1
|
Zhao W, Zhang W, Chen J, Li H, Han L, Li X, Wang J, Song W, Xu C, Cai X, Wang L. Sensitivity-Enhancing Strategies of Graphene Field-Effect Transistor Biosensors for Biomarker Detection. ACS Sens 2024; 9:2705-2727. [PMID: 38843307 DOI: 10.1021/acssensors.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The ultrasensitive recognition of biomarkers plays a crucial role in the precise diagnosis of diseases. Graphene-based field-effect transistors (GFET) are considered the most promising devices among the next generation of biosensors. GFET biosensors possess distinct advantages, including label-free, ease of integration and operation, and the ability to directly detect biomarkers in liquid environments. This review summarized recent advances in GFET biosensors for biomarker detection, with a focus on interface functionalization. Various sensitivity-enhancing strategies have been overviewed for GFET biosensors, from the perspective of optimizing graphene synthesis and transfer methods, refinement of surface functionalization strategies for the channel layer and gate electrode, design of biorecognition elements and reduction of nonspecific adsorption. Further, this review extensively explores GFET biosensors functionalized with antibodies, aptamers, and enzymes. It delves into sensitivity-enhancing strategies employed in the detection of biomarkers for various diseases (such as cancer, cardiovascular diseases, neurodegenerative disorders, infectious viruses, etc.) along with their application in integrated microfluidic systems. Finally, the issues and challenges in strategies for the modulation of biosensing interfaces are faced by GFET biosensors in detecting biomarkers.
Collapse
Affiliation(s)
- Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Lin Han
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xinyu Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Jing Wang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
2
|
Sarker BK, Shrestha R, Singh KM, Lombardi J, An R, Islam A, Drummy LF. Label-Free Neuropeptide Detection beyond the Debye Length Limit. ACS NANO 2023; 17:20968-20978. [PMID: 37852196 DOI: 10.1021/acsnano.3c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Biosensors with high selectivity, high sensitivity, and real-time detection capabilities are of significant interest for diagnostic applications as well as human health and performance monitoring. Graphene field-effect transistor (GFET) based biosensors are suitable for integration into wearable sensor technology and can potentially demonstrate the sensitivity and selectivity necessary for real-time detection and monitoring of biomarkers. Previously reported DC-mode GFET biosensors showed a high sensitivity for sensing biomarkers in solutions with a low salt concentration. However, due to Debye length screening, the sensitivity of the DC-mode GFET biosensors decreases significantly during operation in a physiological fluid such as sweat or interstitial fluid. To overcome the Debye screening length limitation, we report here alternating current (AC) mode heterodyne-based GFET biosensors for sensing neuropeptide-Y (NPY), a key stress biomarker, in artificial sweat at physiologically relevant ionic concentrations. Our AC-mode GFET biosensors show a record ultralow detection limit of 2 × 10-18 M with an extensive dynamic range of 10 orders of magnitude in sensor response to target NPY concentration. The sensors were characterized for various carrier frequencies (ranging from 30 kHz to 2 MHz) of the applied AC voltages and various salt concentrations (10, 50, and 100 mM). Contrary to DC-mode sensing, the AC-mode sensor response increases with an increase in salt concentration in the electrolyte. The sensor response can be further enhanced by tuning the carrier frequency of the applied AC voltage. The optimum response frequency of our sensor is approximately 400-600 kHz for salt concentrations of 50 and 100 mM, respectively. The salt-concentration- and frequency-dependent sensor response can be explained by an electrolyte-gated capacitance model.
Collapse
Affiliation(s)
- Biddut K Sarker
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Reeshav Shrestha
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Kristi M Singh
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Jack Lombardi
- Information Directorate, Air Force Research Laboratory, Rome, New York 13441, United States
| | - Ran An
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77004, United States
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas 77004, United States
- Case Center for Biomolecular Structure and Integration for Sensors (Case-BioSIS), Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ahmad Islam
- Sensor Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
| | - Lawrence F Drummy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
| |
Collapse
|
3
|
High-frequency phenomena and electrochemical impedance spectroscopy at nanoelectrodes. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2022.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
4
|
Takahashi K, Nakano H, Sato H. Accelerated constant-voltage quantum mechanical/molecular mechanical method for molecular systems at electrochemical interfaces. J Chem Phys 2022; 157:234107. [PMID: 36550044 DOI: 10.1063/5.0128358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The structure and electronic properties of a molecule at an electrochemical interface are changed by interactions with the electrode surface and the electrolyte solution, which can be significantly modulated by an applied voltage. We present an efficient self-consistent quantum mechanics/molecular mechanics (QM/MM) approach to study a physisorbed molecule at a metal electrode-electrolyte interface under the constant-voltage condition. The approach employs a classical polarizable double electrode model, which enables us to study the QM/MM system in the constant-voltage ensemble. A mean-field embedding approximation is further introduced in order to overcome the difficulties associated with statistical sampling of the electrolyte configurations. The results of applying the method to a test system indicate that the adsorbed molecule is no less or slightly more polarized at the interface than in the bulk electrolyte solution. The geometry of the horizontally adsorbed molecule is modulated by their electrostatic interactions with the polarizable electrode surfaces and also the interactions with cations attracted toward the interface when the adsorbate is reduced. We also demonstrate that the approach can be used to quantitatively evaluate the reorganization energy of a one electron reduction reaction of a molecule in an electrochemical cell.
Collapse
Affiliation(s)
- Ken Takahashi
- Department of Molecular Engineering, Kyoto University, Kyoto Daigaku Katsura, Kyoto 615-8246, Japan
| | - Hiroshi Nakano
- CD-FMat, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto Daigaku Katsura, Kyoto 615-8246, Japan
| |
Collapse
|
5
|
Bosch S, de Menezes RX, Pees S, Wintjens DJ, Seinen M, Bouma G, Kuyvenhoven J, Stokkers PCF, de Meij TGJ, de Boer NKH. Electronic Nose Sensor Drift Affects Diagnostic Reliability and Accuracy of Disease-Specific Algorithms. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239246. [PMID: 36501947 PMCID: PMC9740993 DOI: 10.3390/s22239246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/12/2023]
Abstract
Sensor drift is a well-known disadvantage of electronic nose (eNose) technology and may affect the accuracy of diagnostic algorithms. Correction for this phenomenon is not routinely performed. The aim of this study was to investigate the influence of eNose sensor drift on the development of a disease-specific algorithm in a real-life cohort of inflammatory bowel disease patients (IBD). In this multi-center cohort, patients undergoing colonoscopy collected a fecal sample prior to bowel lavage. Mucosal disease activity was assessed based on endoscopy. Controls underwent colonoscopy for various reasons and had no endoscopic abnormalities. Fecal eNose profiles were measured using Cyranose 320®. Fecal samples of 63 IBD patients and 63 controls were measured on four subsequent days. Sensor data displayed associations with date of measurement, which was reproducible across all samples irrespective of disease state, disease activity state, disease localization and diet of participants. Based on logistic regression, corrections for sensor drift improved accuracy to differentiate between IBD patients and controls based on the significant differences of six sensors (p = 0.004; p < 0.001; p = 0.001; p = 0.028; p < 0.001 and p = 0.005) with an accuracy of 0.68. In this clinical study, short-term sensor drift affected fecal eNose profiles more profoundly than clinical features. These outcomes emphasize the importance of sensor drift correction to improve reliability and repeatability, both within and across eNose studies.
Collapse
Affiliation(s)
- Sofie Bosch
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Renée X. de Menezes
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
- Biostatistics Unit, Netherlands Cancer Institute, 1066 Amsterdam, The Netherlands
| | - Suzanne Pees
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Dion J. Wintjens
- Department of Gastroenterology and Hepatology, Maastricht University Medical Centre (MUMC+), 6229 Maastricht, The Netherlands
| | - Margien Seinen
- Department of Gastroenterology and Hepatology, OLVG West, 1061 Amsterdam, The Netherlands
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Johan Kuyvenhoven
- Department of Gastroenterology and Hepatology, Spaarne Gasthuis Hospital, 2134 Hoofddorp, The Netherlands
| | - Pieter C. F. Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, 1061 Amsterdam, The Netherlands
| | - Tim G. J. de Meij
- Department of Pediatric Gastroenterology, UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Nanne K. H. de Boer
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| |
Collapse
|
6
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
7
|
Zang W, Liu Z, Kulkarni GS, Zhu H, Wu Y, Lee K, Li MWH, Fan X, Zhong Z. A Microcolumn DC Graphene Sensor for Rapid, Sensitive, and Universal Chemical Vapor Detection. NANO LETTERS 2021; 21:10301-10308. [PMID: 34878794 DOI: 10.1021/acs.nanolett.1c03416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nearly all existing direct current (DC) chemical vapor sensing methodologies are based on charge transfer between sensor and adsorbed molecules. However, the high binding energy at the charge-trapped sites, which is critical for high sensitivity, significantly slows sensors' responses and makes the detection of nonpolar molecules difficult. Herein, by exploiting the incomplete screening effect of graphene, we demonstrate a DC graphene electronic sensor for rapid (subsecond) and sensitive (ppb) detection of a broad range of vapor analytes, including polar, nonpolar, organic, and inorganic molecules. Molecular adsorption induced capacitance change in the graphene transistor is revealed to be the main sensing mechanism. A novel sensor design, which integrates a centimeter-scale graphene transistor and a microfabricated flow column, is pioneered to enhance the fringing capacitive gating effect. Our work provides an avenue for a broad spectrum real-time gas sensing technology and serves as an ideal testbed for probing molecular physisorption on graphene.
Collapse
Affiliation(s)
- Wenzhe Zang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhe Liu
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Girish S Kulkarni
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Hongbo Zhu
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - You Wu
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Kyunghoon Lee
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Maxwell Wei-Hao Li
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Xudong Fan
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhaohui Zhong
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Renault C, Laborde C, Cossettini A, Selmi L, Widdershoven F, Lemay SG. Electrochemical characterization of individual oil micro-droplets by high-frequency nanocapacitor array imaging. Faraday Discuss 2021; 233:175-189. [PMID: 34904606 PMCID: PMC8981490 DOI: 10.1039/d1fd00044f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CMOS-based nanocapacitor arrays allow local probing of the impedance of an electrolyte in real time and with sub-micron spatial resolution. Here we report on the physico-chemical characterization of individual microdroplets of oil in a continuous water phase using this new tool. We monitor the sedimentation and wetting dynamics of individual droplets, estimate their volume and infer their composition based on their dielectric constant. From measurements before and after wetting of the surface, we also attempt to estimate the contact angle of individual micron-sized droplets. These measurements illustrate the capabilities and versatility of nanocapacitor array technology.
Collapse
Affiliation(s)
- Christophe Renault
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. .,Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, Route de Saclay, Palaiseau, 91128, France
| | - Cecilia Laborde
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Andrea Cossettini
- Integrated Systems Laboratory, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland.,DPIA, Università degli Studi di Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Luca Selmi
- DIEF, University of Modena and Reggio Emilia, Via Vivarelli 10, Modena, 41125, Italy
| | - Frans Widdershoven
- NXP Semiconductors, Technology & Operations/CTO office, High Tech Campus 46, Eindhoven 5656 AE, The Netherlands
| | - Serge G Lemay
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
9
|
Alberti S, Piccinini E, Ramirez PG, Longo GS, Ceolín M, Azzaroni O. Mesoporous thin films on graphene FETs: nanofiltered, amplified and extended field-effect sensing. NANOSCALE 2021; 13:19098-19108. [PMID: 34761778 DOI: 10.1039/d1nr03704h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ionic screening and the response of non-specific molecules are great challenges of biosensors based on field-effect transistors (FETs). In this work, we report the construction of graphene based transistors modified with mesoporous silica thin films (MTF-GFETs) and the unique (bio)sensing properties that arise from their synergy. The developed method allows the preparation of mesoporous thin films free of fissures, with an easily tunable thickness, and prepared on graphene-surfaces, preserving their electronic properties. The MTF-GFETs show good sensing capacity to small probes that diffuse inside the mesopores and reach the graphene semiconductor channel such as H+, OH-, dopamine and H2O2. Interestingly, MTF-GFETs display a greater electrostatic gating response in terms of amplitude and sensing range compared to bare-GFETs for charged macromolecules that infiltrate the pores. For example, for polyelectrolytes and proteins of low MW, the amplitude increases almost 100% and the sensing range extends more than one order of magnitude. Moreover, these devices show a size-excluded electrostatic gating response given by the pore size. These features are even displayed at physiological ionic strength. Finally, a developed thermodynamic model evidences that the amplification and extended field-effect properties arise from the decrease of free ions inside the MTFs due to the entropy loss of confining ions in the mesopores. Our results demonstrate that the synergistic coupling of mesoporous films with FETs leads to nanofiltered, amplified and extended field-effect sensing (NAExFES).
Collapse
Affiliation(s)
- Sebastián Alberti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Suc. 4, CC 16, La Plata, Argentina.
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Suc. 4, CC 16, La Plata, Argentina.
| | - Pedro G Ramirez
- Instituto de Matemática Aplicada San Luis (IMASL), UNSL-CONICET, San Luis, Argentina
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Suc. 4, CC 16, La Plata, Argentina.
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Suc. 4, CC 16, La Plata, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Suc. 4, CC 16, La Plata, Argentina.
| |
Collapse
|
10
|
Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2021; 20:915-962. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Somesh Banerjee
- Department of Veterinary Microbiology, Immunology Section, LUVAS, Hisar-125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| | | | - Parveen Goel
- Department of Veterinary Medicine, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yashpal S Malik
- Division of Standardisation, Indian Veterinary Research Institute Izatnagar - Bareilly (UP) - 243122, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, 250110, India
| |
Collapse
|
11
|
Kesler V, Murmann B, Soh HT. Going beyond the Debye Length: Overcoming Charge Screening Limitations in Next-Generation Bioelectronic Sensors. ACS NANO 2020; 14:16194-16201. [PMID: 33226776 PMCID: PMC7761593 DOI: 10.1021/acsnano.0c08622] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electronic biosensors are a natural fit for field-deployable diagnostic devices because they can be miniaturized, mass produced, and integrated with circuitry. Unfortunately, progress in the development of such platforms has been hindered by the fact that mobile ions present in biological samples screen charges from the target molecule, greatly reducing sensor sensitivity. Under physiological conditions, the thickness of the resulting electric double layer is less than 1 nm, and it has generally been assumed that electronic detection beyond this distance is virtually impossible. However, a few recently described sensor design strategies seem to defy this conventional wisdom, exploiting the physics of electrical double layers in ways that traditional models do not capture. In the first strategy, charge screening is decreased by constraining the space in which double layers can form. The second strategy uses external stimuli to prevent double layers from reaching equilibrium, thereby effectively reducing charge screening. In this Perspective, we describe these relatively new concepts and offer theoretical insights into mechanisms that may enable electronic biosensing beyond the Debye length. If these concepts can be further developed and translated into practical electronic biosensors, we foresee exciting opportunities for the next generation of diagnostic technologies.
Collapse
Affiliation(s)
- Vladimir Kesler
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Boris Murmann
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
12
|
Neubert TJ, Wehrhold M, Kaya NS, Balasubramanian K. Faradaic effects in electrochemically gated graphene sensors in the presence of redox active molecules. NANOTECHNOLOGY 2020; 31:405201. [PMID: 32485689 DOI: 10.1088/1361-6528/ab98bc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Field-effect transistors (FETs) based on graphene are promising devices for the direct sensing of a range of analytes in solution. We show here that the presence of redox active molecules in the analyte solution leads to the occurrence of heterogeneous electron transfer with graphene generating a Faradaic current (electron transfer) in a FET configuration resulting in shifts of the Dirac point. Such a shift occurs if the Faradaic current is significantly high, e.g. due to a large graphene area. Furthermore, the redox shift based on the Faradaic current, reminiscent of a doping-like effect, is found to be non-Nernstian and dependent on parameters known from electrode kinetics in potentiodynamic methods, such as the electrode area, the standard potential of the redox probes and the scan rate of the gate voltage modulation. This behavior clearly differentiates this effect from other transduction mechanisms based on electrostatic interactions or molecular charge transfer doping effects, which are usually behind a shift of the Dirac point. These observations suggest that large-area unmodified/pristine graphene in field-effect sensors behaves as a non-polarized electrode in liquid. Strategies for ensuring a polarized interface are discussed.
Collapse
Affiliation(s)
- Tilmann J Neubert
- School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof and Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany. Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Macedo LJA, Iost RM, Hassan A, Balasubramanian K, Crespilho FN. Bioelectronics and Interfaces Using Monolayer Graphene. ChemElectroChem 2018. [DOI: 10.1002/celc.201800934] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lucyano J. A. Macedo
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| | - Rodrigo M. Iost
- Department of Chemistry School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof; Humboldt-Universität zu Berlin; Berlin 10099 Germany
| | - Ayaz Hassan
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| | - Kannan Balasubramanian
- Department of Chemistry School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof; Humboldt-Universität zu Berlin; Berlin 10099 Germany
| | - Frank N. Crespilho
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| |
Collapse
|
14
|
Abstract
Wearable sensors are already impacting healthcare and medicine by enabling health monitoring outside of the clinic and prediction of health events. This paper reviews current and prospective wearable technologies and their progress toward clinical application. We describe technologies underlying common, commercially available wearable sensors and early-stage devices and outline research, when available, to support the use of these devices in healthcare. We cover applications in the following health areas: metabolic, cardiovascular and gastrointestinal monitoring; sleep, neurology, movement disorders and mental health; maternal, pre- and neo-natal care; and pulmonary health and environmental exposures. Finally, we discuss challenges associated with the adoption of wearable sensors in the current healthcare ecosystem and discuss areas for future research and development.
Collapse
Affiliation(s)
- Jessilyn Dunn
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Mobilize Center, Stanford University, Stanford, CA 94305 USA
| | - Ryan Runge
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Mobilize Center, Stanford University, Stanford, CA 94305 USA
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Lowe BM, Sun K, Zeimpekis I, Skylaris CK, Green NG. Field-effect sensors - from pH sensing to biosensing: sensitivity enhancement using streptavidin-biotin as a model system. Analyst 2018; 142:4173-4200. [PMID: 29072718 DOI: 10.1039/c7an00455a] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Field-Effect Transistor sensors (FET-sensors) have been receiving increasing attention for biomolecular sensing over the last two decades due to their potential for ultra-high sensitivity sensing, label-free operation, cost reduction and miniaturisation. Whilst the commercial application of FET-sensors in pH sensing has been realised, their commercial application in biomolecular sensing (termed BioFETs) is hindered by poor understanding of how to optimise device design for highly reproducible operation and high sensitivity. In part, these problems stem from the highly interdisciplinary nature of the problems encountered in this field, in which knowledge of biomolecular-binding kinetics, surface chemistry, electrical double layer physics and electrical engineering is required. In this work, a quantitative analysis and critical review has been performed comparing literature FET-sensor data for pH-sensing with data for sensing of biomolecular streptavidin binding to surface-bound biotin systems. The aim is to provide the first systematic, quantitative comparison of BioFET results for a single biomolecular analyte, specifically streptavidin, which is the most commonly used model protein in biosensing experiments, and often used as an initial proof-of-concept for new biosensor designs. This novel quantitative and comparative analysis of the surface potential behaviour of a range of devices demonstrated a strong contrast between the trends observed in pH-sensing and those in biomolecule-sensing. Potential explanations are discussed in detail and surface-chemistry optimisation is shown to be a vital component in sensitivity-enhancement. Factors which can influence the response, yet which have not always been fully appreciated, are explored and practical suggestions are provided on how to improve experimental design.
Collapse
Affiliation(s)
- Benjamin M Lowe
- Department of Electronics and Computer Science, Nano Research Group, University of Southampton, UK.
| | - Kai Sun
- Department of Electronics and Computer Science, Nano Research Group, University of Southampton, UK.
| | - Ioannis Zeimpekis
- Department of Electronics and Computer Science, Nano Research Group, University of Southampton, UK.
| | | | - Nicolas G Green
- Department of Electronics and Computer Science, Nano Research Group, University of Southampton, UK.
| |
Collapse
|
16
|
Pilarczyk K, Wlaźlak E, Przyczyna D, Blachecki A, Podborska A, Anathasiou V, Konkoli Z, Szaciłowski K. Molecules, semiconductors, light and information: Towards future sensing and computing paradigms. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Pham XH, Hahm E, Kim TH, Kim HM, Lee SH, Lee YS, Jeong DH, Jun BH. Enzyme-catalyzed Ag Growth on Au Nanoparticle-assembled Structure for Highly Sensitive Colorimetric Immunoassay. Sci Rep 2018; 8:6290. [PMID: 29674713 PMCID: PMC5908853 DOI: 10.1038/s41598-018-24664-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
We have developed a sensitive colorimetric immunoassay with broad dynamic range using enzyme-catalyzed Ag growth on gold nanoparticle (NP)-assembled silica (SiO2@Au@Ag). To reduce Ag+ ion content and promote Ag growth on the assembled Au NPs, alkaline phosphatase (AP)-based enzymatic amplification was incorporated, which considerably increased the colorimetric read-out. As a model study, sandwich enzyme-linked immunosorbent assay (ELISA) was used to quantify target IgG. The immune complexes capture the Ab-IgG-AP-labeled detection Ab and trigger the enzyme-catalyzed reaction to convert 2-phospho-L-ascorbic acid to ascorbic acid in the presence of the target IgG. Ascorbic acid reduced Ag+ to Ag, which formed Ag shells on the surface of SiO2@Au and enhanced the absorbance of the SiO2@Au@Ag solution. Plasmonic immunoassay showed a significant linear relationship between absorbance and the logarithm of IgG concentration in the range of ca. 7 × 10-13 M to 7 × 10-11 M. The detection limit was at 1.4 × 10-13 M, which is several hundred folds higher than that of any conventional colorimetric immunoassay. Thus, our novel approach of signal-amplification can be used for highly sensitive in vitro diagnostics and detection of target proteins with the naked eye without using any sophisticated instrument.
Collapse
Affiliation(s)
- Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Tae Han Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sang Hun Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
18
|
Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc Natl Acad Sci U S A 2016; 113:14633-14638. [PMID: 27930344 DOI: 10.1073/pnas.1625010114] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nanomaterial-based field-effect transistor (FET) sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although direct measurements in high-ionic-strength physiological solutions remain challenging due to the Debye screening effect. Recently, we demonstrated a general strategy to overcome this challenge by incorporating a biomolecule-permeable polymer layer on the surface of silicon nanowire FET sensors. The permeable polymer layer can increase the effective screening length immediately adjacent to the device surface and thereby enable real-time detection of biomolecules in high-ionic-strength solutions. Here, we describe studies demonstrating both the generality of this concept and application to specific protein detection using graphene FET sensors. Concentration-dependent measurements made with polyethylene glycol (PEG)-modified graphene devices exhibited real-time reversible detection of prostate specific antigen (PSA) from 1 to 1,000 nM in 100 mM phosphate buffer. In addition, comodification of graphene devices with PEG and DNA aptamers yielded specific irreversible binding and detection of PSA in pH 7.4 1x PBS solutions, whereas control experiments with proteins that do not bind to the aptamer showed smaller reversible signals. In addition, the active aptamer receptor of the modified graphene devices could be regenerated to yield multiuse selective PSA sensing under physiological conditions. The current work presents an important concept toward the application of nanomaterial-based FET sensors for biochemical sensing in physiological environments and thus could lead to powerful tools for basic research and healthcare.
Collapse
|