1
|
Li Y, Ye H, Wang S, Xu S, Lear MJ, Houk KN, Ma P, Li J. Light-Dependent Amide or Thioamide Formation of Acylsilanes with Amines using Elemental Sulfur. Chemistry 2025:e202404555. [PMID: 39797904 DOI: 10.1002/chem.202404555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
Due to the diverse chemical and physical properties of functional groups, mild and controllable ligation methods are often required to construct complex drugs and functional materials. To make diverse sets of products with tunable physicochemical properties, it is also useful to employ complimentary ligation methods that adopt the same starting materials. Here, we disclose the efficient and modular synthesis of amides or thioamides through the chemical ligation of acylsilanes with amines, simply by turning a light on or off. This method is fast, mild, high-yielding and displays excellent functional-group tolerance. The versatility of these reactions is highlighted by their ability to perform post-synthetic modifications on a variety of marketed medications, peptides, natural substances, and compounds with biological activity. In-depth computational and experimental studies clarified the photo-dependent umpolung of reactivity of acylsilanes, namely: photoexcitation leads to nucleophilic O-silyl carbenes that react with S8 to form O-silyl thionoesters and eventually amides. In contrast, acylsilanes react as electrophiles with amines thermally in the dark, with C→O silyl transfer, prior to reacting with S8 to form thioamides. These mechanistic details are expected to guide the development of similar coupling reactions.
Collapse
Affiliation(s)
- Yuanhang Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Haiting Ye
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shaohong Wang
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Silong Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Martin J Lear
- Department of Chemistry, School of Natural Sciences, University of Lincoln Brayford Pool, Lincoln, LN6 7TS, United Kingdom
| | - Kendall N Houk
- School of Chemistry Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Pengchen Ma
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Huang DL, Guo WC, Shi WW, Gao YP, Zhou YK, Wang LJ, Wang C, Tang S, Liu L, Zheng JS. Enhanced native chemical ligation by peptide conjugation in trifluoroacetic acid. SCIENCE ADVANCES 2024; 10:eado9413. [PMID: 39018393 PMCID: PMC466938 DOI: 10.1126/sciadv.ado9413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Chemical ligation of peptides is increasingly used to generate proteins not readily accessible by recombinant approaches. However, a robust method to ligate "difficult" peptides remains to be developed. Here, we report an enhanced native chemical ligation strategy mediated by peptide conjugation in trifluoroacetic acid (TFA). The conjugation between a carboxyl-terminal peptide thiosalicylaldehyde thioester and a 1,3-dithiol-containing peptide in TFA proceeds rapidly to form a thioacetal-linked intermediate, which is readily converted into the desired native amide bond product through simple postligation treatment. The effectiveness and practicality of the method was demonstrated by the successful synthesis of several challenging proteins, including the SARS-CoV-2 transmembrane Envelope (E) protein and nanobodies. Because of the ability of TFA to dissolve virtually all peptides and prevent the formation of unreactive peptide structures, the method is expected to open new opportunities for synthesizing all families of proteins, particularly those with aggregable or colloidal peptide segments.
Collapse
Affiliation(s)
- Dong-Liang Huang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wu-Chen Guo
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wei-Wei Shi
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yun-Pu Gao
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yong-Kang Zhou
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Long-Jie Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chen Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shan Tang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lei Liu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ji-Shen Zheng
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
4
|
Zheng Y, Zhang B, Shi WW, Deng X, Wang TY, Han D, Ren Y, Yang Z, Zhou YK, Kuang J, Wang ZW, Tang S, Zheng JS. An Enzyme-Cleavable Solubilizing-Tag Facilitates the Chemical Synthesis of Mirror-Image Proteins. Angew Chem Int Ed Engl 2024; 63:e202318897. [PMID: 38326236 DOI: 10.1002/anie.202318897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Mirror-image proteins (D-proteins) are useful in biomedical research for purposes such as mirror-image screening for D-peptide drug discovery, but the chemical synthesis of many D-proteins is often low yielding due to the poor solubility or aggregation of their constituent peptide segments. Here, we report a Lys-C protease-cleavable solubilizing tag and its use to synthesize difficult-to-obtain D-proteins. Our tag is easily installed onto multiple amino acids such as DLys, DSer, DThr, and/or the N-terminal amino acid of hydrophobic D-peptides, is impervious to various reaction conditions, such as peptide synthesis, ligation, desulfurization, and transition metal-mediated deprotection, and yet can be completely removed by Lys-C protease under denaturing conditions to give the desired D-protein. The efficacy and practicality of the new method were exemplified in the synthesis of two challenging D-proteins: D-enantiomers of programmed cell death protein 1 IgV domain and SARS-CoV-2 envelope protein, in high yield. This work demonstrates that the enzymatic cleavage of solubilizing tags under denaturing conditions is feasible, thus paving the way for the production of more D-proteins.
Collapse
Affiliation(s)
- Yupeng Zheng
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Baochang Zhang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei-Wei Shi
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Deng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tong-Yue Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dongyang Han
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuxiang Ren
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ziyi Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Kang Zhou
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jian Kuang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhi-Wen Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shan Tang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ji-Shen Zheng
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
5
|
Lander A, Kong Y, Jin Y, Wu C, Luk LYP. Deciphering the Synthetic and Refolding Strategy of a Cysteine-Rich Domain in the Tumor Necrosis Factor Receptor (TNF-R) for Racemic Crystallography Analysis and d-Peptide Ligand Discovery. ACS BIO & MED CHEM AU 2024; 4:68-76. [PMID: 38404743 PMCID: PMC10885103 DOI: 10.1021/acsbiomedchemau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024]
Abstract
Many cell-surface receptors are promising targets for chemical synthesis because of their critical roles in disease development. This synthetic approach enables investigations by racemic protein crystallography and ligand discovery by mirror-image methodologies. However, due to their complex nature, the chemical synthesis of a receptor can be a significant challenge. Here, we describe the chemical synthesis and folding of a central, cysteine-rich domain of the cell-surface receptor tumor necrosis factor 1 which is integral to binding of the cytokine TNF-α, namely, TNFR-1 CRD2. Racemic protein crystallography at 1.4 Å confirmed that the native binding conformation was preserved, and TNFR-1 CRD2 maintained its capacity to bind to TNF-α (KD ≈ 7 nM). Encouraged by this discovery, we carried out mirror-image phage display using the enantiomeric receptor mimic and identified a d-peptide ligand for TNFR-1 CRD2 (KD = 1 μM). This work demonstrated that cysteine-rich domains, including the central domains, can be chemically synthesized and used as mimics for investigations.
Collapse
Affiliation(s)
- Alexander
J. Lander
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Yifu Kong
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Yi Jin
- Manchester
Institute of Biotechnology, University of
Manchester, Manchester M1 7DN, U.K.
| | - Chuanliu Wu
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Louis Y. P. Luk
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
6
|
Saini S, Sharma A, Kaur N, Singh N. Solvent directed morphogenesis of a peptidic-benzimidazolium dipodal receptor: ratiometric detection and catalytic degradation of ochratoxin A. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1111-1122. [PMID: 38293839 DOI: 10.1039/d3ay02045b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ochratoxin A (OTA) is the most abundant and harmful toxin found in agriculture and processed food. The environment and human health are both harmed by this mycotoxin. As a result, in various scenarios, selective detection and biodegradation of ochratoxin A are essential. The current study reveals the morphogenesis of a peptidic-benzimidazolium dipodal receptor (SS4) and its application as a catalytic and sensing unit for the detection and degradation of OTA in an aqueous medium. Initially, a facile and scalable method was executed to synthesize SS4, and solvent-directed morphogenesis were examined under SEM analysis. Consequently, molecular recognition properties of self-assembled architectures were explored using UV-visible absorption, fluorescence spectroscopy, and atomic force microscopy (AFM). The designed probe showed a ratiometric response for OTA and served as a catalytic unit for the degradation of OTA at a short interval of 25 min. The biodegradation pathway for OTA was accomplished using LC-MS analysis. Furthermore, the reliability of the developed method was checked by determining the spiked concentrations of the OTA in cereals and wine samples. The results obtained are in good agreement with the % recovery and RSD values. The present work provides a robust, selective, and sensitive method of detection and degradation for OTA.
Collapse
Affiliation(s)
- Sanjeev Saini
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India.
- Department of Chemistry, School of Physical Sciences, DIT University, Dehradun 248009, India
| | - Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India.
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India.
| |
Collapse
|
7
|
Gao YP, Sun PF, Guo WC, Zhou YK, Zheng JS, Tang S. Chemical synthesis of a 28 kDa full-length PET degrading enzyme ICCG by the removable backbone modification strategy. Bioorg Chem 2024; 143:107047. [PMID: 38154387 DOI: 10.1016/j.bioorg.2023.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Chemical protein synthesis offers a powerful way to access otherwise-difficult-to-obtain proteins such as mirror-image proteins. Although a large number of proteins have been chemically synthesized to date, the acquisition to proteins containing hydrophobic peptide fragments has proven challenging. Here, we describe an approach that combines the removable backbone modification strategy and the peptide hydrazide-based native chemical ligation for the chemical synthesis of a 28 kDa full-length PET degrading enzyme IGGC (a higher depolymerization efficiency of variant leaf-branch compost cutinase (LCC)) containing hydrophobic peptide segments. The synthetic ICCG exhibits the enzymatic activity and will be useful in establishing the corresponding mirror-image version of ICCG.
Collapse
Affiliation(s)
- Yun-Pu Gao
- The First Affiliated Hospital of USTC, Centre for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Peng-Fei Sun
- The First Affiliated Hospital of USTC, Centre for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wu-Chen Guo
- The First Affiliated Hospital of USTC, Centre for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yong-Kang Zhou
- The First Affiliated Hospital of USTC, Centre for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ji-Shen Zheng
- The First Affiliated Hospital of USTC, Centre for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Shan Tang
- The First Affiliated Hospital of USTC, Centre for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
8
|
Wu H, Sun Z, Li X. N,O-Benzylidene Acetal Dipeptides (NBDs) Enable the Synthesis of Difficult Peptides via a Kinked Backbone Strategy. Angew Chem Int Ed Engl 2023; 62:e202310624. [PMID: 37694822 DOI: 10.1002/anie.202310624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
Proteins with highly hydrophobic regions or aggregation-prone sequences are typically difficult targets for chemical synthesis at the current stage, as obtaining such type of peptides via solid-phase peptide synthesis requires sophisticated operations. Herein, we report N,O-benzylidene acetal dipeptides (NBDs) as robust and effective building blocks to allow the direct synthesis of difficult peptides and proteins via a kinked backbone strategy. The effectiveness and easy accessibility of NBDs have been well demonstrated in our chemical syntheses of various challenging peptides and proteins, including chemokine, therapeutic hormones, histone, and glycosylated erythropoietin.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
9
|
Ma W, Liu H, Li X. Chemical Synthesis of Peptides and Proteins Bearing Base-Labile Post-Translational Modifications: Evolution of the Methods in Four Decades. Chembiochem 2023; 24:e202300348. [PMID: 37380612 DOI: 10.1002/cbic.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
The S-palmitoylation on Cys residue and O-acetylation on Ser/Thr residues are two types of base-labile post-translational modifications (PTMs) in cells. The lability of these PTMs to bases and nucleophiles makes the peptides/proteins bearing S-palmitoyl or O-acetyl groups challenging synthetic targets, which cannot be prepared via the standard Fmoc-SPPS and native chemical ligation. In this review, we summarized the efforts towards their preparation in the past 40 years, with the focus on the evolution of synthetic methods.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
10
|
Zhang B, Zheng Y, Chu G, Deng X, Wang T, Shi W, Zhou Y, Tang S, Zheng JS, Liu L. Backbone-Installed Split Intein-Assisted Ligation for the Chemical Synthesis of Mirror-Image Proteins. Angew Chem Int Ed Engl 2023; 62:e202306270. [PMID: 37357888 DOI: 10.1002/anie.202306270] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Membrane-associated D-proteins are an important class of synthetic molecules needed for D-peptide drug discovery, but their chemical synthesis using canonical ligation methods such as native chemical ligation is often hampered by the poor solubility of their constituent peptide segments. Here, we describe a Backbone-Installed Split Intein-Assisted Ligation (BISIAL) method for the synthesis of these proteins, wherein the native L-forms of the N- and C-intein fragments of the unique consensus-fast (Cfa) (i.e. L-CfaN and L-CfaC ) are separately installed onto the two D-peptide segments to be ligated via a removable backbone modification. The ligation proceeds smoothly at micromolar (μM) concentrations under strongly chaotropic conditions (8.0 M urea), and the subsequent removal of the backbone modification groups affords the desired D-proteins without leaving any "ligation scar" on the products. The effectiveness and practicality of the BISIAL method are exemplified by the synthesis of the D-enantiomers of the extracellular domains of T cell immunoglobulin and ITIM domain (TIGIT) and tropomyosin receptor kinase C (TrkC). The BISIAL method further expands the chemical protein synthesis ligation toolkit and provides practical access to challenging D-protein targets.
Collapse
Affiliation(s)
- Baochang Zhang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yupeng Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guochao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Deng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tongyue Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weiwei Shi
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yongkang Zhou
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shan Tang
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ji-Shen Zheng
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Wang X, Xu S, Tang Y, Lear MJ, He W, Li J. Nitroalkanes as thioacyl equivalents to access thioamides and thiopeptides. Nat Commun 2023; 14:4626. [PMID: 37532721 PMCID: PMC10397191 DOI: 10.1038/s41467-023-40334-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Thioamides are an important, but a largely underexplored class of amide bioisostere in peptides. Replacement of oxoamide units with thioamides in peptide therapeutics is a valuable tactic to improve biological activity and resistance to enzymatic hydrolysis. This tactic, however, has been hampered by insufficient methods to introduce thioamide bonds into peptide or protein backbones in a site-specific and stereo-retentive fashion. In this work, we developed an efficient and mild thioacylation method to react nitroalkanes with amines directly in the presence of elemental sulfur and sodium sulfide to form a diverse range of thioamides in high yields. Notably, this convenient method can be employed for the controlled thioamide coupling of multifunctionalized peptides without epimerization of stereocenters, including the late stage thioacylation of advanced compounds of biological and medicinal interest. Experimental interrogation of postulated mechanisms currently supports the intermediacy of thioacyl species.
Collapse
Affiliation(s)
- Xiaonan Wang
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Silong Xu
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Yuhai Tang
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Martin J Lear
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Wangxiao He
- The First Affiliated Hospital of Xi'an Jiao Tong University, 710061, Xi'an, China
| | - Jing Li
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, 710049, Xi'an, China.
| |
Collapse
|
12
|
Harel O, Jbara M. Chemical Synthesis of Bioactive Proteins. Angew Chem Int Ed Engl 2023; 62:e202217716. [PMID: 36661212 DOI: 10.1002/anie.202217716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
Nature has developed a plethora of protein machinery to operate and maintain nearly every task of cellular life. These processes are tightly regulated via post-expression modifications-transformations that modulate intracellular protein synthesis, folding, and activation. Methods to prepare homogeneously and precisely modified proteins are essential to probe their function and design new bioactive modalities. Synthetic chemistry has contributed remarkably to protein science by allowing the preparation of novel biomacromolecules that are often challenging or impractical to prepare via common biological means. The ability to chemically build and precisely modify proteins has enabled the production of new molecules with novel physicochemical properties and programmed activity for biomedical research, diagnostic, and therapeutic applications. This minireview summarizes recent developments in chemical protein synthesis to produce bioactive proteins, with emphasis on novel analogs with promising in vitro and in vivo activity.
Collapse
Affiliation(s)
- Omer Harel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
13
|
Wu H, Tan Y, Ngai WL, Li X. Total synthesis of interleukin-2 via a tunable backbone modification strategy. Chem Sci 2023; 14:1582-1589. [PMID: 36794182 PMCID: PMC9906654 DOI: 10.1039/d2sc05660g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 01/08/2023] Open
Abstract
Chemical synthesis of hydrophobic proteins presents a formidable task as they are often difficultly achieved via peptide synthesis, purification, and peptide ligation. Thus, peptide solubilizing strategies are needed to integrate with peptide ligation to achieve protein total synthesis. Herein, we report a tunable backbone modification strategy, taking advantage of the tunable stability of the Cys/Pen ligation intermediate, which allows for readily introducing a solubilizing tag for both peptide purification and ligation processes. The effectiveness of this strategy was demonstrated by the chemical synthesis of interleukin-2.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Wai Lok Ngai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| |
Collapse
|
14
|
Wu H, Wei T, Ngai WL, Zhou H, Li X. Ligation Embedding Aggregation Disruptor Strategy Enables the Chemical Synthesis of PD-1 Immunoglobulin and Extracellular Domains. J Am Chem Soc 2022; 144:14748-14757. [PMID: 35918891 DOI: 10.1021/jacs.2c05350] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Chemical synthesis of proteins with aggregable or colloidal peptide segments presents a formidable task, as such peptides prove to be difficult for both solid-phase peptide synthesis and peptide ligation. To address this issue, we have developed ligation embedding aggregation disruptor (LEAD) as an effective strategy for the chemical synthesis of difficult-to-obtain proteins. The N,O/S-benzylidene acetals generated from Ser/Thr ligation and Cys/Pen ligation are found to effectively disrupt peptide aggregation, and they can be carried for sequential ligations toward protein synthesis. The effectiveness and generality of this strategy have been demonstrated with total syntheses of programmed cell death protein 1 immunoglobulin like V-type domain and extracellular domain.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai Lok Ngai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
15
|
Harel O, Jbara M. Posttranslational Chemical Mutagenesis Methods to Insert Posttranslational Modifications into Recombinant Proteins. Molecules 2022; 27:4389. [PMID: 35889261 PMCID: PMC9316245 DOI: 10.3390/molecules27144389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Posttranslational modifications (PTMs) dramatically expand the functional diversity of the proteome. The precise addition and removal of PTMs appears to modulate protein structure and function and control key regulatory processes in living systems. Deciphering how particular PTMs affect protein activity is a current frontier in biology and medicine. The large number of PTMs which can appear in several distinct positions, states, and combinations makes preparing such complex analogs using conventional biological and chemical tools challenging. Strategies to access homogeneous and precisely modified proteins with desired PTMs at selected sites and in feasible quantities are critical to interpreting their molecular code. Here, we summarize recent advances in posttranslational chemical mutagenesis and late-stage functionalization chemistry to transfer novel PTM mimicry into recombinant proteins with emphasis on novel transformations.
Collapse
Affiliation(s)
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
16
|
Liu J, Wei T, Tan Y, Liu H, Li X. Enabling chemical protein (semi)synthesis via reducible solubilizing tags (RSTs). Chem Sci 2022; 13:1367-1374. [PMID: 35222920 PMCID: PMC8809390 DOI: 10.1039/d1sc06387a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
The reducible solubilizing tag strategy served as a simple and powerful method for the chemical synthesis and semi-synthesis via Ser/Thr ligation and Cys/Pen ligation of extensive self-assembly peptides, membrane proteins with poor solubility.
Collapse
Affiliation(s)
- Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Tongyao Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Heng Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Yin H, Zhou Q, Zheng M, Wang S, Wang P. General Solution to the Preparation of β-Thiolated/Selenolated Amino Acids Via Visible Light Catalyzed Asymmetric Giese Reaction. Methods Mol Biol 2022; 2530:109-123. [PMID: 35761045 DOI: 10.1007/978-1-0716-2489-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thiolated/selenolated amino acids are irreplaceable despite their rare abundance in proteins. They play critical roles in regulating the conformation and function of proteins and peptide design as well as bioconjugation. Furthermore, β-thiolated/selenolated amino acids are important motifs in native chemical ligation-dechalcogenation strategy for protein synthesis. However, a universal method to access enantiopure β-thiolated/selenolated amino acids has not been reported. Herein, we developed a practical strategy for the preparation of a variety of enantiopure β-thiolated/selenolated amino acids via photoredox-catalyzed Giese reaction.
Collapse
Affiliation(s)
- Hongli Yin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjie Zheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Huang DL, Li Y, Zheng JS. Removable Backbone Modification (RBM) Strategy for the Chemical Synthesis of Hydrophobic Peptides/Proteins. Methods Mol Biol 2022; 2530:241-256. [PMID: 35761053 DOI: 10.1007/978-1-0716-2489-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical synthesis can provide hydrophobic proteins with natural or man-made modifications (e.g. S-palmitoylation, site-specific isotope labeling and mirror-image proteins) that are difficult to obtain through the recombinant expression technology. The difficulty of chemical synthesis of hydrophobic proteins stems from the hydrophobic nature. Removable backbone modificaiton (RBM) strategy has been developed for solubilizing the hydrophobic peptides/proteins. Here we take the chemical synthesis of a S-palmitoylated peptide as an example to describe the detailed procedure of RBM strategy. Three critical steps of this protocol are: (1) installation of Lys6-tagged RBM groups into the peptides by Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis, (2) chemical ligation of the peptides, and (3) removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to give the target peptide.
Collapse
Affiliation(s)
- Dong-Liang Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Ji-Shen Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
19
|
Zhang X, Yang J, Zhao J. Ynamide-Mediated Synthetic Approach to Thioamide-Substituted Peptides. Methods Mol Biol 2022; 2530:69-80. [PMID: 35761043 DOI: 10.1007/978-1-0716-2489-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A novel synthetic approach to thioamide-substituted peptides is reported. It provides a practical tool for the chemical biology study of peptides and proteins by replacing a carbonyl oxygen atom of an amide bond by an sp2-hybridized sulfur atom to precisely introduce a thioamide bond Ψ[CS-NH] into a peptide backbone. The α-thioacyloxyenamide intermediates, originating from ynamide coupling reagent and proteinogenic amino monothioacids, are proved to be novel effective thioacylating reagents in both the solution and solid phase peptide syntheses. Herein, we describe the detailed synthesis protocol for site-specifically incorporating a thioamide bond at 19 of 20 proteinogenic amino acid residues (except for His) of a peptide backbone in a racemization/epimerization-free manner.
Collapse
Affiliation(s)
- Xue Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jinhua Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junfeng Zhao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Garst EH, Das T, Hang HC. Chemical approaches for investigating site-specific protein S-fatty acylation. Curr Opin Chem Biol 2021; 65:109-117. [PMID: 34333222 PMCID: PMC8671186 DOI: 10.1016/j.cbpa.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Protein S-fatty acylation or S-palmitoylation is a reversible and regulated lipid post-translational modification (PTM) in eukaryotes. Loss-of-function mutagenesis studies have suggested important roles for protein S-fatty acylation in many fundamental biological pathways in development, neurobiology, and immunity that are also associated with human diseases. However, the hydrophobicity and reversibility of this PTM have made site-specific gain-of-function studies more challenging to investigate. In this review, we summarize recent chemical biology approaches and methods that have enabled site-specific gain-of-function studies of protein S-fatty acylation and the investigation of the mechanisms and significance of this PTM in eukaryotic biology.
Collapse
Affiliation(s)
- Emma H Garst
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States; Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
| | - Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States; Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States; Departments of Immunology and Microbiology and Chemistry, Scripps Research, La Jolla, CA 92037, United States.
| |
Collapse
|
21
|
Vogl DP, Conibear AC, Becker CFW. Segmental and site-specific isotope labelling strategies for structural analysis of posttranslationally modified proteins. RSC Chem Biol 2021; 2:1441-1461. [PMID: 34704048 PMCID: PMC8496066 DOI: 10.1039/d1cb00045d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Posttranslational modifications can alter protein structures, functions and locations, and are important cellular regulatory and signalling mechanisms. Spectroscopic techniques such as nuclear magnetic resonance, infrared and Raman spectroscopy, as well as small-angle scattering, can provide insights into the structural and dynamic effects of protein posttranslational modifications and their impact on interactions with binding partners. However, heterogeneity of modified proteins from natural sources and spectral complexity often hinder analyses, especially for large proteins and macromolecular assemblies. Selective labelling of proteins with stable isotopes can greatly simplify spectra, as one can focus on labelled residues or segments of interest. Employing chemical biology tools for modifying and isotopically labelling proteins with atomic precision provides access to unique protein samples for structural biology and spectroscopy. Here, we review site-specific and segmental isotope labelling methods that are employed in combination with chemical and enzymatic tools to access posttranslationally modified proteins. We discuss illustrative examples in which these methods have been used to facilitate spectroscopic studies of posttranslationally modified proteins, providing new insights into biology.
Collapse
Affiliation(s)
- Dominik P Vogl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| | - Anne C Conibear
- The University of Queensland, School of Biomedical Sciences St Lucia Brisbane 4072 QLD Australia
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| |
Collapse
|
22
|
Cui T, Chen J, Zhao R, Guo Y, Tang J, Li Y, Li Y, Bierer D, Liu L. Use of a Removable Backbone Modification Strategy to Prevent Aspartimide Formation in the Synthesis of Asp Lactam Cyclic Peptides
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Cui
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Junyou Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Rui Zhao
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanyan Guo
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Jiahui Tang
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Yulei Li
- Tsinghua‐Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yi‐Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, 42096 Wuppertal Germany
| | - Lei Liu
- Tsinghua‐Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
23
|
Reusche V, Thomas F. Effect of Methionine Sulfoxide on the Synthesis and Purification of Aggregation-Prone Peptides. Chembiochem 2021; 22:1779-1783. [PMID: 33493390 PMCID: PMC8252385 DOI: 10.1002/cbic.202000865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Indexed: 12/14/2022]
Abstract
A two-step synthesis for methionine-containing hydrophobic and/or aggregation-prone peptides is presented that takes advantage of the reversibility of methionine oxidation. The use of polar methionine sulfoxide as a building block in solid-phase peptide synthesis improves the synthesis quality and yields the crude peptide, with significantly improved solubility compared to the reduced species. This facilitates the otherwise often laborious peptide purification by high-performance liquid chromatography. The subsequent reduction proceeds quantitatively. This approach has been optimised with the methionine-rich Tar-DNA-binding protein 43 (307-347), but is also more generally applicable, as demonstrated by the syntheses of human calcitonin and two aggregation-prone peptides from the human prion protein.
Collapse
Affiliation(s)
- Vanessa Reusche
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsIm Neuenheimer Feld 22569120HeidelbergGermany
- Institute of Organic and Biomolecular ChemistryUniversity of GöttingenTammannstrasse 237077GöttingenGermany
| | - Franziska Thomas
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsIm Neuenheimer Feld 22569120HeidelbergGermany
- Institute of Organic and Biomolecular ChemistryUniversity of GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
24
|
Sato K, Tanaka S, Wang J, Ishikawa K, Tsuda S, Narumi T, Yoshiya T, Mase N. Late-Stage Solubilization of Poorly Soluble Peptides Using Hydrazide Chemistry. Org Lett 2021; 23:1653-1658. [PMID: 33570416 DOI: 10.1021/acs.orglett.1c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel late-stage solubilization of peptides using hydrazides is described. A solubilizing tag was attached through a selective N-alkylation at a hydrazide moiety with the aid of a 2-picoline-borane complex in 50% acetic acid-hexafluoro-2-propanol. The tag, which tolerates ligation and desulfurization conditions, can be detached by a Cu-mediated selective oxidative hydrolysis of the N-alkyl hydrazide. This new method was validated through the synthesis of HIV-1 protease.
Collapse
Affiliation(s)
- Kohei Sato
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Shoko Tanaka
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Junzhen Wang
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kenya Ishikawa
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Shugo Tsuda
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tetsuo Narumi
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Taku Yoshiya
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Nobuyuki Mase
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
25
|
Laps S, Satish G, Brik A. Harnessing the power of transition metals in solid-phase peptide synthesis and key steps in the (semi)synthesis of proteins. Chem Soc Rev 2021; 50:2367-2387. [PMID: 33432943 DOI: 10.1039/d0cs01156h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptides and proteins can be either synthesized using solid-phase peptide synthesis (SPPS) or by applying a combination of SPPS and ligation approaches to address fundamental questions related to human health and disease, among others. The demand for their production either by chemical or biological methods continues to raise significant interests from the synthetic community. In this context, transition metals such as Pd, Ag, Hg, Tl, Au, Zn, Ni, and Cu have also contributed to the field of peptide and protein synthesis such as in peptide conjugation, extending native chemical ligation (NCL), and for regioselective disulfide bonds formation. In this review, we highlight, summarize, and evaluate the use of various transition metals in the chemical synthesis of peptides and proteins with emphasis on recent developments in this exciting research area.
Collapse
Affiliation(s)
- Shay Laps
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| |
Collapse
|
26
|
Abstract
Although the majority of proteins used for biomedical research are produced using living systems such as bacteria, biological means for producing proteins can be advantageously complemented by protein semisynthesis or total chemical synthesis. The latter approach is particularly useful when the proteins to be produced are toxic for the expression system or show unusual features that cannot be easily programmed in living organisms. The aim of this review is to provide a wide overview of the use of chemical protein synthesis in medicinal chemistry with a special focus on the production of post-translationally modified proteins and backbone cyclized proteins.
Collapse
Affiliation(s)
- Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, F-59000 Lille, France.,Centrale Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza gare, Morocco
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
27
|
Tan Y, Wu H, Wei T, Li X. Chemical Protein Synthesis: Advances, Challenges, and Outlooks. J Am Chem Soc 2020; 142:20288-20298. [PMID: 33211477 DOI: 10.1021/jacs.0c09664] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Contemporary chemical protein synthesis has been dramatically advanced over the past few decades, which has enabled chemists to reach the landscape of synthetic biomacromolecules. Chemical synthesis can produce synthetic proteins with precisely controlled structures which are difficult or impossible to obtain via gene expression systems. Herein, we summarize the key enabling ligation technologies, major strategic developments, and some selected representative applications of synthetic proteins and provide an outlook for future development.
Collapse
Affiliation(s)
- Yi Tan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| |
Collapse
|
28
|
Strategies and open questions in solid-phase protein chemical synthesis. Curr Opin Chem Biol 2020; 58:1-9. [DOI: 10.1016/j.cbpa.2020.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
|
29
|
Shapenova DS, Shiryaev AA, Bolte M, Kukułka M, Szczepanik DW, Hooper J, Babashkina MG, Mahmoudi G, Mitoraj MP, Safin DA. Resonance Assisted Hydrogen Bonding Phenomenon Unveiled through Both Experiments and Theory: A New Family of Ethyl N-Salicylideneglycinate Dyes. Chemistry 2020; 26:12987-12995. [PMID: 32428288 DOI: 10.1002/chem.202001551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Indexed: 11/06/2022]
Abstract
Extensive experimental and theoretical investigations are reported on the nature of resonance-assisted hydrogen bonding phenomenon (RAHB) and its influence on photophysical properties of the newly designed dyes differing in donor-acceptor properties, namely ethyl N-salicylideneglycinate (1), ethyl N-(5-methoxysalicylidene)glycinate (2), ethyl N-(5-bromosalicylidene)glycinate (3) and ethyl N-(5-nitrosalicylidene)glycinate (4). All compounds are thermochromic in the solid state and they contain a typical intramolecular O-H⋅⋅⋅N hydrogen bond formed between the hydroxyl hydrogen atom and the imine nitrogen atom, yielding the enol form in the solid state. It is unveiled, that the magnitude of RAHB effect fine tunes the strength of the O-H⋅⋅⋅N bonding and accordingly the relative populations of the enol, cis-keto and trans-keto forms leading to variation of the photophysical properties of 1-4. It is determined, that the electron-withdrawing NO2 in 4 amplifies the most RAHB effect causing the breaking of the O-H⋅⋅⋅N hydrogen bond and accordingly formation of the dominant cis-keto isomer in both the solid state and EtOH. To this end, the UV/Vis spectra of 1-3 in EtOH revealed the exclusive presence of the enol form, while the prevalent contribution of the cis-keto form was found for 4. Furthermore, only compound 4 is emissive in the solid state in ambient condition due to dual emission arising from the cis-keto* and trans-keto* forms, while 2 was found to be highly emissive in EtOH. It is revealed qualitatively and quantitatively, based on the ETS-NOCV charge and energy decomposition scheme and the EDDB population-based method, that RAHB is strongly a non-local phenomenon based on electrons pumping or sucking through both the π- and σ-channels, which accordingly exerts chemical bonding changes at both the phenyl ring and predominantly a distant O-H⋅⋅⋅N area.
Collapse
Affiliation(s)
- Dinara S Shapenova
- University of Tyumen, Volodarskogo Str.6, 625003, Tyumen, Russian Federation
| | - Alexey A Shiryaev
- University of Tyumen, Volodarskogo Str.6, 625003, Tyumen, Russian Federation.,West-Siberian Interregional Scientific and Educational Center, Russian Federation.,Innovation Center for Chemical and Pharmaceutical Technologies, Ural Federal University named after the First President of Russia B.N. Eltsin, Mira Str. 19, 620002, Ekaterinburg, Russian Federation
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität, 60323, Frankfurt am Main, Germany
| | - Mercedes Kukułka
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Dariusz W Szczepanik
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - James Hooper
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Maria G Babashkina
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place L. Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Ghodrat Mahmoudi
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran
| | - Mariusz P Mitoraj
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Damir A Safin
- University of Tyumen, Volodarskogo Str.6, 625003, Tyumen, Russian Federation.,West-Siberian Interregional Scientific and Educational Center, Russian Federation.,Innovation Center for Chemical and Pharmaceutical Technologies, Ural Federal University named after the First President of Russia B.N. Eltsin, Mira Str. 19, 620002, Ekaterinburg, Russian Federation
| |
Collapse
|
30
|
Li Y, Cao X, Tian C, Zheng JS. Chemical protein synthesis-assisted high-throughput screening strategies for d-peptides in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Kar A, Mannuthodikayil J, Singh S, Biswas A, Dubey P, Das A, Mandal K. Efficient Chemical Protein Synthesis using Fmoc-Masked N-Terminal Cysteine in Peptide Thioester Segments. Angew Chem Int Ed Engl 2020; 59:14796-14801. [PMID: 32333711 PMCID: PMC7891605 DOI: 10.1002/anie.202000491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Indexed: 01/23/2023]
Abstract
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one-pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N-masking group of the N-terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o-aminoanilide. The ready availability of Fmoc-Cys(Trt)-OH, which is routinely used in Fmoc solid-phase peptide synthesis, where the Fmoc group is pre-installed on cysteine residue, minimizes additional steps required for the temporary protection of the N-terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.
Collapse
Affiliation(s)
- Abhisek Kar
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| | - Jamsad Mannuthodikayil
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| | - Sameer Singh
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| | - Anamika Biswas
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| | - Puneet Dubey
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| | - Amit Das
- Protein Crystallography Section, Radiation Biology and Health Sciences DivisionBhabha Atomic Research CentreTrombayMumbai400085India
- Homi Bhabha National InstituteAnushaktinagarMumbai400094India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| |
Collapse
|
32
|
Qi Y, Qu Q, Bierer D, Liu L. A Diaminodiacid (DADA) Strategy for the Development of Disulfide Surrogate Peptides. Chem Asian J 2020; 15:2793-2802. [DOI: 10.1002/asia.202000609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yun‐Kun Qi
- Department of Medicinal Chemistry School of Pharmacy Qingdao University Qingdao 266021 China
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Donald Bierer
- Bayer AG Department of Medicinal Chemistry Aprather Weg 18A 42096 Wuppertal Germany
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
33
|
Yin H, Zheng M, Chen H, Wang S, Zhou Q, Zhang Q, Wang P. Stereoselective and Divergent Construction of β-Thiolated/Selenolated Amino Acids via Photoredox-Catalyzed Asymmetric Giese Reaction. J Am Chem Soc 2020; 142:14201-14209. [DOI: 10.1021/jacs.0c04994] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hongli Yin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Mengjie Zheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Huan Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Qiang Zhang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
34
|
|
35
|
Kar A, Mannuthodikayil J, Singh S, Biswas A, Dubey P, Das A, Mandal K. Efficient Chemical Protein Synthesis using Fmoc‐Masked N‐Terminal Cysteine in Peptide Thioester Segments. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abhisek Kar
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| | - Jamsad Mannuthodikayil
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| | - Sameer Singh
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| | - Anamika Biswas
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| | - Puneet Dubey
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| | - Amit Das
- Protein Crystallography Section, Radiation Biology and Health Sciences Division Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| |
Collapse
|
36
|
Li H, Chao J, Hasan J, Tian G, Jin Y, Zhang Z, Qin C. Synthesis of Tri(4-formylphenyl) Phosphonate Derivatives as Recyclable Triple-Equivalent Supports of Peptide Synthesis. J Org Chem 2020; 85:6271-6280. [PMID: 32320241 DOI: 10.1021/acs.joc.9b03023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To seek the novel application of organophosphorus compounds, the designed tri(4-formylphenyl) phosphonate (TFP) derivatives were successfully synthesized herein, which were used as C-terminal protecting groups of amino acid or greener triple-equivalent supports in liquid-phase peptide synthesis (LPPS). Through the support-aided precipitation effect of TFP derivatives, the peptide intermediates during peptide synthesis were separated and collected via rapid precipitation and facile filtration without chromatographic purification. Furthermore, the TFP derivative support can be directly recycled for reuse without further regeneration after being sheared from the target peptide.
Collapse
Affiliation(s)
- Haidi Li
- Shaanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Jie Chao
- Shaanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Jaafar Hasan
- Shaanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Guang Tian
- Shaanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Yatao Jin
- Shaanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Zixin Zhang
- Shaanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Chuanguang Qin
- Shaanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| |
Collapse
|
37
|
Jbara M, Eid E, Brik A. Gold(I)-Mediated Decaging or Cleavage of Propargylated Peptide Bond in Aqueous Conditions for Protein Synthesis and Manipulation. J Am Chem Soc 2020; 142:8203-8210. [PMID: 32290655 DOI: 10.1021/jacs.9b13216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemists have been interested in the N-alkylation of a peptide bond because such a modification alters the conformation of the amide bond, interferes with hydrogen bond formation, and changes other properties of the peptide (e.g., solubility). This modification also opens the door for attaching functional groups for various applications. Nonetheless, the irreversibility of some of these modifications and the harsh conditions required for their removal currently limits the wide utility of this approach. Herein, we report applying a propargyl group for peptide bond modification at diverse junctions, which can be removed under mild and aqueous conditions via treatment with gold(I). Considering the straightforward conditions for both the installation and removal of this group, the propargyl group provides access to the benefits of backbone N-alkylation, while preserving the ability for on-demand depropargylation and full recovery of the native amide bond. This reversible modification was found to improve solid-phase peptide synthesis as demonstrated in the chemical synthesis of NEDD8 protein, without the use of special dipeptide analogues. Also, the reported approach was found to be useful in decaging a broad range of propargyl-based protecting groups used in chemical protein synthesis. Remarkably, reversing the order of the two residues in the propargylation site resulted in rapid amide bond cleavage, which extends the applicability of this approach beyond a removable backbone modification to a cleavable linker. The easy attach/detach of this functionality was also examined in loading and releasing of biotinylated peptides from streptavidin beads.
Collapse
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Emad Eid
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
38
|
Huang DL, Li Y, Liang J, Yu L, Xue M, Cao XX, Xiao B, Tian CL, Liu L, Zheng JS. The New Salicylaldehyde S,S-Propanedithioacetal Ester Enables N-to-C Sequential Native Chemical Ligation and Ser/Thr Ligation for Chemical Protein Synthesis. J Am Chem Soc 2020; 142:8790-8799. [DOI: 10.1021/jacs.0c01561] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong-Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Ying Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jun Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Min Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiu-Xiu Cao
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Lin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ji-Shen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
39
|
Luo Y, Jiang C, Yu L, Yang A. Chemical Biology of Autophagy-Related Proteins With Posttranslational Modifications: From Chemical Synthesis to Biological Applications. Front Chem 2020; 8:233. [PMID: 32309274 PMCID: PMC7145982 DOI: 10.3389/fchem.2020.00233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/11/2020] [Indexed: 02/03/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved lysosomal degradation pathway in all eukaryotic cells, which is critical for maintaining cell homeostasis. A series of autophagy-related (ATG) proteins are involved in the regulation of autophagy. The activities of ATG proteins are mainly modulated by posttranslational modifications (PTMs), such as phosphorylation, lipidation, acetylation, ubiquitination, and sumoylation. To tackle molecular mechanisms of autophagy, more and more researches are focusing on the roles of PTMs in regulation of the activity of ATG proteins and autophagy process. The protein ligation techniques have emerged as powerful tools for the chemical engineering of proteins with PTMs, and provided effective methods to elucidate the molecular mechanism and physiological significance of PTMs. Recently, several ATG proteins with PTM were prepared by protein ligation techniques such as native chemical ligation (NCL), expressed protein ligation (EPL), peptide hydrazide-based NCL, and Sortase A-mediated ligation (SML). More importantly, the synthesized ATG proteins are successfully used to probe the mechanism of autophagy. In this review, we summarize protein ligation techniques for the preparation of ATG proteins with PTMs. In addition, we highlight the biological applications of synthetic ATG proteins to probe the autophagy mechanism.
Collapse
Affiliation(s)
- Yu Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
40
|
Huang D, Montigny C, Zheng Y, Beswick V, Li Y, Cao X, Barbot T, Jaxel C, Liang J, Xue M, Tian C, Jamin N, Zheng J. Chemical Synthesis of Native S‐Palmitoylated Membrane Proteins through Removable‐Backbone‐Modification‐Assisted Ser/Thr Ligation. Angew Chem Int Ed Engl 2020; 59:5178-5184. [DOI: 10.1002/anie.201914836] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Dong‐Liang Huang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Yong Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
- Department of PhysicsEvry-Val-d'Essonne University 91025 Evry France
| | - Ying Li
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Xiu‐Xiu Cao
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Jun Liang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Min Xue
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Ji‐Shen Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| |
Collapse
|
41
|
Mueller LK, Baumruck AC, Zhdanova H, Tietze AA. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Front Bioeng Biotechnol 2020; 8:162. [PMID: 32195241 PMCID: PMC7064641 DOI: 10.3389/fbioe.2020.00162] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Solid phase peptide synthesis (SPPS) provides the possibility to chemically synthesize peptides and proteins. Applying the method on hydrophilic structures is usually without major drawbacks but faces extreme complications when it comes to "difficult sequences." These includes the vitally important, ubiquitously present and structurally demanding membrane proteins and their functional parts, such as ion channels, G-protein receptors, and other pore-forming structures. Standard synthetic and ligation protocols are not enough for a successful synthesis of these challenging sequences. In this review we highlight, summarize and evaluate the possibilities for synthetic production of "difficult sequences" by SPPS, native chemical ligation (NCL) and follow-up protocols.
Collapse
Affiliation(s)
- Lena K. Mueller
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Andreas C. Baumruck
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Hanna Zhdanova
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alesia A. Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
42
|
Huang D, Montigny C, Zheng Y, Beswick V, Li Y, Cao X, Barbot T, Jaxel C, Liang J, Xue M, Tian C, Jamin N, Zheng J. Chemical Synthesis of Native S‐Palmitoylated Membrane Proteins through Removable‐Backbone‐Modification‐Assisted Ser/Thr Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dong‐Liang Huang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Yong Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
- Department of PhysicsEvry-Val-d'Essonne University 91025 Evry France
| | - Ying Li
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Xiu‐Xiu Cao
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Jun Liang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Min Xue
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Ji‐Shen Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| |
Collapse
|
43
|
Fulcher JM, Petersen ME, Giesler RJ, Cruz ZS, Eckert DM, Francis JN, Kawamoto EM, Jacobsen MT, Kay MS. Chemical synthesis of Shiga toxin subunit B using a next-generation traceless "helping hand" solubilizing tag. Org Biomol Chem 2019; 17:10237-10244. [PMID: 31793605 DOI: 10.1039/c9ob02012h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The application of solid-phase peptide synthesis and native chemical ligation in chemical protein synthesis (CPS) has enabled access to synthetic proteins that cannot be produced recombinantly, such as site-specific post-translationally modified or mirror-image proteins (D-proteins). However, CPS is commonly hampered by aggregation and insolubility of peptide segments and assembly intermediates. Installation of a solubilizing tag consisting of basic Lys or Arg amino acids can overcome these issues. Through the introduction of a traceless cleavable linker, the solubilizing tag can be selectively removed to generate native peptide. Here we describe the synthesis of a next-generation amine-reactive linker N-Fmoc-2-(7-amino-1-hydroxyheptylidene)-5,5-dimethylcyclohexane-1,3-dione (Fmoc-Ddap-OH) that can be used to selectively introduce semi-permanent solubilizing tags ("helping hands") onto Lys side chains of difficult peptides. This linker has improved stability compared to its predecessor, a property that can increase yields for multi-step syntheses with longer handling times. We also introduce a new linker cleavage protocol using hydroxylamine that greatly accelerates removal of the linker. The utility of this linker in CPS was demonstrated by the preparation of the synthetically challenging Shiga toxin subunit B (StxB) protein. This robust and easy-to-use linker is a valuable addition to the CPS toolbox for the production of challenging synthetic proteins.
Collapse
Affiliation(s)
- James M Fulcher
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Mark E Petersen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Riley J Giesler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Zachary S Cruz
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Debra M Eckert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | | | | | - Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA. and Navigen, Inc., Salt Lake City, UT, USA
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
44
|
Chisholm TS, Kulkarni SS, Hossain KR, Cornelius F, Clarke RJ, Payne RJ. Peptide Ligation at High Dilution via Reductive Diselenide-Selenoester Ligation. J Am Chem Soc 2019; 142:1090-1100. [DOI: 10.1021/jacs.9b12558] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Sameer S. Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Ronald J. Clarke
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Masuda S, Tsuda S, Yoshiya T. A trimethyllysine-containing trityl tag for solubilizing hydrophobic peptides. Org Biomol Chem 2019; 17:10228-10236. [PMID: 31782417 DOI: 10.1039/c9ob02253h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hydrophobic membrane peptides/proteins having low water solubility are often difficult to prepare. To overcome this issue, temporal introduction of solubilizing tags has been demonstrated to be beneficial. Following our recent work on the solubilization of a difficult target by using a hydrophilic oligo-Lys tag bearing a trityl linker (Trt-K method), this paper describes a comparative study of the solubilizing abilities of several peptidic trityl tags containing Lys, Arg, Glu, Asn, Nε-tri-Me-Lys or Cys-sulfonate using two hydrophobic model peptides. Among the tags evaluated, that containing Nε-tri-Me-Lys exhibits superior solubilizing ability.
Collapse
Affiliation(s)
- Shun Masuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | - Shugo Tsuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | - Taku Yoshiya
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
46
|
Tsuda S, Masuda S, Yoshiya T. Solubilizing Trityl‐Type Tag To Synthesize Asx/Glx‐Containing Peptides. Chembiochem 2019; 20:2063-2069. [DOI: 10.1002/cbic.201900193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shun Masuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| |
Collapse
|
47
|
Yoshiya T, Tsuda S, Masuda S. Development of Trityl Group Anchored Solubilizing Tags for Peptide and Protein Synthesis. Chembiochem 2019; 20:1906-1913. [DOI: 10.1002/cbic.201900105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Taku Yoshiya
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shugo Tsuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shun Masuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| |
Collapse
|
48
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
49
|
Zhao DD, Fan XW, Hao H, Zhang HL, Guo Y. Temporary Solubilizing Tags Method for the Chemical Synthesis of Hydrophobic Proteins. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666181211121758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrophobic proteins, as one of the cellular protein classifications, play an essential function in maintaining the normal life cycle of living cells. Researches on the structure and function of hydrophobic proteins promote the exploration of the causes of major diseases, and development of new therapeutic agents for disease treatment. However, the poor water solubility of hydrophobic proteins creates problems for their preparation, separation, characterization and functional studies. The temporary solubilizing tags are considered a practical strategy to effectively solve the poor water solubility problem of hydrophobic proteins. This strategy can significantly improve the water solubility of hydrophobic peptides/proteins, making them like water-soluble peptides/proteins easy to be purified, characterized. More importantly, the temporary solubilizing tags can be removed after protein synthesis, so thus the structure and function of the hydrophobic proteins are not affected. At present, temporary solubilizing tags have been successfully used to prepare many important hydrophobic proteins such as membrane proteins, lipoproteins and chaperones. In this review, we summarize the recent researches and applications of temporary solubilizing tags.
Collapse
Affiliation(s)
- Dong-Dong Zhao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Xiao-Wen Fan
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - He Hao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Hong-Li Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Ye Guo
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| |
Collapse
|
50
|
Tsuda S, Masuda S, Yoshiya T. The versatile use of solubilizing trityl tags for difficult peptide/protein synthesis. Org Biomol Chem 2019; 17:1202-1205. [PMID: 30648723 DOI: 10.1039/c8ob03098g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Solubilizing trityl tags (Trt-oligoLys/Arg) proved applicable to metal-free radical-triggered desulfurization and an Ag-mediated thioester method. Additionally, using the solubilizing trityl tag strategy, synthesis of the influenza BM2 proton channel, which previously required organic solvent-aided native chemical ligation (NCL) and desulfurization due to its low solubility, was achieved without using organic solvents.
Collapse
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | | | | |
Collapse
|