1
|
Wang Y, Wang D, Wang S, Chong Q, Zhang Z, Meng F. Cobalt-Catalyzed Regio-, Diastereo- and Enantioselective Reductive Coupling of 1,3-Dienes and Aldehydes. Angew Chem Int Ed Engl 2025; 64:e202413313. [PMID: 39230052 DOI: 10.1002/anie.202413313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024]
Abstract
Catalytic regio-, diastereo- and enantioselective reductive coupling of 1,3-dienes and aldehydes through regio- and enantioselective oxidative cyclization followed by regio- and diastereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such processes represent an unprecedented reaction pathway for cobalt catalysis that enable selective transformation of the more substituted alkene in 1,3-dienes, affording a broad scope of bishomoallylic alcohols without the need of pre-formation of stoichiometric amounts of sensitive organometallic reagents in up to 98 % yield, >98 : 2 regioselectivity, >98 : 2 dr and 98 : 2 er. Application of this method to construction of axial stereogenicity and deuterated stereogenic center provided a wide range of multifunctional chiral building blocks that are otherwise difficult to access. DFT calculations revealed the origin of regio- and stereoselectivity as well as a unique oxidative cyclization mechanism for cobalt catalysis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
| | - Danrui Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Shilin Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei, 430079, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| |
Collapse
|
2
|
Liang X, Ding QH, Yang JT, Yang HF, Deng Y, Shi L, Wei K, Yang YR. Total syntheses of the parvistemoline alkaloids enabled by stereocontrolled Ir/Pd-catalyzed allylic alkylation. Nat Commun 2024; 15:10812. [PMID: 39737970 DOI: 10.1038/s41467-024-55111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs. Additionally, the other two adjacent stereogenic centers can be installed diastereoselectively by Zn(BH4)2-promoted reduction and Krische's Ir-catalyzed 2-(alkoxycarbonyl)allylation. Oxy-Michael addition delivered the fused tetrahydrofuran-γ-lactone scaffold. At the later stage, hydrogenation or oxidation of pyrrole moiety furnished groups of tetrahydropyrrole and pyrrolidone. Finally, vinylogous Mannich reaction of an in situ generated iminium ion or Krische's Ir-catalyzed 2-(alkoxycarbonyl)allylation of aldehyde installed the monocyclic lactone for parvistemonine (2) and didehydroparvistemonine (3), respectively.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qian-Hui Ding
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Ting Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua-Fei Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Deng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Shi
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kun Wei
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yu-Rong Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
3
|
Wu J, Verboom KL, Krische MJ. Catalytic Enantioselective C-C Coupling of Alcohols for Polyketide Total Synthesis beyond Chiral Auxiliaries and Premetalated Reagents. Chem Rev 2024; 124:13715-13735. [PMID: 39642170 PMCID: PMC11826517 DOI: 10.1021/acs.chemrev.4c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Catalytic enantioselective hydrogen autotransfer reactions for the direct conversion of lower alcohols to higher alcohols are catalogued and their application to the total synthesis of polyketide natural products is described. These methods exploit a redox process in which alcohol oxidation is balanced by reductive generation of organometallic nucleophiles from unsaturated hydrocarbon pronucleophiles. Unlike classical carbonyl additions, premetalated reagents, chiral auxiliaries and discrete alcohol-to-aldehyde redox reactions are not required. Additionally, chemoselective dehydrogenation of primary alcohols in the presence of secondary alcohols enables C-C coupling in the absence of protecting groups.
Collapse
Affiliation(s)
- Jessica Wu
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| | - Katherine L Verboom
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| |
Collapse
|
4
|
Nakashima Y, Rakumitsu K, Ishikawa H. Recent advances in the total synthesis of alkaloids using chiral secondary amine organocatalysts. Org Biomol Chem 2024; 22:9319-9341. [PMID: 39512145 DOI: 10.1039/d4ob01590h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Since the early 21st century, organocatalytic reactions have undergone significant advancements. Notably, numerous asymmetric reactions utilizing chiral secondary amine catalysts have been developed and applied in the total synthesis of natural products. In this review, we provide an overview of alkaloid syntheses reported since 2017, categorized by scaffold, with a focus on key steps involving asymmetric reactions catalyzed by secondary amine organocatalysts.
Collapse
Affiliation(s)
- Yuta Nakashima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kenta Rakumitsu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
5
|
Zhao G, Khosravi A, Sharma S, Musaev DG, Ngai MY. Cobalt-Hydride-Catalyzed Alkene-Carboxylate Transposition (ACT) of Allyl Carboxylates. J Am Chem Soc 2024; 146:31391-31399. [PMID: 39530786 DOI: 10.1021/jacs.4c12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The alkene-carboxylate transposition (ACT) of allyl carboxylates is one of the most atom-economic and synthetically reliable transformations in organic chemistry, as allyl carboxylates are versatile synthetic intermediates. Classic ACT transformations, including [3,3]-sigmatropic rearrangement and transition metal-catalyzed allylic rearrangement, typically yield 1,2-alkene/1,3-acyloxy shifted products through a two-electron process. However, position-altered ACT to produce distinct 1,3-alkene/1,2-acyloxy shifted products remains elusive. Here, we report the first cobalt-hydride-catalyzed ACT of allyl carboxylates, enabling access to these unprecedented 1,3-alkene/1,2-acyloxy shifted products via a 1,2-radical migration (RaM) strategy. This transformation demonstrates broad functional group tolerance, is suitable for late-stage modification of complex molecules, and is amenable to gram-scale synthesis. It also expands the reaction profiles of both allyl carboxylates and cobalt catalysis. Preliminary experimental and computational studies suggest a mechanism involving metal-hydride hydrogen atom transfer (MHAT) and the 1,2-RaM process. This reaction is expected to serve as the basis for the development of versatile Co-H-catalyzed transformations of allyl carboxylates, generating a wide array of valuable building blocks for synthetic, medicinal, and materials chemistry.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arman Khosravi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sahil Sharma
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Wang HC, You SL. Asymmetric Allylic Amination of Alkyl-Substituted Allylic Carbonates with Pyridones Catalyzed by the Krische Iridium Complex. Org Lett 2024; 26:8632-8635. [PMID: 39331508 DOI: 10.1021/acs.orglett.4c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
An efficient Ir-catalyzed asymmetric allylic amination reaction of alkyl-substituted allylic carbonates is disclosed. With the Krische iridium complex as the catalyst, asymmetric allylic amination of alkyl-substituted allylic carbonates with pyridones proceeds effectively, affording pyridone derivatives containing a stereocenter α to the nitrogen atom in excellent yields and enantioselectivity (up to 99% yield, 95% ee). This catalytic system broadens the substrate scope of the reaction compared with that of the known catalytic systems. This reaction can also be conducted on a gram scale, further enhancing its potential for synthetic application.
Collapse
Affiliation(s)
- Hu-Chong Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Hu G, Doerksen RS, Ambler BR, Krische MJ. Total Synthesis of the Phenylnaphthacenoid Type II Polyketide Antibiotic Formicamycin H via Regioselective Ruthenium-Catalyzed Hydrogen Auto-Transfer [4 + 2] Cycloaddition. J Am Chem Soc 2024; 146:26351-26359. [PMID: 39265189 PMCID: PMC11470536 DOI: 10.1021/jacs.4c09068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The first total synthesis of the pentacyclic phenylnaphthacenoid type II polyketide antibiotic formicamycin H is described. A key feature of the synthesis involves the convergent, regioselective assembly of the tetracyclic core via ruthenium-catalyzed α-ketol-benzocyclobutenone [4 + 2] cycloaddition. Double dehydration of the diol-containing cycloadduct provides an achiral enone, which upon asymmetric nucleophilic epoxidation and further manipulations delivers the penultimate tetracyclic trichloride in enantiomerically enriched form. Subsequent chemo- and atroposelective Suzuki cross-coupling of the tetracyclic trichloride introduces the E-ring to complete the total synthesis. Single-crystal X-ray diffraction analyses of two model compounds suggest that the initially assigned stereochemistry of the axially chiral C6-C7 linkage may require revision.
Collapse
Affiliation(s)
| | | | - Brett R. Ambler
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| |
Collapse
|
8
|
Zhu J, Rahim F, Zhou P, Zhang A, Malcolmson SJ. Copper-Catalyzed Diastereo-, Enantio-, and ( Z)-Selective Aminoallylation of Ketones through Reductive Couplings of Azatrienes for the Synthesis of Allylic 1,2-Amino Tertiary Alcohols. J Am Chem Soc 2024; 146:20270-20278. [PMID: 39011628 PMCID: PMC11325848 DOI: 10.1021/jacs.4c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We introduce a method for the (Z)-selective aminoallylation of a range of ketones to prepare allylic 1,2-amino tertiary alcohols with excellent diastereo- and enantioselectivity. Copper-catalyzed reductive couplings of 2-azatrienes with aryl/alkyl and dialkyl ketones proceed with Ph-BPE as the supporting ligand, generating anti-amino alcohols with >98% (Z)-selectivity under mild conditions. The utility of the products is highlighted through several transformations, including those that leverage the (Z)-allylic amine moiety for diastereoselective reactions of the alkene. Calculations illustrate Curtin-Hammett control in the product formation over other possible isomers and the origin of (Z)-selectivity.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Faraan Rahim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Pengfei Zhou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Annie Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
10
|
Kim SW, Foker EA, Wolf WJ, Woltornist RA, Shemet A, McCowen S, Simmons EM, Lin Z, He BL, Menger R, Xu X, Ayers S, Bunner MH, Sarjeant AA. α-Alkylation and Asymmetric Transfer Hydrogenation of Tetralone via Hydrogen Borrowing and Dynamic Kinetic Resolution Strategy Using a Single Iridium(III) Complex. Org Lett 2024; 26:3103-3108. [PMID: 38588485 DOI: 10.1021/acs.orglett.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Here we present a novel strategy for the synthesis of enantiomerically enriched tetrahydronaphthalen-1-ols. The reaction proceeds via an alkylation (via hydrogen borrowing) and ammonium formate-mediated asymmetric transfer hydrogenation (via dynamic kinetic resolution), giving alkylated tetralols in high yields and good enantio- and diastereoselectivity across a diverse range of both alcohol and tetralone substrates. Additionally, these products were successfully derivatized to several complex molecules, demonstrating the utility of the tetrahydronaphthalen-1-ol.
Collapse
Affiliation(s)
- Seung Wook Kim
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Elizabeth A Foker
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - William J Wolf
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ryan A Woltornist
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Andrii Shemet
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Shelby McCowen
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ziqing Lin
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Brian L He
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Robert Menger
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Xuejun Xu
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Sloan Ayers
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Matthew H Bunner
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Amy A Sarjeant
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
11
|
Shezaf JZ, Santana CG, Ortiz E, Meyer CC, Liu P, Sakata K, Huang KW, Krische MJ. Leveraging the Stereochemical Complexity of Octahedral Diastereomeric-at-Metal Catalysts to Unlock Regio-, Diastereo-, and Enantioselectivity in Alcohol-Mediated C-C Couplings via Hydrogen Transfer. J Am Chem Soc 2024; 146:7905-7914. [PMID: 38478891 PMCID: PMC11446212 DOI: 10.1021/jacs.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Experimental and computational studies illuminating the factors that guide metal-centered stereogenicity and, therefrom, selectivity in transfer hydrogenative carbonyl additions of alcohol proelectrophiles catalyzed by chiral-at-metal-and-ligand octahedral d6 metal ions, iridium(III) and ruthenium(II), are described. To augment or invert regio-, diastereo-, and enantioselectivity, predominantly one from among as many as 15 diastereomeric-at-metal complexes is required. For iridium(III) catalysts, cyclometalation assists in defining the metal stereocenter, and for ruthenium(II) catalysts, iodide counterions play a key role. Whereas classical strategies to promote selectivity in metal catalysis aim for high-symmetry transition states, well-defined low-symmetry transition states can unlock selectivities that are otherwise difficult to achieve or inaccessible.
Collapse
Affiliation(s)
- Jonathan Z Shezaf
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Catherine G Santana
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Eliezer Ortiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Cole C Meyer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Zhang T, Jiang S, Qian MY, Zhou QL, Xiao LJ. Ligand-Controlled Regiodivergent Nickel-Catalyzed Hydroaminoalkylation of Unactivated Alkenes. J Am Chem Soc 2024; 146:3458-3470. [PMID: 38270100 DOI: 10.1021/jacs.3c13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Ligand modulation of transition-metal catalysts to achieve optimal reactivity and selectivity in alkene hydrofunctionalization is a fundamental challenge in synthetic organic chemistry. Hydroaminoalkylation, an atom-economical approach for alkylating amines using alkenes, is particularly significant for amine synthesis in the pharmaceutical, agrochemical, and fine chemical industries. However, the existing methods usually require specific substrate combinations to achieve precise regio- and stereoselectivity, which limits their practical utility. Protocols allowing for regiodivergent hydroaminoalkylation from the same starting materials, controlling both regiochemical and stereochemical outcomes, are currently absent. Herein, we report a ligand-controlled, regiodivergent nickel-catalyzed hydroaminoalkylation of unactivated alkenes with N-sulfonyl amines. The reaction initiates with amine dehydrogenation and involves aza-nickelacycle intermediates. Tritert-butylphosphine promotes branched regioselectivity and syn diastereoselectivity, whereas ethyldiphenylphosphine enables linear selectivity, yielding regioisomers with inverse orientation. Systematic evaluation of diverse monodentate phosphine ligands reveals distinct regioselectivity cliffs, and % Vbur (min), a ligand steric descriptor, was established as a predictive parameter correlating ligand structure to regioselectivity. Computational investigations supported experimental findings, offering mechanistic insights into the origins of regioselectivity. Our method provides an efficient and predictable route for amine synthesis, demonstrating broad substrate scope, excellent tolerance toward various functional groups, and practical advantages. These include the use of readily available starting materials and cost-effective nickel(II) salts as precatalysts.
Collapse
Affiliation(s)
- Tianze Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Shan Jiang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Meng-Ying Qian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Zhang H, Li B, Yang H, Tan Y, Tan X, Tang Y. Total Synthesis of Carolacton and Demethylcarolactons with Potent Antiviral Activity. Org Lett 2024; 26:370-375. [PMID: 38170945 DOI: 10.1021/acs.orglett.3c04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Carolacton, a naturally occurring MTHFD1 inhibitor, exhibits potent inhibitory activity against various RNA viruses including SARS-CoV-2. Herein, we present a concise total synthesis of carolacton, featuring the Krische allylation, Marshall coupling, NHK coupling, and RCM reaction as key elements. Additionally, we have synthesized three simplified carolacton analogues, one of which, namely, 14-demethyl-carolacton, exhibited notable antiviral activity. The present work paves the way for further exploration of the therapeutic potential of carolacton and its analogues.
Collapse
Affiliation(s)
- Haoyu Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Bingsong Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hongzhi Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ya Tan
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xu Tan
- Chinese Institutes for Medical Research, Beijing 100069, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Pan ZZ, Li JH, Tian H, Yin L. Copper(I)-Catalyzed Asymmetric Allylation of Ketones with 2-Aza-1,4-Dienes. Angew Chem Int Ed Engl 2024; 63:e202315293. [PMID: 37955332 DOI: 10.1002/anie.202315293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Catalytic asymmetric allylation of ketones under proton-transfer conditions is a challenging issue due to the limited pronucleophiles and the electrophilic inertness of ketones. Herein, a copper(I)-catalyzed asymmetric allylation of ketones with 2-aza-1,4-dienes (N-allyl-1,1-diphenylmethanimines) is disclosed, which affords a series of functionalized homoallyl tertiary alcohols in high to excellent enantioselectivity. Interestingly, N-allyl-1,1-diphenylmethanimines work as synthetic equivalents of propanals. Upon the acidic workup, a formal asymmetric β-addition of propanals to ketones is achieved. An investigation on KIE effect indicates that the deprotonation of N-allyl-1,1-diphenylmethanimines is the rate-determining step, which generates nucleophilic allyl copper(I) species. Finally, the synthetic utility of the present method is demonstrated by the asymmetric synthesis of (R)-boivinianin A and (R)-gossonorol.
Collapse
Affiliation(s)
- Zhi-Zhou Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jia-Heng Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hu Tian
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
15
|
Zhang S, Zhang S, Fan Y, Zhang X, Chen J, Jin C, Chen S, Wang L, Zhang Q, Chen Y. Total Synthesis of the Proposed Structure of Neaumycin B. Angew Chem Int Ed Engl 2023; 62:e202313186. [PMID: 37889502 DOI: 10.1002/anie.202313186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
The total synthesis of the proposed structure of anti-glioblastoma natural product neaumycin B was achieved in 22 steps (longest linear sequence). The synthesis features HCl-mediated [6,6]-spiroketalization, a combination of Krische iridium-catalyzed crotylation, Marshall palladium-catalyzed propargylation, Fürstner nickel-catalyzed regio- and enantioselective vicinal monoprotected diol formation, Brown crotylation and asymmetric halide-aldehyde cycloaddition, so as to establish the challenging contiguous stereocenters.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Songming Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yunlong Fan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Xuhai Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Jing Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Chaofan Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Sisi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
16
|
Yan H, Shan JR, Zhang F, Chen Y, Zhang X, Liao Q, Hao E, Shi L. Radical Crotylation of Aldehydes with 1,3-Butadiene by Photoredox Cobalt and Titanium Dual Catalysis. Org Lett 2023; 25:7694-7699. [PMID: 37842952 DOI: 10.1021/acs.orglett.3c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metal-hydride hydrogen atom transfer (MHAT) has been recognized as a powerful method for alkene functionalization; however, photochemical MAT-mediated chemoselective functionalization of dienes remains undeveloped. In this study, we report a radical strategy (1e-) through MHAT using photoredox cobalt and titanium dual catalysis for aldehyde crotylation with butadiene, achieving excellent regio- and diastereoselectivity.
Collapse
Affiliation(s)
- Huaipu Yan
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Fengzhi Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuqing Chen
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xinyi Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qian Liao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Carmona JA, Rodríguez-Salamanca P, Fernández R, Lassaletta JM, Hornillos V. Dynamic Kinetic Resolution of 2-(Quinolin-8-yl)Benzaldehydes: Atroposelective Iridium-Catalyzed Transfer Hydrogenative Allylation. Angew Chem Int Ed Engl 2023; 62:e202306981. [PMID: 37389578 DOI: 10.1002/anie.202306981] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
An atroposelective Ir-catalyzed dynamic kinetic resolution (DKR) of 2-(quinolin-8-yl)benzaldehydes/1-naphthaldehydes by transfer hydrogenative coupling of allyl acetate is disclosed. The allylation reaction takes place with simultaneous installation of central and axial chirality, reaching high diastereoselectivities and excellent enantiomeric excesses when ortho-cyclometalated iridium-DM-BINAP is used as the catalyst. The racemization of the substrates occurs through a designed transient Lewis acid-base interaction between the quinoline nitrogen atom and the aldehyde carbonyl group.
Collapse
Affiliation(s)
- José A Carmona
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Patricia Rodríguez-Salamanca
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012, Sevilla, Spain
| | - José M Lassaletta
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Valentín Hornillos
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012, Sevilla, Spain
| |
Collapse
|
18
|
Gao Y, Hong G, Yang BM, Zhao Y. Enantioconvergent transformations of secondary alcohols through borrowing hydrogen catalysis. Chem Soc Rev 2023; 52:5541-5562. [PMID: 37519093 DOI: 10.1039/d3cs00424d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Direct substitution of readily available alcohols is recognized as a key research area in green chemical synthesis. Starting from simple racemic secondary alcohols, the achievement of catalytic enantioconvergent transformations of the substrates will be highly desirable for efficient access to valuable enantiopure compounds. To accomplish such attractive yet challenging transformations, the strategy of the enantioconvergent borrowing hydrogen methodology has proven to be uniquely effective and versatile. This review aims to provide an overview of the impressive progress made on this topic of research that has only thrived in the past decade. In particular, the conversion of racemic secondary alcohols to enantioenriched chiral amines, N-heterocycles, higher-order alcohols and ketones will be discussed in detail.
Collapse
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| |
Collapse
|
19
|
Wang L, Lin C, Chong Q, Zhang Z, Meng F. Photoredox cobalt-catalyzed regio-, diastereo- and enantioselective propargylation of aldehydes via propargyl radicals. Nat Commun 2023; 14:4825. [PMID: 37563134 PMCID: PMC10415309 DOI: 10.1038/s41467-023-40488-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Catalytic enantioselective introduction of a propargyl group constitutes one of the most important carbon-carbon forming reactions, as it is versatile to be transformed into diverse functional groups and frequently used in the synthesis of natural products and biologically active molecules. Stereoconvergent transformations of racemic propargyl precursors to a single enantiomer of products via propargyl radicals represent a powerful strategy and provide new reactivity. However, only few Cu- or Ni-catalyzed protocols have been developed with limited reaction modes. Herein, a photoredox/cobalt-catalyzed regio-, diastereo- and enantioselective propargyl addition to aldehydes via propargyl radicals is presented, enabling construction of a broad scope of homopropargyl alcohols that are otherwise difficult to access in high efficiency and stereoselectivity from racemic propargyl carbonates. Mechanistic studies and DFT calculations provided evidence for the involvement of propargyl radicals, the origin of the stereoconvergent process and the stereochemical models.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Chuiyi Lin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
| | - Zhihan Zhang
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, 430079, Hubei, China.
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China.
| |
Collapse
|
20
|
Huynh NO, Hodík T, Krische MJ. Enantioselective Transfer Hydrogenative Cycloaddition Unlocks the Total Synthesis of SF2446 B3: An Aglycone of Arenimycin and SF2446 Type II Polyketide Antibiotics. J Am Chem Soc 2023; 145:17461-17467. [PMID: 37494281 PMCID: PMC10443208 DOI: 10.1021/jacs.3c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The first total synthesis and structure validation of an arenimycin/SF2446 type II polyketide is described, as represented by de novo construction of SF2446 B3, the aglycone shared by this family of type II polyketides. Ruthenium-catalyzed α-ketol-benzocyclobutenone [4 + 2] cycloaddition, which occurs via successive stereoablation-stereoregeneration, affects a double dynamic kinetic asymmetric transformation wherein two racemic starting materials combine to form the congested angucycline bay region with control of regio-, diastereo-, and enantioselectivity. This work represents the first application of transfer hydrogenative cycloaddition and enantioselective intermolecular metal-catalyzed C-C bond activation in target-oriented synthesis.
Collapse
Affiliation(s)
- Nancy O Huynh
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Tomáš Hodík
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Pranesh Kavin S, Ramesh R. Synthesis and structure of Pd(II) pincer complexes: catalytic application in β-alkylation of secondary alcohols involving sequential dehydrogenation of alcohols via the borrowing hydrogen approach. Dalton Trans 2023. [PMID: 37409425 DOI: 10.1039/d3dt01628e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Herein, we report an efficient and sustainable approach for the selective synthesis of ketones by palladium pincer catalyzed β-alkylation of secondary alcohols with aromatic primary alcohols via the borrowing hydrogen (BH) approach for the first time. A set of new Pd(II) ONO pincer complexes was synthesized and characterised by elemental analysis and spectral techniques (FT-IR, NMR and HRMS). The solid-state molecular structure of one the complexes was corroborated by X-ray crystallography. A range of α-alkylated ketone derivatives (25 examples) was obtained in excellent yields up to 95% through sequential dehydrogenative coupling of secondary and primary alcohols with 0.5 mol% catalyst loading with a substoichiometric amount of the base. Control experiment studies were carried out for the coupling reactions which revealed that the reaction involves an aldehyde, a ketone and chalcone intermediates, and eventually established the borrowing hydrogen strategy. Gratifyingly, this protocol is simple and atom economical, with water/hydrogen as byproducts. In addition, large-scale synthesis also demonstrated the synthetic usefulness of the present protocol.
Collapse
Affiliation(s)
- Sekar Pranesh Kavin
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, Tamilnadu, India.
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, Tamilnadu, India.
| |
Collapse
|
22
|
Ortiz E, Evarts MM, Strong ZH, Shezaf JZ, Krische MJ. Ruthenium-Catalyzed C-C Coupling of Terminal Alkynes with Primary Alcohols or Aldehydes: α,β-Acetylenic Ketones (Ynones) via Oxidative Alkynylation. Angew Chem Int Ed Engl 2023; 62:e202303345. [PMID: 37000412 PMCID: PMC10213147 DOI: 10.1002/anie.202303345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/01/2023]
Abstract
The first metal-catalyzed oxidative alkynylations of primary alcohols or aldehydes to form α,β-acetylenic ketones (ynones) are described. Deuterium labelling studies corroborate a novel reaction mechanism in which alkyne hydroruthenation forms a transient vinylruthenium complex that deprotonates the terminal alkyne to form the active alkynylruthenium nucleophile.
Collapse
Affiliation(s)
- Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Madeline M. Evarts
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Zachary H. Strong
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Jonathan Z. Shezaf
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
23
|
Verboom KL, Meyer CC, Evarts MM, Jung WO, Krische MJ. O-Acetyl 1,3-Propanediol as an Acrolein Proelectrophile in Enantioselective Iridium-Catalyzed Carbonyl Allylation. Org Lett 2023; 25:3659-3663. [PMID: 37172193 PMCID: PMC10425987 DOI: 10.1021/acs.orglett.3c01022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
O-Acetyl 1,3-propanediol serves as an acrolein proelectrophile in π-allyliridium-C,O-benzoate-catalyzed carbonyl allylations mediated by racemic α-substituted allylic acetates. Using the iridium catalyst modified by (R)-SEGPHOS, a variety of 3-hydroxy-1,5-hexadienes are formed with uniformly high levels of regio-, anti-diastereo-, and enantioselectivity.
Collapse
Affiliation(s)
| | | | | | | | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| |
Collapse
|
24
|
Meyer CC, Krische MJ. Iridium-, Ruthenium-, and Nickel-Catalyzed C-C Couplings of Methanol, Formaldehyde, and Ethanol with π-Unsaturated Pronucleophiles via Hydrogen Transfer. J Org Chem 2023; 88:4965-4974. [PMID: 36449710 PMCID: PMC10121765 DOI: 10.1021/acs.joc.2c02356] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this Perspective, the use of methanol and ethanol as C1 and C2 feedstocks in metal-catalyzed C-C couplings to π-unsaturated pronucleophiles via hydrogen auto-transfer is surveyed. In these processes, alcohol oxidation to form an aldehyde electrophile is balanced by reduction of an π-unsaturated hydrocarbon to form a transient organometallic nucleophile. Mechanistically related reductive couplings of paraformaldehyde mediated by alcohol reductants or formic acid also are described. These processes encompass the first catalytic enantioselective C-C couplings of methanol and ethanol and, more broadly, illustrate how the native reducing ability of alcohols enable the departure from premetalated reagents in carbonyl addition.
Collapse
Affiliation(s)
- Cole C Meyer
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24th St, Austin, Texas 78712, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24th St, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Meyer CC, Verboom KL, Evarts MM, Jung WO, Krische MJ. Allyl Alcohol as an Acrolein Equivalent in Enantioselective C-C Coupling: Total Synthesis of Amphidinolides R, J, and S. J Am Chem Soc 2023; 145:8242-8247. [PMID: 36996284 PMCID: PMC10101927 DOI: 10.1021/jacs.3c01809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The first systematic study of catalytic enantioselective 1,2-additions to acrolein is described. Specifically, using allyl alcohol as a tractable, inexpensive acrolein proelectrophile, iridium-catalyzed acrolein allylation is achieved with high levels of regio-, anti-diastereo-, and enantioselectivity. This process delivers 3-hydroxy-1,5-hexadienes, a useful compound class that is otherwise challenging to access via enantioselective catalysis. Two-fold use of this method unlocks concise total syntheses of amphidinolide R (9 vs 23 steps, LLS) and amphidinolide J (9 vs 23 or 26 steps, LLS), which are prepared in fewer than half the steps previously possible, and the first total synthesis of amphidinolide S (10 steps, LLS).
Collapse
Affiliation(s)
- Cole C Meyer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Katherine L Verboom
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Madeline M Evarts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Woo-Ok Jung
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Zhao G, Lim S, Musaev DG, Ngai MY. Expanding Reaction Profile of Allyl Carboxylates via 1,2-Radical Migration (RaM): Visible-Light-Induced Phosphine-Catalyzed 1,3-Carbobromination of Allyl Carboxylates. J Am Chem Soc 2023; 145:10.1021/jacs.2c11867. [PMID: 37017987 PMCID: PMC11694480 DOI: 10.1021/jacs.2c11867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Allyl carboxylates are useful synthetic intermediates in a variety of organic transformations, including catalytic nucleophilic/electrophilic allylic substitution reactions and 1,2-difunctionalization reactions. However, the catalytic 1,3-difunctionalization of allyl carboxylates remains elusive. Herein, we report the first photoinduced, phosphine-catalyzed 1,3-carbobromination of allyl carboxylates, affording a range of valuable substituted isopropyl carboxylates (sIPC). The transformation has broad functional group tolerance, is amenable to the late-stage modification of complex molecules and gram-scale synthesis, and expands the reaction profiles of allyl carboxylates and phosphine catalysis. Preliminary experimental and computational studies suggest a non-chain-radical mechanism involving the formation of an electron donor-acceptor complex, 1,2-radical migration (RaM), and Br-atom transfer processes. We anticipate that the 1,2-RaM reactivity of allyl carboxylates and the phosphine-catalyzed radical reaction will both serve as a platform for the development of new transformations in organic synthesis.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Sanghyun Lim
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
- Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
27
|
Dubey ZJ, Shen W, Little JA, Krische MJ. Dual Ruthenium-Catalyzed Alkene Isomerization-Hydrogen Auto-Transfer Unlocks Skipped Dienes as Pronucleophiles for Enantioselective Alcohol C-H Allylation. J Am Chem Soc 2023; 145:10.1021/jacs.3c00934. [PMID: 37018070 PMCID: PMC10551046 DOI: 10.1021/jacs.3c00934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The first use of 1,4-pentadiene and 1,5-hexadiene as allylmetal pronucleophiles in regio-, anti-diastereo-, and enantioselective carbonyl addition from alcohol proelectrophiles is described. As corroborated by deuterium labeling experiments, primary alcohol dehydrogenation delivers a ruthenium hydride that affects alkene isomerization to furnish a conjugated diene, followed by transfer hydrogenative carbonyl addition. Hydrometalation appears to be assisted by the formation of a fluxional olefin-chelated homoallylic alkylruthenium complex II, which exists in equilibrium with its pentacoordinate η1 form to enable β-hydride elimination. This effect confers remarkable chemoselectivity: while 1,4-pentadiene and 1,5-hexadiene are competent pronucleophiles, higher 1,n-dienes are not, and the olefinic functional groups of the products remain intact under conditions in which the 1,4- and 1,5-dienes isomerize. A survey of halide counterions reveals iodide-bound ruthenium-JOSIPHOS catalysts are uniquely effective in these processes. This method was used to prepare a previously reported C1-C7 substructure of (-)-pironetin in 4 vs 12 steps.
Collapse
Affiliation(s)
- Zachary J Dubey
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Weijia Shen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - John A Little
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
28
|
Tao SC, Meng FC, Wang T, Zheng YL. Ni-catalyzed arylation of alkynes with organoboronic acids and aldehydes to access stereodefined allylic alcohols. Chem Sci 2023; 14:2040-2045. [PMID: 36845934 PMCID: PMC9945163 DOI: 10.1039/d2sc05894d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
A new, efficient and practical method for the three-component arylative coupling of aldehydes, alkynes and arylboronic acids has been developed through nickel catalysis. This transformation provides diverse Z-selective tetrasubstituted allylic alcohols without the use of any aggressive oragnometallic nucleophiles or reductants. Moreover, benzylalcohols are viable coupling partners via oxidation state manipulation and arylative coupling in one single catalytic cycle. This reaction features a direct and flexible approach for the preparation of stereodefined arylated allylic alcohols with broad substrate scope under mild conditions. The utility of this protocol is demonstrated through the synthesis of diverse biologically active molecular derivatives.
Collapse
Affiliation(s)
- Si-Chen Tao
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology Tianjin 300384 P. R. China
| | - Fan-Cheng Meng
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology Tianjin 300384 P. R. China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology Tianjin 300384 P. R. China
| | - Yan-Long Zheng
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology Tianjin 300384 P. R. China
| |
Collapse
|
29
|
Saludares C, Ortiz E, Santana CG, Spinello BJ, Krische MJ. Asymmetric Ruthenium-Catalyzed Carbonyl Allylations by Gaseous Allene via Hydrogen Auto-Transfer: 1° vs 2° Alcohol Dehydrogenation for Streamlined Polyketide Construction. ACS Catal 2023; 13:1662-1668. [PMID: 37869365 PMCID: PMC10586519 DOI: 10.1021/acscatal.2c05425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Iodide-bound ruthenium-JOSIPHOS complexes catalyze the redox-neutral C-C coupling of primary alcohols 2a-2r with the gaseous allene (propadiene) 1a to form enantiomerically enriched homoallylic alcohols 3a-3r with complete atom-efficiency. Using formic acid as reductant, aldehydes dehydro-2a and dehydro-2c participate in reductive C-C coupling with allene to deliver adducts 3a and 3c with comparable levels of asymmetric induction. Deuterium labeling studies corroborate a mechanism in which alcohol dehydrogenation triggers allene hydroruthenation to form transient allylruthenium-aldehyde pairs that participate in carbonyl addition. Notably, due to a kinetic preference for primary alcohol dehydrogenation, chemoselective C-C coupling of 1°,2°-1,3-diols occurs in the absence of protecting groups. As illustrated by the synthesis of C7-C15 of spirastrellolide B and F (7 vs 17 steps), C3-C10 of cryptocarya diacetate (3 vs 7 or 9 steps), and a fragment common to C8'-C14' of mycolactone F (1 vs 4 steps) and C22-C28 marinomycin A (1 vs 9 steps), this capability streamlines type I polyketide construction.
Collapse
Affiliation(s)
- Connor Saludares
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Cate G Santana
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Brian J Spinello
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| |
Collapse
|
30
|
Liang X, Yoo M, Schempp T, Maejima S, Krische MJ. Ruthenium-Catalyzed Butadiene-Mediated Crotylation and Oxazaborolidine-Catalyzed Vinylogous Mukaiyama Aldol Reaction for The Synthesis of C1-C19 and C23-C35 of Neaumycin B. Angew Chem Int Ed Engl 2022; 61:e202214786. [PMID: 36322115 PMCID: PMC9772151 DOI: 10.1002/anie.202214786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Neaumycin B is a femtomolar inhibitor of U87 human glioblastoma. Using a newly developed anti-diastereoselective ruthenium-catalyzed butadiene-mediated crotylation of primary alcohol proelectrophiles via hydrogen auto-transfer, as well as a novel variant of the catalytic asymmetric vinylogous Mukaiyama aldol (VMA) reaction applicable to linear aliphatic aldehydes and terminally methylated dienyl ketene acetals, preparation of the key C1-C19 and C23-C35 substructures of neaumycin B is achieved in 12 and 7 steps (LLS), respectively.
Collapse
Affiliation(s)
- Xinting Liang
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Minjin Yoo
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Tabitha Schempp
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Saki Maejima
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
31
|
Ruthenium‐Catalyzed Butadiene‐Mediated Crotylation and Oxazaborolidine‐Catalyzed Vinylogous Mukaiyama Aldol Reaction for The Synthesis of C1–C19 and C23–C35 of Neaumycin B. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Liu SN, Liu JB, Huang F, Wang WJ, Wang Q, Yang C, Sun QM, Chen DZ. Origins of Stereospecificity and Divergent Reactivity of Pd-Catalyzed Cross Coupling with α,α-Disubstituted Alkenyl Hydrazones. J Org Chem 2022; 87:15608-15617. [PMID: 36321171 DOI: 10.1021/acs.joc.2c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article presents an exploration of stereospecificity and divergent reactivity of Pd-catalyzed α,α-disubstituted alkenyl hydrazones to synthesize 1,4-dienes in the Z configuration and vinylcyclopropane. We calculated the energy profiles of four α,α-disubstituted alkenyl hydrazones. The results show that the energy profiles of the whole catalytic cycle are basically the same before the syn-carbopalladation step. Subsequent syn-β-C elimination yields skipping dienes, or direct β-H elimination yields vinylcyclopropane. Current theoretical calculations reveal that the stereospecificity and the divergent reactivity of reactions result from the competition between syn-β-C elimination and β-H elimination. The C-C bond rotation and subsequent syn-β-C elimination step control the stereospecificity of the reaction by changing the olefin stereostructure from E to Z configuration. The steric factor of α-substituted groups mediates the transformation between syn-β-C elimination and β-H elimination. The results are of great significance for the scientific design of substrates to achieve accurate synthesis of target products.
Collapse
Affiliation(s)
- Sheng-Nan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Chong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qing-Min Sun
- Shandong Kaisheng New Materials Co., Ltd., Zibo 255185, P. R. China
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
33
|
Ortiz E, Shezaf JZ, Shen W, Krische MJ. Historical perspective on ruthenium-catalyzed hydrogen transfer and survey of enantioselective hydrogen auto-transfer processes for the conversion of lower alcohols to higher alcohols. Chem Sci 2022; 13:12625-12633. [PMID: 36516346 PMCID: PMC9645367 DOI: 10.1039/d2sc05621f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 07/28/2023] Open
Abstract
Ruthenium-catalyzed hydrogen auto-transfer reactions for the direct enantioselective conversion of lower alcohols to higher alcohols are surveyed. These processes enable completely atom-efficient carbonyl addition from alcohol proelectrophiles in the absence of premetalated reagents or metallic reductants. Applications in target-oriented synthesis are highlighted, and a brief historical perspective on ruthenium-catalyzed hydrogen transfer processes is given.
Collapse
Affiliation(s)
- Eliezer Ortiz
- Department of Chemistry, University of Texas at Austin, Welch Hall (A5300) 105 E 24th St. Austin TX 78712 USA
| | - Jonathan Z Shezaf
- Department of Chemistry, University of Texas at Austin, Welch Hall (A5300) 105 E 24th St. Austin TX 78712 USA
| | - Weijia Shen
- Department of Chemistry, University of Texas at Austin, Welch Hall (A5300) 105 E 24th St. Austin TX 78712 USA
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Welch Hall (A5300) 105 E 24th St. Austin TX 78712 USA
| |
Collapse
|
34
|
Xu X, Shi Y, Wang D, Ding Y, Chen S, Zhang X. Cobalt(III)-Catalyzed and DMSO-Involved Allylation of 1,3-Dicarbonyl Compounds with Alkenes. J Org Chem 2022; 87:14352-14363. [PMID: 36263891 DOI: 10.1021/acs.joc.2c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cobalt(III)-catalyzed allylation of 1,3-dicarbonyl compounds has been reported with in situ generated allyl reagents from alkenes and dimethyl sulfoxide (DMSO). This novel protocol enables a high regio- and stereoselective access for a broad range of allyl 1,3-dicarbonyl compounds. In the transformation, DMSO plays the role of a C1 source, and it incorporates with alkenes to form the allyl reagent allylic methyl thioether. Moreover, a multiple-step pathway has been proposed to rationalize the mechanism study, which involves silver-mediated coupling, Co(III)-catalyzed π-allylation, and intermolecular nucleophilic substitution.
Collapse
Affiliation(s)
- Xuefeng Xu
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yue Shi
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Di Wang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yanhua Ding
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Shuyang Chen
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xu Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
35
|
Schäfers F, Dutta S, Kleinmans R, Mück-Lichtenfeld C, Glorius F. Asymmetric Addition of Allylsilanes to Aldehydes: A Cr/Photoredox Dual Catalytic Approach Complementing the Hosomi–Sakurai Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felix Schäfers
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Roman Kleinmans
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| |
Collapse
|
36
|
Shao N, Rodriguez J, Quintard A. Catalysis Driven Six-Step Synthesis of Apratoxin A Key Polyketide Fragment. Org Lett 2022; 24:6537-6542. [PMID: 36073851 DOI: 10.1021/acs.orglett.2c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apratoxin A is a potent anticancer natural product whose key polyketide fragment constitutes a considerable challenge for organic synthesis, with five prior syntheses requiring 12 to 20 steps for its preparation. By combining different redox-economical catalytic stereoselective transformations, the key polyketide fragment could be rapidly prepared. Followed by a site-selective protection of the diol, this strategy enables the preparation of the apratoxin A fragment in only six steps, representing the shortest route to this polyketide.
Collapse
Affiliation(s)
- Na Shao
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France.,Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
37
|
Chang X, Cheng X, Liu X, Fu C, Wang W, Wang C. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206517. [DOI: 10.1002/anie.202206517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xue‐Tao Liu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Cong Fu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Wei‐Yi Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
38
|
Zhu J, Wang Y, Charlack AD, Wang YM. Enantioselective and Diastereodivergent Allylation of Propargylic C-H Bonds. J Am Chem Soc 2022; 144:15480-15487. [PMID: 35976157 PMCID: PMC9437123 DOI: 10.1021/jacs.2c07297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes to generate 3,4-substituted 1,5-enynes is reported. Under optimized conditions, the coupling products are formed with excellent regio-, diastereo-, and enantioselectivities, and the protocol is functional group tolerant. Moreover, we report conditions that allow the reaction to proceed with complete reversal of diastereoselectivity. Mechanistic studies are consistent with an unprecedented dual role for the iridium catalyst, enabling the propargylic deprotonation of the alkyne through π-coordination, as well as the generation of a π-allyl species from the allylic ether starting material.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu225002, China
| | - Aaron D Charlack
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
39
|
Stivala CE, Zbieg JR, Liu P, Krische MJ. Chiral Amines via Enantioselective π-Allyliridium- C, O-Benzoate-Catalyzed Allylic Alkylation: Student Training via Industrial-Academic Collaboration. Acc Chem Res 2022; 55:2138-2147. [PMID: 35830564 PMCID: PMC9608351 DOI: 10.1021/acs.accounts.2c00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ConspectusCyclometalated π-allyliridium-C,O-benzoate complexes discovered in the Krische laboratory display unique amphiphilic properties, catalyzing both nucleophilic carbonyl allylation and electrophilic allylation of diverse amines as well as nitronates. Given the importance of chiral amines in FDA-approved small-molecule drugs, a collaboration with medicinal chemists at Genentech that included on-site graduate student internships was undertaken to explore and expand the scope of π-allyliridium-C,O-benzoate-catalyzed allylic amination and related processes. As described in this Account, our collective experimental studies have unlocked asymmetric allylic aminations of exceptionally broad utility and scope. Specifically, using racemic branched alkyl-substituted allylic acetate proelectrophiles, primary and secondary aliphatic or aromatic amines, including indoles, engage in highly regio- and enantioselective allylic amination. Additionally, unactivated nitronates were found to be competent nucleophilic partners for regio- and enantioselective allylic alkylation, enabling entry to β-stereogenic α-quaternary primary amines. Notably, these π-allyliridium-C,O-benzoate-catalyzed allylic substitutions, which display complete branched regioselectivity in reactions of alkyl-substituted allyl electrophiles, complement the scope of corresponding iridium phosphoramidite-catalyzed allylic aminations, which require aryl-substituted allyl electrophiles to promote high levels of branched regioselectivity. Computational, kinetic, ESI-CID-MS, and isotopic labeling studies were undertaken to understand the mechanism of these processes, including the origins of regio- and enantioselectivity. Isotopic labeling studies suggest that C-N bond formation occurs through outer-sphere addition to the π-allyl. DFT calculations corroborate C-N bond formation via outer-sphere addition and suggest that early transition states and distinct trans effects of diastereomeric chiral-at-iridium π-allyl complexes render the reaction less sensitive to steric effects, accounting for complete levels of branched regioselectivity in reactions of hindered amine and nitronate nucleophiles. Reaction progress kinetic analysis (RPKA) reveals a zero-order dependence on allyl acetate, a first-order dependence on the catalyst, and a fractional-order dependence on the amine. As corroborated by ESI-CID-MS analysis, the 0.4 kinetic order dependence on the amine may reflect the intervention of cesium-bridged amine dimers, which dissociate to form monomeric cesium amide nucleophiles. Hence, the requirement of cesium carbonate (vs lower alkali metal carbonates) in these processes may reside in cesium's capacity for Lewis acid-enhanced Brønsted acidification of the amine pronucleophile. Beyond the development of catalytic processes for the synthesis of novel chiral amines, the present research was conducted by graduate students who benefited from career development experiences associated with training in both academic and industrial laboratories.
Collapse
Affiliation(s)
- Craig E Stivala
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
40
|
Li CJ. Demetallation of organometallic and metal-mediated reactions. Innovation (N Y) 2022; 3:100262. [PMID: 35677887 PMCID: PMC9168150 DOI: 10.1016/j.xinn.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/15/2022] [Indexed: 12/02/2022] Open
Abstract
The use of stoichiometric organometallic reagents and stoichiometric metals formed the basis of vast majority of classical reactions for constructing carbon-carbon bonds. The indispensable requirement of stoichiometric metals for such reactions constitutes significant challenges in terms of resource sustainability, operational safety, and chemical-waste management. The recent developments in C-H functionalizations, hydrogenative alkene/alkyne addition to electrophiles, the hydrazone umpolung chemistry, and other emerging fields such as the electrosynthesis and photoredox chemistry provide potential solutions to overcome these inherent challenges.
Collapse
Affiliation(s)
- Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A0B8, Canada
| |
Collapse
|
41
|
Bellotti P, Huang HM, Faber T, Laskar R, Glorius F. Catalytic defluorinative ketyl-olefin coupling by halogen-atom transfer. Chem Sci 2022; 13:7855-7862. [PMID: 35865891 PMCID: PMC9258324 DOI: 10.1039/d2sc02732a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Ketyl-olefin coupling reactions stand as one of the fundamental chemical transformations in synthetic chemistry and have been widely employed in the generation of complex molecular architectures and natural product synthesis. However, catalytic ketyl-olefin coupling, until the recent development of photoredox chemistry and electrosynthesis through single-electron transfer mechanisms, has remained largely undeveloped. Herein, we describe a new approach to achieve catalytic ketyl-olefin coupling reactions by a halogen-atom transfer mechanism, which provides innovative and efficient access to various gem-difluorohomoallylic alcohols under mild conditions with broad substrate scope. Preliminary mechanistic experimental and computational studies demonstrate that this radical-to-polar crossover transformation could be achieved by sequentially orchestrated Lewis acid activation, halogen-atom transfer, radical addition, single-electron reduction and β-fluoro elimination.
Collapse
Affiliation(s)
- Peter Bellotti
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Huan-Ming Huang
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Teresa Faber
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Ranjini Laskar
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
42
|
Deng XH, Jiang JX, Jiang Q, Yang T, Chen B, He L, Chu WD, He CY, Liu QZ. CuH-Catalyzed Enantioselective Reductive Coupling of 1,3-Dienes and Trifluoromethyl Ketoimines or α-Iminoacetates. Org Lett 2022; 24:4586-4591. [PMID: 35714047 DOI: 10.1021/acs.orglett.2c01683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intermolecular addition of allylic copper species generated from diene and copper hydride remains elusive. Herein copper hydride catalyzed asymmetric cross reductive coupling of conjugated dienes and ketoimines including trifluoromethyl ketoimines and α-iminoacetates was first achieved using chiral Ph-BPE as the ligand, providing rapid access to structurally and optically enriched homoallylic amines containing two vicinal stereogenic centers with up to 95% yield, 99% ee, and 11:1 diastereoselectivities.
Collapse
Affiliation(s)
- Xue-Hua Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jia-Xi Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Qin Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ting Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang 550005, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
43
|
Chang X, Cheng X, Liu XT, Fu C, Wang WY, Wang CJ. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Chang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xiang Cheng
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xue-Tao Liu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Cong Fu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Wei-Yi Wang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Chun-Jiang Wang
- Wuhan University Department of Chemistry Bayi road 430072 wuhan CHINA
| |
Collapse
|
44
|
Zhang X, Ma W, Zhang J, Tang W, Xue D, Xiao J, Sun H, Wang C. Asymmetric Ruthenium‐Catalyzed Hydroalkylation of Racemic Allylic Alcohols for the Synthesis of Chiral Amino Acid Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203244. [DOI: 10.1002/anie.202203244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
- School of Basic Medical Science Ningxia Medical University Yinchuan 750004 China
| | - Jinyu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
45
|
Yuan J, Jain P, Antilla JC. Chiral Phosphoric Acid-Catalyzed Enantio- and Diastereoselective Allylboration of Aldehydes with β,γ-Substituted Allylboronates. J Org Chem 2022; 87:8256-8266. [PMID: 35657081 DOI: 10.1021/acs.joc.2c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic asymmetric addition of β,γ-substituted allylboronates to aldehydes has been described. Promoted by 5 mol % chiral phosphoric acid, the reactions were broadly applicable, scalable, and efficient, allowing for the formation of 3,4-anti/syn-homoallylic alcohols bearing adjacent tertiary or quaternary stereogenic centers in a highly enantio- and diastereoselective manner (≤99% ee and dr >20:1). The rigid chairlike transition state involving the chiral phosphoric acid contributed to the highly controlled reaction.
Collapse
Affiliation(s)
- Jinping Yuan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Pankaj Jain
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jon C Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.,School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
46
|
Zhang X, Ma W, Zhang J, Tang W, Xue D, Xiao J, Sun H, Wang C. Asymmetric Ruthenium‐Catalyzed Hydroalkylation of Racemic Allylic Alcohols for the Synthesis of Chiral Amino Acid Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
- School of Basic Medical Science Ningxia Medical University Yinchuan 750004 China
| | - Jinyu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
47
|
Yang X, Li X, Chen P, Liu G. Palladium(II)-Catalyzed Enantioselective Hydrooxygenation of Unactivated Terminal Alkenes. J Am Chem Soc 2022; 144:7972-7977. [PMID: 35468295 DOI: 10.1021/jacs.2c02753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel Pd(II)-catalyzed enantioselective Markovnikov hydrooxygenation of unactivated terminal alkenes using a substituted pyridinyl oxazoline (Pyox) ligand has been developed. Herein it was discovered that the (EtO)2MeSiH/BQ redox system is vital for the highly selective and efficient hydrooxygenation, where the alkylpalladium(II) species generated from enantioselective oxypalladation step is reduced by silane. This method provides efficient access to optically pure alcohol esters from easily available alkenes with excellent enantioselectivities and features a broad substrate scope.
Collapse
Affiliation(s)
- Xintuo Yang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiang Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
48
|
Meyer CC, Dubey ZJ, Krische MJ. Enantioselective Iridium-Catalyzed Reductive Coupling of Dienes with Oxetanones and N-Acyl-Azetidinones Mediated by 2-Propanol. Angew Chem Int Ed Engl 2022; 61:e202115959. [PMID: 35119714 PMCID: PMC8940717 DOI: 10.1002/anie.202115959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/26/2022]
Abstract
Cyclometallated iridium-PhanePhos complexes generated in situ from [Ir(cod)Cl]2 and (R)-PhanePhos catalyze 2-propanol-mediated reductive couplings of 2-substituted dienes with oxetanone and N-acyl-azetidinones to form branched homoallylic oxetanols and azetidinols with excellent control of regio- and enantioselectivity without C-C cleavage of the strained ring via enantiotopic π-facial selection of transient allyliridium nucleophiles. This work represents the first systematic study of enantioselective additions to symmetric ketones.
Collapse
Affiliation(s)
- Cole C. Meyer
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Zachary J. Dubey
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
49
|
Jung WO, Mai BK, Yoo M, Shields SWJ, Zbieg JR, Stivala CE, Liu P, Krische MJ. Kinetic, ESI-CID-MS and Computational Studies of π-Allyliridium C,O-Benzoate-Catalyzed Allylic Amination: Understanding the Effect of Cesium Ion. ACS Catal 2022; 12:3660-3668. [PMID: 36092640 PMCID: PMC9456326 DOI: 10.1021/acscatal.2c00470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism of π-allyliridium C,O-benzoate-catalyzed allylic amination was studied by (a) reaction progress kinetic analysis (RPKA), (b) tandem ESI-MS analysis, and (c) computational studies involving density functional theory (DFT) calculations. Reaction progress kinetic analysis (RPKA) reveals a zero-order dependence on allyl acetate, first-order dependence on catalyst and fractional-order dependence on amine. These data corroborate rapid ionization of the allylic acetate followed by turnover limiting C-N bond formation. To illuminate the origins of the 0.4 kinetic order dependence on amine, ESI-MS analyses of quaternary ammonium-labelled piperazine with multistage collision induced dissociation (CID) were conducted that corroborate intervention of cesium-bridged amine dimers that dissociate to form monomeric cesium amide nucleophiles. Computational data align with RPKA and ESI-CID-MS analyses and suggest early transition states mitigate the impact of steric factors, thus enabling formation of highly substituted C-N bonds with complete levels of branched regioselectivity. Specifically, trans-effects of the iridium complex facilitate nucleophilic attack at the more substituted allyl terminus trans to phosphorus with enantioselectivity governed by steric repulsions between the chiral bisphosphine ligand and the π-allyl of a dominant diastereomer of the stereogenic-at-metal complex. Beyond defining aspects of the mechanism of π-allyliridium C,O-benzoate-catalyzed allylic amination, these data reveal that a key feature of cesium carbonate not only lies in its enhanced basicity, but also its capacity for Lewis-acid enhanced Brønsted acidification of amines.
Collapse
Affiliation(s)
- Woo-Ok Jung
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Minjin Yoo
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Samuel W J Shields
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Jason R Zbieg
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Craig E Stivala
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
50
|
Krische MJ, Meyer CC, Dubey ZJ. Enantioselective Iridium‐Catalyzed Reductive Coupling of Dienes with Oxetanones and N‐Acyl‐Azetidinones Mediated by 2‐Propanol. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Joseph Krische
- University of Texas at Austin Chemistry and Biochemistry 105 E 24TH ST. STOP A5300 78712 Austin UNITED STATES
| | - Cole C. Meyer
- The University of Texas at Austin Chemistry UNITED STATES
| | | |
Collapse
|