
|
Martínez-Junquera M, Lalinde E, Moreno MT. cis/ trans-[Pt(C ∧N)(C≡CR)(CNBu t)] Isomers: Synthesis, Photophysical, DFT Studies, and Chemosensory Behavior. Inorg Chem 2023; 62:11849-11868. [PMID: 37458185 PMCID: PMC10394665 DOI: 10.1021/acs.inorgchem.3c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
cis/trans Isomerism can be a crucial factor for photophysical properties. Here, we report the synthesis and optical properties of a series of trans- and cis-alkynyl/isocyanide cycloplatinated compounds [Pt(C∧N)(C≡CR)(CNBut)] [R = C6H4-4-OMe 1, 3-C4H3S 2; C∧N = 2-(2,4-difluorophenyl)pyridine (dfppy) (a), 4-(2-pyridyl)benzaldehyde (ppy-CHO) (b)]. The trans-forms do not isomerize thermally in MeCN solution to the cis forms, but upon photochemical irradiation in this medium at 298 K, a variable isomerization to the cis forms was observed. This behavior is in good agreement with the theoretically calculated energy values. The trans/cis configuration, the identity of the cyclometalated, and the alkynyl ligand influence on the absorption and emission properties of the complexes in solution, polystyrene (PS) films, and solid state are reported. All complexes are efficient triplet emitters in all media (except for trans-1a and trans-2a in CH2Cl2 solution at 298 K), with emission wavelengths depending mainly on the cyclometalated ligand in the region 473-490 nm (dfppy), 510-550 (ppy-CHO), and quantum yields (ϕ) ranging from 18.5 to 40.7% in PS films. The combined photophysical data and time-dependent density functional theory calculations (TD-DFT) at the excited-state T1 geometry reveal triplet excited states of 3L'LCT (C≡CR → C∧N)/3IL (C∧N) character with minor 3MLCT contribution. The dfppy (a) complexes show a greater tendency to aggregate in rigid media than the ppy-CHO (b) and the cis with respect to the trans, showing red-shifted structureless bands of 3MMLCT and/or excimer-like nature. Interestingly, trans-1a,2a and cis-1a,2a undergo significant changes in the ultraviolet (UV) and emission spectra with Hg2+ ions enabling their use for sensing of Hg2+ ions in solution. This is clearly shown by the hypsochromic shift and substantial decrease of the low-energy absorption band and an increase of the intensity of the emission in the MeCN solution upon the addition of a solution of Hg(ClO4)2 (1:5 molar ratio). Job's plot analysis estimated a 1:1 stoichiometry in the complexation mode of Hg2+ by trans-2a. The binding constant (log K) calculated for this system from absorption titration data resulted to be 2.56, and the limit of the detection (LOD) was 6.54 × 10-7 M.
Collapse
Affiliation(s)
- Mónica Martínez-Junquera
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
18
|
Cheng Y, Gontard G, Khatyr A, Knorr M, Amouri H. N-Heterocyclic Carbene Copper (I) Complexes Incorporating Pyrene Chromophore: Synthesis, Crystal Structure, and Luminescent Properties. Molecules 2023; 28:molecules28104025. [PMID: 37241767 DOI: 10.3390/molecules28104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Luminescent N-heterocyclic carbene chloride copper (I) complexes incorporating pyrene chromophore (1-Pyrenyl-NHC-R)-Cu-Cl, (3, 4) have been prepared and fully characterized. Two complexes were prepared with R = methyl (3) and R = naphthyl groups (4) at the nitrogen center of the carbene unit to tune their electronic properties. The molecular structures of 3 and 4 have been elucidated by X-ray diffraction and confirm the formation of the target compounds. Preliminary results reveal that all compounds including the imidazole-pyrenyl ligand 1 are emissive in the blue region at room temperature in solution and in solid-state. All complexes display quantum yields comparable or higher when compared to the parent pyrene molecule. Interestingly replacement of the methyl by naphthyl group increases the quantum yield by almost two-folds. These compounds might show promise for applications as optical displays.
Collapse
Affiliation(s)
- Yaping Cheng
- Institut Parisien de Chimie Moléculaire (IPCM), UMR CNRS 8232, Sorbonne Université-Campus Pierre et Marie Curie, 4 Place Jussieu, CEDEX 05, 75252 Paris, France
| | - Geoffrey Gontard
- Institut Parisien de Chimie Moléculaire (IPCM), UMR CNRS 8232, Sorbonne Université-Campus Pierre et Marie Curie, 4 Place Jussieu, CEDEX 05, 75252 Paris, France
| | - Abderrahim Khatyr
- Institut UTINAM, UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Michael Knorr
- Institut UTINAM, UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Hani Amouri
- Institut Parisien de Chimie Moléculaire (IPCM), UMR CNRS 8232, Sorbonne Université-Campus Pierre et Marie Curie, 4 Place Jussieu, CEDEX 05, 75252 Paris, France
| |
Collapse
|
19
|
Nguyen YH, Dang VQ, Soares JV, Wu JI, Teets TS. Efficient blue-phosphorescent trans-bis(acyclic diaminocarbene) platinum(ii) acetylide complexes. Chem Sci 2023; 14:4857-4862. [PMID: 37181770 PMCID: PMC10171077 DOI: 10.1039/d3sc00712j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
The lack of efficient and robust deep-blue phosphorescent metal complexes remains a significant challenge in the context of electroluminescent color displays. The emissive triplet states of blue phosphors are deactivated by low-lying metal-centered (3MC) states, which can be ameliorated by increasing the σ-donating ability of the supporting ligands. Here we unveil a synthetic strategy to access blue-phosphorescent complexes with two supporting acyclic diaminocarbenes (ADCs), known to be even stronger σ-donors than N-heterocyclic carbenes (NHCs). This new class of platinum complexes has excellent photoluminescence quantum yields, with four of six complexes affording deep-blue emission. Experimental and computational analyses are consistent with a pronounced destabilization of the 3MC states by the ADCs.
Collapse
Affiliation(s)
- Yennie H Nguyen
- Department of Chemistry, University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Vinh Q Dang
- Department of Chemistry, University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - João Vitor Soares
- Department of Chemistry, University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Judy I Wu
- Department of Chemistry, University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- Department of Chemistry, University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
20
|
Kundu D, Del Rio N, Cordier M, Vanthuyne N, Puttock EV, Meskers SCJ, Williams JAG, Srebro-Hooper M, Crassous J. Enantiopure cycloplatinated pentahelicenic N-heterocyclic carbenic complexes that display long-lived circularly polarized phosphorescence. Dalton Trans 2023; 52:6484-6493. [PMID: 37096384 DOI: 10.1039/d3dt00577a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The preparation of the first enantiopure cycloplatinated complexes bearing a bidentate, helicenic N-heterocyclic carbene and a diketonate ancillary ligand is presented, along with their structural and spectroscopic characterization based on both experimental and computational studies. The systems exhibit long-lived circularly polarized phosphorescence in solution and in doped films at room temperature, and also in a frozen glass at 77 K, with dissymmetry factor glum values ≥10-3 in the former and around 10-2 in the latter.
Collapse
Affiliation(s)
- Debsouri Kundu
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| | - Natalia Del Rio
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| | - Marie Cordier
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | - Emma V Puttock
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Stefan C J Meskers
- Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, NL 5600, The Netherlands
| | | | - Monika Srebro-Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Jeanne Crassous
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| |
Collapse
|
21
|
Blue Emissive Palladium(II) Complex with Benzoquinoline and N-heterocyclic Carbene Ligands. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
22
|
Amouri H. Luminescent Complexes of Platinum, Iridium, and Coinage Metals Containing N-Heterocyclic Carbene Ligands: Design, Structural Diversity, and Photophysical Properties. Chem Rev 2023; 123:230-270. [PMID: 36315851 DOI: 10.1021/acs.chemrev.2c00206] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The employment of N-heterocyclic carbenes (NHCs) to design luminescent metal compounds has been the focus of recent intense investigations because of the strong σ-donor properties, which bring stability to the whole system and tend to push the d-d dark states so high in energy that they are rendered thermally inaccessible, thereby generating highly emissive complexes for useful applications such as organic light-emitting diodes (OLEDs), or featuring chiroptical properties, a field that is still in its infancy. Among the NHC complexes, those containing organic chromophores such as naphthalimide, pyrene, and carbazole exhibit rich emission behavior and thus have attracted extensive interest in the past five years, especially carbene coinage metal complexes with carbazolate ligands. In this review, the design strategies of NHC-based luminescent platinum and iridium complexes with large spin-orbit-coupling (SOC) are described first. Subsequent paragraphs illustrate the recent advances of luminescent coinage metal complexes with nucleophilic- and electrophilic-based carbenes based on silver, gold, and copper metal complexes that have the ability to display rich excited state emissions in particular via thermally activated delayed fluorescence (TADF). The luminescence mechanism and excited state dynamics are also described. We then summarize the advance of NHC-metal complexes in the aforementioned fields in recent years. Finally, we propose the development trend of this fast-growing field of luminescent NHC-metal complexes.
Collapse
Affiliation(s)
- Hani Amouri
- CNRS, IPCM (UMR 8232), Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, Cedex 05, France
| |
Collapse
|
23
|
Stipurin S, Strassner T. Phosphorescent Bimetallic C^C* Platinum(ii) Complexes with Bridging Substituted Diphenylformamidinates. Chemistry 2022; 28:e202202227. [PMID: 36284471 PMCID: PMC10092827 DOI: 10.1002/chem.202202227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/05/2022]
Abstract
A series of phosphorescent bimetallic platinum(II) complexes is presented, which were synthesized by the combination of bidentate cyclometalated N-heterocyclic carbene ligands and different bridging diphenylformamidinates. The complexes were characterized by standard techniques and additionally two solid-state structures could be obtained. Photoluminescence measurements revealed the strong emissive behavior of the compounds with quantum yields of up to 90 % and emission lifetimes of approx. 2 μs. The effect of the substitution pattern in the bridging ligands on the structural and photophysical properties of the complexes was examined in detail and rationalized by density functional theory calculations (PBE0/6-311G*).
Collapse
Affiliation(s)
- Sergej Stipurin
- Physikalische Organische ChemieTechnische Universität Dresden01069DresdenGermany
| | - Thomas Strassner
- Physikalische Organische ChemieTechnische Universität Dresden01069DresdenGermany
| |
Collapse
|
24
|
Oxidative addition of 8-bromo-9-ethyl-1,N6-ethenoadenine to d10 metals. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Shen Y, Kong X, Yang F, Bian HD, Cheng G, Cook TR, Zhang Y. Deep Blue Phosphorescence from Platinum Complexes Featuring Cyclometalated N-Pyridyl Carbazole Ligands with Monocarborane Clusters (CB 11H 12-). Inorg Chem 2022; 61:16707-16717. [PMID: 36205461 DOI: 10.1021/acs.inorgchem.2c02467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The utilization of deep blue phosphorescent materials in high-performance displays and solid-state lighting requires high quantum efficiencies and color purities. Here, we describe the preparation and luminescent properties of novel platinum triplet emitters featuring cyclometalated N-pyridyl-carbazole ligands functionalized with closo-monocarborane clusters [CB11H12]-. All reported complexes were fully characterized by using standard small molecule techniques (UV-vis, cyclic voltammetry, nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS)), and their solid-state structures were elucidated by X-ray diffraction. These platinum phosphors emit in the blue region of the visible wavelength spectrum in both the solid and solution states. Complex 4a exhibits the highest luminous efficiency at λem = 439 nm with a photoluminescent quantum yield (PLQY) of 60% by dispersing in a PMMA matrix. Electrochemical and computational studies of complexes 4a and 4b revealed that the blue phosphorescence originates mainly from intraligand 3π → π* (3ILCT) transitions with relatively small 3MLCT mixing. A deep-blue OLED containing 4a as the light-emitting dopant was successfully fabricated using a solution-processed method, and the device exhibited blue photoluminescence with CIE coordinates of (0.17, 0.15) and a maximum external quantum efficiency (EQEmax) value of 6.2%. This article represents the pioneering study of a deep blue PhOLED using a Pt complex bearing a closo-monocarborane anion substituent, providing a new avenue into the preparation of novel triplet emitters based on boron-rich cluster anions.
Collapse
Affiliation(s)
- Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Xiangjun Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Fengjie Yang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - He-Dong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, 856 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| |
Collapse
|
26
|
Liu T, Chen YN, Tan DX, Han FS. The 2,4-diarylquinoline-based Platinum(II) complexes: Synthesis, photophysical and electrochemical properties, and application in detection of hypochlorite. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Riesebeck T, Bertrams MS, Stipurin S, Konowski K, Kerzig C, Strassner T. Cyclometalated Spirobifluorene Imidazolylidene Platinum(II) Complexes with Predominant 3LC Emissive Character and High Photoluminescence Quantum Yields. Inorg Chem 2022; 61:15499-15509. [PMID: 36125339 DOI: 10.1021/acs.inorgchem.2c02141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel bidentate C^C*spiro cyclometalated platinum(II) complexes comprising a spiro-conjugated bifluorene ligand and different β-diketonate auxiliary ligands are synthesized and characterized. Their preparation employs a robust and elaborate synthetic protocol commencing with an N-heterocyclic carbene precursor. Structural characterization by means of NMR techniques and solid-state structures validate the proposed and herein presented molecular scaffolds. Photophysical studies, including laser flash photolysis methods, reveal an almost exclusively ligand-centered triplet state, governed by the C^C*spiro-NHC ligand. The high triplet energies and the long triplet lifetimes in the order of 30 μs in solution make the complexes good candidates for light-emitting diode-driven photocatalysis, as initial energy transfer experiments reveal. In-depth time-dependent density functional theory investigations are in excellent accordance with our spectroscopic findings. The title compounds are highly emissive in the bluish-green color region with quantum yields of up to 87% in solid-state measurements.
Collapse
Affiliation(s)
- Tim Riesebeck
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | | | - Sergej Stipurin
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Kai Konowski
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
28
|
Yang X, Zhou X, Zhang Y, Li D, Li C, You C, Chou T, Su S, Chou P, Chi Y. Blue Phosphorescence and Hyperluminescence Generated from Imidazo[4,5-b]pyridin-2-ylidene-Based Iridium(III) Phosphors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201150. [PMID: 35822668 PMCID: PMC9443441 DOI: 10.1002/advs.202201150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/02/2022] [Indexed: 05/19/2023]
Abstract
Four isomeric, homoleptic iridium(III) metal complexes bearing 5-(trifluoromethyl)imidazo[4,5-b]pyridin-2-ylidene and 6-(trifluoromethyl)imidazo[4,5-b]pyridin-2-ylidene-based cyclometalating chelates are successfully synthesized. The meridional isomers can be converted to facial isomers through acid induced isomerization. The m-isomers display a relatively broadened and red-shifted emission, while f-isomers exhibit narrowed blue emission band, together with higher photoluminescent quantum yields and reduced radiative lifetime relative to the mer-counterparts. Maximum external quantum efficiencies of 13.5% and 22.8% are achieved for the electrophosphorescent devices based on f-tpb1 and m-tpb1 as dopant emitter together with CIE coordinates of (0.15, 0.23) and (0.22, 0.45), respectively. By using f-tpb1 as the sensitizing phosphor and t-DABNA as thermally activated delayed fluorescence (TADF) terminal emitter, hyperluminescent OLEDs are successfully fabricated, giving high efficiency of 29.6%, full width at half maximum (FWHM) of 30 nm, and CIE coordinates of (0.13, 0.11), confirming the efficient Förster resonance energy transfer (FRET) process.
Collapse
Affiliation(s)
- Xilin Yang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Xiuwen Zhou
- School of Mathematics and PhysicsThe University of QueenslandBrisbaneQueensland4072Australia
| | - Ye‐Xin Zhang
- Suzhou Joysun Advanced Materials Co., Ltd. SuzhouJiangsu215126China
| | - Deli Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Chensen Li
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| | - Caifa You
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| | - Tai‐Che Chou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Pi‐Tai Chou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Yun Chi
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| |
Collapse
|
29
|
Horrer G, Krummenacher I, Mann S, Braunschweig H, Radius U. N-Heterocyclic carbene and cyclic (alkyl)(amino)carbene complexes of vanadium(III) and vanadium(V). Dalton Trans 2022; 51:11054-11071. [PMID: 35796195 DOI: 10.1039/d2dt01250b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
[VCl3(THF)3] offers a convenient entrance point into the chemistry of carbene stabilized V(III) complexes. Herein we report the paramagnetic mono- and biscarbene complexes [VCl3(cAACMe)] 1, [VCl3(cAACMe)(THF)] 1(thf), [VCl3(IMes)] 2, [{VCl2(IiPrMe)(μ-Cl)}2] 3, [VCl3(IDipp)] 4, [VCl3(SIDipp)] 5, [VCl3(SIDipp)(THF)] 5(thf), [VCl3(ItBu)] 6, [VCl3(cAACMe)2] 7 and [VCl3(IiPrMe)2] 8. Reaction of 1 with MesMgCl, MesLi and LiNPh2 afforded the complexes [VCl2(Mes)(cAACMe)] 9, [cAACMeH]+[VCl2Mes2]-10 and [VCl2(NPh2)(cAACMe)] 11. The V(V) complexes [V(O)Cl3(IDipp)] 12 and [V(O)Cl3(SIDipp)] 13 were selectively prepared from oxygen oxidation of 4 and 5. [V(O)Cl3(IDipp)] 12 and [V(O)Cl3(IMes)] react with isocyanates to yield the NHC-ligated imido complexes [V(N-p-CH3C6H4)Cl3(IDipp)] 14, [V(N-p-FC6H4)Cl3(IDipp)] 15, [V(N-p-CH3C6H4)Cl3(SIDipp)] 16, [V(N-p-FC6H4)Cl3(SIDipp)] 17, [V(N-p-CH3C6H4)Cl3(IMes)] 18 and [V(N-p-FC6H4)Cl3(IMes)] 19.
Collapse
Affiliation(s)
- Günther Horrer
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sophie Mann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
30
|
Vivancos Á, Bautista D, González-Herrero P. Phosphorescent Tris-cyclometalated Pt(IV) Complexes with Mesoionic N-Heterocyclic Carbene and 2-Arylpyridine Ligands. Inorg Chem 2022; 61:12033-12042. [PMID: 35860839 PMCID: PMC9377419 DOI: 10.1021/acs.inorgchem.2c02039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, structure, photophysical properties, and electrochemistry of the first series of Pt(IV) tris-chelates bearing cyclometalated aryl-NHC ligands are reported. The complexes have the general formula [Pt(trz)2(C∧N)]+, combining two units of the cyclometalated, mesoionic aryl-NHC ligand 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene (trz) with a cyclometalated 2-arylpyridine [C∧N = 2-(2,4-difluorophenyl)pyridine (dfppy), 2-phenylpyridine (ppy), 2-(p-tolyl)pyridine (tpy), 2-(2-thienyl)pyridine (thpy), 2-(9,9-dimethylfluoren-2-yl)pyridine (flpy)], and presenting a mer arrangement or metalated aryls. They exhibit a significant photostability under UV irradiation and long-lived phosphorescence in the blue to yellow color range, arising from 3LC excited states involving the C∧N ligands, with quantum yields of up to 0.34 in fluid solution and 0.77 in the rigid matrix at 298 K. The time-dependent density functional theory (TD-DFT) calculations reveal that nonemissive, deactivating excited states of ligand-to-metal charge-transfer (LMCT) character are pushed to high energies as a consequence of the strong σ-donating ability of the carbenic moieties, making the Pt(trz)2 subunit an essential structural component that enables efficient emissions from the chromophoric C∧N ligands, with potential application for the development of different Pt(IV) emitters with tunable properties.
Collapse
Affiliation(s)
- Ángela Vivancos
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
31
|
Stipurin S, Strassner T. Phosphorescent Cyclometalated Platinum(
ii
) Hexahydroimidazo[1,5‐
a
]pyridinylidene Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sergej Stipurin
- Physikalische Organische Chemie Technische Universität Dresden 01069 Dresden Germany
| | - Thomas Strassner
- Physikalische Organische Chemie Technische Universität Dresden 01069 Dresden Germany
| |
Collapse
|
32
|
Luo Y, Guo Y, Shou X, Chen Z, Xu Z, Tang D. Investigate the Relationship between Structure and Triplet Potential Energy Surface to Control the Phosphorescence Quantum Yield of Platinum(II) Complex: A Theoretical Investigation. Inorg Chem 2022; 61:9162-9172. [PMID: 35666779 DOI: 10.1021/acs.inorgchem.2c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triplet potential energy surfaces are extremely important for phosphors because they are closely related to radiative and nonradiative decay processes. In this article, the correlations between the strctures and the triplet potential energy surfaces for Pt(II) complexes are investigated in detail with the help of density functional theory (DFT). The calculated results indicate that triplet hypersurface minima with different configurations, i.e., planar and bent, rely on the geometries of the platinum(II) complex. A bent configuration could cause an obvious decrease in the phosphorescence quantum yield, and an unusual low-lying triplet excited-state decay route is proposed. In addition, the extension of π-conjugation and addition of suitable substituents, for example arylboron, are promising strategies for changing the triplet hypersurface to achieve the minimum with a planar configuration, leading to a high phosphorescence quantum yield. Moreover, to predict the triplet hypersurface, a useful and simple strategy has been put forward. In our study, the relationship between the structure and the lowest-lying triplet potential energy surface of a Pt(II) complex is constructed, which is significant and meaningful for controlling the phosphorescence quantum yield to design high-performance phosphorescent materials used in the field of organic light-emitting diodes (OLEDs).
Collapse
Affiliation(s)
- Yafei Luo
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Yu Guo
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Xuecen Shou
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Zhongzhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Zhigang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Dianyong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| |
Collapse
|
33
|
Nguyen YH, Soares JV, Nguyen SH, Wu Y, Wu JI, Teets TS. Platinum(II)-Substituted Phenylacetylide Complexes Supported by Acyclic Diaminocarbene Ligands. Inorg Chem 2022; 61:8498-8508. [PMID: 35609301 DOI: 10.1021/acs.inorgchem.2c00510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We introduce phosphorescent platinum aryl acetylide complexes supported by tert-butyl-isocyanide and strongly σ-donating acyclic diaminocarbene (ADC) ligands. The precursor complexes cis-[Pt(CNtBu)2(C≡CAr)2] (4a-4f) are treated with diethylamine, which undergoes nucleophilic addition with one of the isocyanides to form the cis-[Pt(CNtBu)(ADC)(C≡CAr)2] complexes (5a-5f). The new compounds incorporate either electron-donating groups (4-OMe and 4-NMe2) or electron-withdrawing groups [3,5-(OMe)2, 3,5-(CF3)2, 4-CN, and 4-NO2] on the aryl acetylide. Experimental HOMO-LUMO gaps, estimated from cyclic voltammetry, span the range of 2.68-3.61 eV and are in most cases smaller than the unsubstituted parent complex, as corroborated by DFT. In the ADC complexes, peak photoluminescence wavelengths span the range of 428 nm (2a, unsubstituted phenylacetylide) to 525 nm (5f, 4-NO2-substituted), with the substituents inducing a red shift in all cases. The phosphorescence E0,0 values and electrochemical HOMO-LUMO gaps are loosely correlated, showing that both can be reduced by either electron-donating or electron-withdrawing substituents on the aryl acetylides. The photoluminescence quantum yields in the ADC complexes are between 0.044 and 0.31 and the lifetimes are between 4.8 and 14 μs, a factor of 1.8-10× higher (for ΦPL) and 1.2-3.6× longer (for τ) than the respective isocyanide precursor (ΦPL = 0.014-0.12, τ = 2.8-8.2 μs).
Collapse
Affiliation(s)
- Yennie H Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - João Vitor Soares
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - Sami H Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - Yanyu Wu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - Judy I Wu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
34
|
Yan J, Xue Q, Yang H, Yiu SM, Zhang YX, Xie G, Chi Y. Regioselective Syntheses of Imidazo[4,5- b]pyrazin-2-ylidene-Based Chelates and Blue Emissive Iridium(III) Phosphors for Solution-Processed OLEDs. Inorg Chem 2022; 61:8797-8805. [PMID: 35652376 DOI: 10.1021/acs.inorgchem.2c00750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Six homoleptic Ir(III) complexes bearing imidazo[4,5-b]pyrazin-2-ylidene chelates were successfully designed and synthesized. Narrowband blue emission (λmax = 466-485 nm) and broadened green emission (λmax = 518-532 nm) in degassed toluene solution with high photoluminescent quantum yields in the range of 75-81 and 45-48% were observed for f-timpz, t2impz, and t2empz as well as m-timpz, t2impz, and t2empz, respectively. In addition, the tert-butylphenyl cyclometalate is more electron donating than N-phenyl cyclometalate and, hence, all tert-butylphenyl-substituted derivatives, that is, m- and f-t2impz and m- and f-t2empz, give more red-shifted emission in comparison to that of m- and f-timpz. Moreover, solution-processed OLED with f-t2empz (20 wt %) as the dopant gave electrophosphorescence at 474 nm with maximum external quantum efficiency (max. EQE) of 5.1%, while hyper-OLED with assistant sensitizer f-t2empz (10 wt %) and the multi-resonance thermally activated delayed fluorescence emitter BCzBN (0.5 wt %) afforded narrowband emission centered at 485 nm and max. EQE up to 17.4%, confirming the high potential of this class of Ir(III) metal phosphors.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Qin Xue
- Department of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Hui Yang
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Shek-Man Yiu
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Ye-Xin Zhang
- Suzhou Joysun Advanced Materials Co., Ltd., Suzhou 215126, Jiangsu, China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
35
|
Maganti T, Venkatesan K. The Search for Efficient True Blue and Deep Blue Emitters: An Overview of Platinum Carbene Acetylide Complexes. Chempluschem 2022; 87:e202200014. [PMID: 35499257 DOI: 10.1002/cplu.202200014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/27/2022] [Indexed: 11/08/2022]
Abstract
Despite significant strides achieved in organic light emitting diode (OLED) based display technologies during the last decade, the search for highly stable and efficient true blue/deep blue emitters continues to remain elusive. During the past decade, emitters with the basic molecular scaffold consisting of Pt(II) acetylides and N-heterocyclic carbene (NHC) ligands have opened interesting opportunities to tune the emission properties with desired chromaticity in the blue and deep blue region. With an aim to achieve the desired CIE coordinates along with low device roll-off efficiencies and satisfactory color purity, a number of variations on the basic molecular fragment have been made. A number of NHC Pt(II) alkyne complexes bearing monodentate, bidentate and tridentate ligands have been synthesized and their photophysical investigations have been reported. Although NHC Pt(II) alkyne complexes have been explored in other areas of applications, much of the investigations have been primarily focused for their interesting emission properties appearing particularly in the shorter wavelength (450-495 nm) part of the electromagnetic spectrum for organic light emitting diode (OLED) devices. In this review, we provide an overview of the investigated NHC Pt(II) acetylide complexes by detailing their synthesis, luminescence properties, performance in devices and future perspectives.
Collapse
Affiliation(s)
- Teja Maganti
- School of Natural Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Koushik Venkatesan
- School of Natural Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
36
|
Wu C, Zhang Y, Miao J, Li K, Zhu W, Yang C. Tetradentate cyclometalated platinum complex enables high-performance near-infrared electroluminescence with excellent device stability. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Xu FF, Zeng W, Sun MJ, Gong ZL, Li ZQ, Zhao YS, Yao J, Zhong YW. Organoplatinum(II) Cruciform: A Versatile Building Block to Fabricate 2D Microcrystals with Full-Color and White Phosphorescence and Anisotropic Photon Transport. Angew Chem Int Ed Engl 2022; 61:e202116603. [PMID: 35020259 DOI: 10.1002/anie.202116603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/11/2022]
Abstract
Conventional square-planar platinum complexes typically form one-dimensional assemblies as a result of unidirectional metallophilic and/or π⋅⋅⋅π intermolecular interactions. Organoplatinum(II) complexes with a cruciform shape are presented herein to construct two-dimensional (2D) microcrystals with full-color and white phosphorescence. These 2D crystals show unique monocomponent π⋅⋅⋅π stacking, from either the cyclometalating or noncyclometalating ligand, and the bicomponent alternate π⋅⋅⋅π stacking from both ligands along different facet directions. Anisotropic tri-directional waveguiding is further implemented on a single hexagonal microcrystal. These results demonstrate the great capability of the organoplatinum(II) cruciform as a general platform to fabricate 2D phosphorescent micro-/nanocrystals for advanced photonic applications.
Collapse
Affiliation(s)
- Fa-Feng Xu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Zeng
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng-Jia Sun
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Liang Gong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhong-Qiu Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Luo J, Rong XF, Ye YY, Li WZ, Wang XQ, Wang W. Research Progress on Triarylmethyl Radical-Based High-Efficiency OLED. Molecules 2022; 27:1632. [PMID: 35268732 PMCID: PMC8911689 DOI: 10.3390/molecules27051632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Perchlorotrityl radical (PTM), tris (2,4,6-trichlorophenyl) methyl radical (TTM), (3,5-dichloro-4-pyridyl) bis (2,4,6 trichlorophenyl) methyl radical (PyBTM), (N-carbazolyl) bis (2,4,6-trichlorophenyl) methyl radical (CzBTM), and their derivatives are stable organic radicals that exhibit light emissions at room temperature. Since these triarylmethyl radicals have an unpaired electron, their electron spins at the lowest excited state and ground state are both doublets, and the transition from the lowest excited state to the ground state does not pose the problem of a spin-forbidden reaction. When used as OLED layers, these triarylmethyl radicals exhibit unique light-emitting properties, which can increase the theoretical upper limit of the OLED's internal quantum efficiency (IQE) to 100%. In recent years, research on the luminescent properties of triarylmethyl radicals has attracted increasing attention. In this review, recent developments in these triarylmethyl radicals and their derivatives in OLED devices are introduced.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Qiang Wang
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (J.L.); (X.-F.R.); (Y.-Y.Y.); (W.-Z.L.)
| | - Wenjing Wang
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (J.L.); (X.-F.R.); (Y.-Y.Y.); (W.-Z.L.)
| |
Collapse
|
39
|
Das S, Sinha S, Roymahapatra G, De GC, Giri S. Ligand effect on the stability, reactivity, and acidity of imidazolium systems. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subhra Das
- School of Applied Science and Humanities Haldia Institute of Technology, ICARE Complex Haldia West Bengal India
- Department of Chemistry Cooch Behar Panchanan Barma University Cooch Behar West Bengal India
| | - Swapan Sinha
- School of Applied Science and Humanities Haldia Institute of Technology, ICARE Complex Haldia West Bengal India
| | - Gourisankar Roymahapatra
- School of Applied Science and Humanities Haldia Institute of Technology, ICARE Complex Haldia West Bengal India
| | - Gobinda Chandra De
- Department of Chemistry Cooch Behar Panchanan Barma University Cooch Behar West Bengal India
| | - Santanab Giri
- School of Applied Science and Humanities Haldia Institute of Technology, ICARE Complex Haldia West Bengal India
| |
Collapse
|
40
|
Stipurin S, Wurl F, Strassner T. C∧C* Platinum(II) Complexes with PtXPX Metallacycle Forming (X = N and S) Auxiliary Ligands: Synthesis, Crystal Structures, and Properties. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergej Stipurin
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Felix Wurl
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
41
|
Xu FF, Zeng W, Sun MJ, Gong ZL, Li ZQ, Zhao YS, Yao J, Zhong YW. Organoplatinum(II) Cruciform: A Versatile Building Block to Fabricate 2D Microcrystals with Full‐Color and White Phosphorescence and Anisotropic Photon Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fa-Feng Xu
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of photochemistry CHINA
| | - Wei Zeng
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of photochemistry CHINA
| | - Meng-Jia Sun
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of photochemistry CHINA
| | - Zhong-Liang Gong
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of photochemistry CHINA
| | - Zhong-Qiu Li
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of photochemistry CHINA
| | - Yong Sheng Zhao
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of photochemistry CHINA
| | - Jiannian Yao
- Institute of Chemistry Chinese Academy of Sciences key laboratory of photochemistry CHINA
| | - Yu-Wu Zhong
- Chinese Academy of Sciences Institute of Chemistry 2 Bei Yi Jie, Zhong Guan Cun 100190 Beijing CHINA
| |
Collapse
|
42
|
Tang D, Chen Z, Luo Y, Xu Z, Xu J. Theoretical Investigation of Triplet Energy Potential Surfaces for (C^C*) Cyclometalated Platinum(II) Complexes and Corresponding Control Strategies. NEW J CHEM 2022. [DOI: 10.1039/d2nj03062d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplet energy potential surfaces, for phosphorescent material, play a predominate role in determining the radiative and non-radiative decay processes. It is significant and meaningful for providing the promising strategy to...
Collapse
|
43
|
Koseki S, Yoshii M, Asada T, Fujimura Y, Matsushita T, Yagi S. Theoretical Design of Blue-Color Phosphorescent Complexes for Organic Light-Emitting Diodes: Emission Intensities and Nonradiative Transition Rate Constants in Ir(ppy) 2(acac) Derivatives. J Phys Chem A 2021; 125:10604-10614. [PMID: 34905372 DOI: 10.1021/acs.jpca.1c08261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Theoretical calculations of phosphorescent spectra and nonradiative transition (NRT) rate constants for S1 ⇝ T1, T1 ⇝ S0, and S1 ⇝ S0 were carried out to determine the best candidate for a blue-color phosphorescent complex among several derivatives of bis(2-phenylpyridine)(acetylacetonate)iridium(III). The geometries of the ground state (S0), the lowest triplet state (T1), and the lowest excited singlet state (S1) were optimized at the levels of density functional theory, in which B3LYP functionals and SBKJC+p basis sets were used. The NRT rate constants were derived by using a generating function method within the displaced harmonic oscillator model. The results of the calculation for phosphorescence showed that the introduction of F and/or CN substituents at the 4'/6'-th and 5'-th sites in 2-phenylpyridinate (ppy) ligands, respectively, causes a blue shift of the emission spectra. They also suggest that Ir(5-CN,6-F-ppy)2(acac), denoted 3(56) in the text, is a good candidate for a blue-color phosphorescent complex because a blue shift of emission spectra and a moderate intensity are obtained for phosphorescence and, furthermore, this complex is calculated to have a large rate constant for S1 ⇝ T1 and relatively smaller rate constants for T1 ⇝ S0 and S1 ⇝ S0 based on the calculations of spin-orbit coupling and nonadiabatic coupling constants.
Collapse
Affiliation(s)
- Shiro Koseki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan.,The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, Sakai 599-8531, Japan
| | - Masaki Yoshii
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Toshio Asada
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan.,The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, Sakai 599-8531, Japan
| | - Yuichi Fujimura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takeshi Matsushita
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, Sakai 599-8531, Japan.,JNC Corporation, 5-1 Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Shigeyuki Yagi
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, Sakai 599-8531, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
44
|
Gómez de Segura D, Lara R, Martínez-Junquera M, Lalinde E, Moreno MT. Luminescent 2-phenylbenzothiazole cyclometalated Pt II and Ir III complexes with chelating P^O ligands. Dalton Trans 2021; 51:274-285. [PMID: 34889913 DOI: 10.1039/d1dt03531b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two series of cyclometalated PtII and IrIII complexes with general formulas [Pt(pbt){PPh2(R)-κP,O}] (2a-2c) and [Ir(pbt)2{PPh2(R)-κP,O}] (3a-3c), where Hpbt is 2-phenylbenzothiazol and PPh2(R) is a diphenylphosphino donor functionalized deprotonated acid (R = o-C6H4CO2a, o-C6H4SO3b, CH2CH2CO2c) are presented. The structures of 1, 2a-2c, 3a and 3b were confirmed by single X-ray diffraction analyses, and the intermolecular interactions in 2a were studied using Hirshfeld surface analysis and non-covalent interaction (NCI) methods on its X-ray structure. Their photophysical properties were investigated by absorption and emission analyses [CH2Cl2, solid (298, 77 K) and doped polystyrene (PS) films], supported by TD-DFT calculations on 1, 2a-2c and 3a. The PtII complexes exhibit bright phosphorescence in the region 525-542 nm, ascribed to a mixed 3IL/3MLCT excited state with a predominant 3IL contribution. The IrIII derivatives (3a-3c) show orange photoluminescence (535-584 nm, 298 K), blue shifted at 77 K (527-560 nm), originated from the admixture of 3IL/3MLCT/3LLCT excited states. Interestingly, the photoluminescence quantum yields of the Pt complexes 2a-2c (ϕ = 46.5-66.5%) in PS films are remarkably higher than those of the corresponding iridium complexes (ϕ = 17.3-32%) and the precursor 1 (ϕ = 17%). The calculated 3MC-3IL/3MLCT energy gap for 2a and 3a accounts for the higher quantum yield of the Pt in relation to the Ir complex.
Collapse
Affiliation(s)
- David Gómez de Segura
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - Rebeca Lara
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - Mónica Martínez-Junquera
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
45
|
Shahsavari HR, Chamyani S, Hu J, Aghakhanpour RB, Rheingold AL, Paziresh S, Rahal D, Tsuji M, Momand B, Beyzavi H. The Utilization of
Para
‐Substituted Triphenylphosphine Derivatives to Synthesize Highly Emissive Cyclometalated Platinum(II) Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hamid R. Shahsavari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Samira Chamyani
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Jiyun Hu
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Reza Babadi Aghakhanpour
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Arnold L. Rheingold
- Department of Chemistry University of California San Diego, La Jolla California 92093 United States
| | - Sareh Paziresh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Dania Rahal
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Miu Tsuji
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Bilal Momand
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Hudson Beyzavi
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| |
Collapse
|
46
|
Benaissa I, Gajda K, Vendier L, Lugan N, Kajetanowicz A, Grela K, Michelet V, César V, Bastin S. An Anionic, Chelating C(sp 3)/NHC ligand from the Combination of an N-heterobicyclic Carbene and Barbituric Heterocycle. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Idir Benaissa
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Katarzyna Gajda
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Anna Kajetanowicz
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Véronique Michelet
- University Côte d’Azur, Institut de Chimie de Nice, UMR 7272 CNRS Parc Valrose, Faculté des Sciences, 06100 Nice, France
| | - Vincent César
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Stéphanie Bastin
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| |
Collapse
|
47
|
Pinter P, Hennersdorf F, Weigand JJ, Strassner T. Polymorphic Phosphorescence from Separable Aggregates with Unique Photophysical Properties. Chemistry 2021; 27:13135-13138. [PMID: 34405914 PMCID: PMC8518788 DOI: 10.1002/chem.202100483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Platinum complexes aggregate into polymorphs with different intermolecular interactions leading to different photophysical properties. Strong intermolecular interactions stabilize the aggregate to such an extent that the polymorphs can be separated directly by column chromatography. Solid‐state structures as well as quantum‐chemical calculations confirmed the effect of the interactions on the photophysical properties.
Collapse
Affiliation(s)
- Piermaria Pinter
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Felix Hennersdorf
- Anorganische Molekülchemie, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jan J Weigand
- Anorganische Molekülchemie, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| |
Collapse
|
48
|
Kletsch L, Jordan R, Köcher AS, Buss S, Strassert CA, Klein A. Photoluminescence of Ni(II), Pd(II), and Pt(II) Complexes [M(Me 2dpb)Cl] Obtained from C‒H Activation of 1,5-Di(2-pyridyl)-2,4-dimethylbenzene (Me 2dpbH). Molecules 2021; 26:molecules26165051. [PMID: 34443649 PMCID: PMC8401505 DOI: 10.3390/molecules26165051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
The three complexes [M(Me2dpb)Cl] (M = Ni, Pd, Pt) containing the tridentate N,C,N-cyclometalating 3,5-dimethyl-1,5-dipyridyl-phenide ligand (Me2dpb-) were synthesised using a base-assisted C‒H activation method. Oxidation potentials from cyclic voltammetry increased along the series Pt < Ni < Pd from 0.15 to 0.74 V. DFT calculations confirmed the essentially ligand-centred π*-type character of the lowest unoccupied molecular orbital (LUMO) for all three complexes in agreement with the invariant reduction processes. For the highest occupied molecular orbitals (HOMO), contributions from metal dyz, phenyl C4, C2, C1, and C6, and Cl pz orbitals were found. As expected, the dz2 (HOMO-1 for Ni) is stabilised for the Pd and Pt derivatives, while the antibonding dx2-y2 orbital is de-stabilised for Pt and Pd compared with Ni. The long-wavelength UV-vis absorption band energies increase along the series Ni < Pt < Pd. The lowest-energy TD-DFT-calculated state for the Ni complex has a pronounced dz2-type contribution to the overall metal-to-ligand charge transfer (MLCT) character. For Pt and Pd, the dz2 orbital is energetically not available and a strongly mixed Cl-to-π*/phenyl-to-π*/M(dyz)-to-π* (XLCT/ILCT/MLCT) character is found. The complex [Pd(Me2dpb)Cl] showed a structured emission band in a frozen glassy matrix at 77 K, peaking at 468 nm with a quantum yield of almost unity as observed for the previously reported Pt derivative. No emission was observed from the Ni complex at 77 or 298 K. The TD-DFT-calculated states using the TPSSh functional were in excellent agreement with the observed absorption energies and also clearly assessed the nature of the so-called "dark", i.e., d‒d*, excited configurations to lie low for the Ni complex (≥3.18 eV), promoting rapid radiationless relaxation. For the Pd(II) and Pt(II) derivatives, the "dark" states are markedly higher in energy with ≥4.41 eV (Pd) and ≥4.86 eV (Pt), which is in perfect agreement with the similar photophysical behaviour of the two complexes at low temperatures.
Collapse
Affiliation(s)
- Lukas Kletsch
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (L.K.); (R.J.); (A.S.K.)
| | - Rose Jordan
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (L.K.); (R.J.); (A.S.K.)
| | - Alicia S. Köcher
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (L.K.); (R.J.); (A.S.K.)
| | - Stefan Buss
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, D-48149 Münster, Germany;
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 11, D-48149 Münster, Germany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, D-48149 Münster, Germany;
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 11, D-48149 Münster, Germany
- Correspondence: (C.A.S.); (A.K.); Tel.: +49-221-470-4006 (A.K.)
| | - Axel Klein
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (L.K.); (R.J.); (A.S.K.)
- Correspondence: (C.A.S.); (A.K.); Tel.: +49-221-470-4006 (A.K.)
| |
Collapse
|
49
|
Pinter P, Soellner J, Strassner T. Metallophilic Interactions in Bimetallic Cyclometalated Platinum(II) N‐Heterocyclic Carbene Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Piermaria Pinter
- Physikalische Organische Chemie Technische Universität Dresden 01069 Dresden Germany
| | - Johannes Soellner
- Physikalische Organische Chemie Technische Universität Dresden 01069 Dresden Germany
| | - Thomas Strassner
- Physikalische Organische Chemie Technische Universität Dresden 01069 Dresden Germany
| |
Collapse
|
50
|
Stipurin S, Strassner T. C^C* Platinum(II) Complexes with Electron-Withdrawing Groups and Beneficial Auxiliary Ligands: Efficient Blue Phosphorescent Emission. Inorg Chem 2021; 60:11200-11205. [PMID: 34242510 DOI: 10.1021/acs.inorgchem.1c01172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The combination of strong electron-withdrawing groups in cyclometalated N-heterocyclic carbene ligands (C^C*) with known beneficial auxiliary ligands in phosphorescent platinum(II) complexes leads to efficient light-to-deep-blue emission with quantum yields of up to 92%. All compounds were characterized and investigated regarding their photophysical, electrochemical, and thermal properties, and three complexes could additionally be characterized by solid-state structures. Density functional theory calculations (PBE0/6-311G* with dispersion correction) are reported.
Collapse
Affiliation(s)
- Sergej Stipurin
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|