1
|
Su J, Wang X, Li S, Wu X, Li M, Du F, Deng S, Shen J, Zhao Y, Xiao Z, Chen Y. Synthesis and antitumor evaluation of glycyrrhetinic acid-dithiocarbamate hybrids. Arch Pharm (Weinheim) 2025; 358:e2400421. [PMID: 39526492 DOI: 10.1002/ardp.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glycyrrhetinic acid (GA) is a naturally occurring triterpene compound. The aim of this study was to employ the pharmacophore hybrid strategy to merge GA with various dithiocarbamates and obtain novel compounds with better antitumor activities. We present a two-step synthetic protocol wherein the GA derivative underwent reaction with carbon disulfide and various secondary amines in a one-pot manner under mild conditions, facilitating the preparation of a series of structurally novel GA-dithiocarbamate derivatives. Bioassay screening revealed that the representative compound 3c demonstrated the capacity to reduce the mitochondrial membrane potential in Hep3B and Huh-7 cells, induce nuclear apoptosis, inhibit invasion and migration, and prompt both early and late apoptosis. Furthermore, our research findings indicated that this apoptotic phenomenon may be associated with the expression of Bcl-2, Bax, Bak, PARP, and cleaved-PARP proteins. Utilizing network pharmacology for predicting core targets and signaling pathways of compound 3c for hepatocellular carcinoma (HCC) treatment involved employing molecular docking models to demonstrate high affinity between compound and target protein. In conjunction with Western blot analysis, compound 3c may impact HCC through the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sha Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
2
|
Okpara M, Vaaltyn MC, Watson JL, Alhassan M, Albericio F, de la Torre BG, Clarke DJ, Veale CGL, Edkins AL. Modulators of the Hop-HSP90 Protein-Protein Interaction Disrupt KSHV Lytic Replication. ACS Infect Dis 2024; 10:3853-3867. [PMID: 39475219 PMCID: PMC11555673 DOI: 10.1021/acsinfecdis.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/09/2024]
Abstract
The central role of the chaperome in maintaining cellular proteostasis has seen numerous viral families evolve to parasitically exploit host chaperones in their life cycle. The HSP90 chaperone protein and its cochaperone Hop have both individually been shown to be essential factors for Kaposi sarcoma-associated herpesvirus (KSHV) lytic replication. Given the fundamental regulatory role that protein-protein interactions (PPIs) play in cellular biology, we reasoned that disrupting the Hop-HSP90 PPI may provide a new host-based target for inhibiting KSHV lytic replication. This study expands upon a previous report of non-natural peptides, which were found to disrupt the association between the HopTPR2A domain and its interacting HSP90CTD. Here, in addition to providing insight into the structure-activity relationships of PPI inhibition, we show disruption of the full-length Hop-HSP90 PPI. The inhibitory peptides selectively engaged the HopTPR2A domain in cell lysates and when tethered to a cell-penetrating peptide acted as noncytotoxic inhibitors of KSHV lytic replication by lowering the viral load, preventing the production of infectious virions, and reducing the expression of KSHV lytic genes. In addition to tentative evidence of Hop-HSP90 PPI as a much-needed target for KSHV drug discovery, this study represents an important step in understanding viral interactions with the host proteostasis machinery.
Collapse
Affiliation(s)
- Michael
O. Okpara
- Biomedical
Biotechnology Research Unit (BioBRU), Department of Biochemistry and
Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Michaelone C. Vaaltyn
- Biomedical
Biotechnology Research Unit (BioBRU), Department of Biochemistry and
Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Jessica L. Watson
- Biomedical
Biotechnology Research Unit (BioBRU), Department of Biochemistry and
Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Mahama Alhassan
- School
of Chemistry and Physics, University of
Kwa-Zulu Natal, Durban, Westville 4001, South Africa
| | - Fernando Albericio
- School
of Chemistry and Physics, University of
Kwa-Zulu Natal, Durban, Westville 4001, South Africa
| | - Beatriz G. de la Torre
- School
of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4041, South Africa
| | - David J. Clarke
- EaStCHEM,
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh EH93FJ, United Kingdom
| | - Clinton G. L. Veale
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Adrienne L. Edkins
- Biomedical
Biotechnology Research Unit (BioBRU), Department of Biochemistry and
Microbiology, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
3
|
Zhou J, Liu X, Zhang D, Ma G. Genetically Encoded Microtubule Binders for Single-Cell Interrogation of Cytoskeleton Dynamics and Protein Activity. ACS Sens 2024; 9:4758-4766. [PMID: 39147600 PMCID: PMC11443526 DOI: 10.1021/acssensors.4c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Microtubule (MT) dynamics is tightly regulated by microtubule-associated proteins (MAPs) and various post-translational modifications (PTMs) of tubulin. Here, we introduce OligoMT and OligoTIP as genetically encoded oligomeric MT binders designed for real-time visualization and manipulation of MT behaviors within living cells. OligoMT acts as a reliable marker to label the MT cytoskeleton, while OligoTIP allows for live monitoring of the growing MT plus-ends. These engineered MT binders have been successfully utilized to label the MT network, monitor cell division, track MT plus-ends, and assess the effect of tubulin acetylation on the MT stability at the single-cell level. Moreover, OligoMT and OligoTIP can be repurposed as biosensors for quantitative assessment of drug actions and for reporting enzymatic activity. Overall, these engineered MT binders hold promise for advancing the mechanistic dissection of MT biology and have translational applications in cell-based high-throughput drug discovery efforts.
Collapse
Affiliation(s)
- Joseph Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Xiaoxuan Liu
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Dekai Zhang
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Guolin Ma
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| |
Collapse
|
4
|
Mathenjwa GS, Chakraborty A, Chakraborty A, Muller R, Akerman MP, Bode ML, Edkins AL, Veale CGL. Rationally modified SNX-class Hsp90 inhibitors disrupt extracellular fibronectin assembly without intracellular Hsp90 activity. RSC Med Chem 2024:d4md00501e. [PMID: 39290382 PMCID: PMC11403943 DOI: 10.1039/d4md00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Despite Hsp90's well documented promise as a target for developing cancer chemotherapeutics, its inhibitors have struggled to progress through clinical trials. This is, in part, attributed to the cytoprotective compensatory heat shock response (HSR) stimulated through intracellular Hsp90 inhibition. Beyond its intracellular role, secreted extracellular Hsp90 (eHsp90) interacts with numerous pro-oncogenic extracellular clients. This includes fibronectin, which in the tumour microenvironment enhances cell invasiveness and metastasis. Through the rational modification of known Hsp90 inhibitors (SNX2112 and SNX25a) we developed four Hsp90 inhibitory compounds, whose alterations restricted their interaction with intracellular Hsp90 and did not stimulate the HSR. Two of the modified cohort (compounds 10 and 11) were able to disrupt the assembly of the extracellular fibronectin network at non-cytotoxic concentrations, and thus represent promising new tool compounds for studying the druggability of eHsp90 as a target for inhibition of tumour invasiveness and metastasis.
Collapse
Affiliation(s)
- Gciniwe S Mathenjwa
- Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Abir Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Abantika Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Ronel Muller
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Mathew P Akerman
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Moira L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag 3, PO WITS 2050 Johannesburg South Africa
| | - Adrienne L Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Clinton G L Veale
- Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
| |
Collapse
|
5
|
Feng Q, Zhang X, Zhang N, Gu H, Wang N, Chen J, Yuan X, Wang L. The dissolution, reassembly and further clearance of amyloid-β fibrils by tailor-designed dissociable nanosystem for Alzheimer's disease therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230048. [PMID: 38939864 PMCID: PMC11189570 DOI: 10.1002/exp.20230048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/04/2023] [Indexed: 06/29/2024]
Abstract
The fibrillation of amyloid-β (Aβ) is the critical causal factor in Alzheimer's disease (AD), the dissolution and clearance of which are promising for AD therapy. Although many Aβ inhibitors are developed, their low Aβ-binding affinity results in unsatisfactory effect. To solve this challenge, the Aβ sequence-matching strategy is proposed to tail-design dissociable nanosystem (B6-PNi NPs). Herein, B6-PNi NPs aim to improve Aβ-binding affinity for effective dissolution of amyloid fibrils, as well as to interfere with the in vivo fate of amyloid for Aβ clearance. Results show that B6-PNi NPs decompose into small nanostructures and expose Aβ-binding sites in response to AD microenvironment, and then capture Aβ via multiple interactions, including covalent linkage formed by nucleophilic substitution reaction. Such high Aβ-binding affinity disassembles Aβ fibrils into Aβ monomers, and induces the reassembly of Aβ&nanostructure composite, thereby promoting microglial Aβ phogocytosis/clearance via Aβ receptor-mediated endocytosis. After B6-PNi NPs treatment, the Aβ burden, neuroinflammation and cognitive impairments are relieved in AD transgenic mice. This work provides the Aβ sequence-matching strategy for Aβ inhibitor design in AD treatment, showing meaningful insight in biomedicine.
Collapse
Affiliation(s)
- Qianhua Feng
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhouChina
| | - Xueli Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Nan Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhouChina
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical EngineeringUniversity of New HavenWest HavenUSA
| | - Ning Wang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Jing Chen
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Xiaomin Yuan
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Lei Wang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhouChina
| |
Collapse
|
6
|
Osorio-Cruz Y, Olivares-Corichi IM, Correa-Basurto J, González-Garrido JA, Pereyra-Vergara F, Rivera G, García-Sánchez JR. The Autoxidized Mixture of (-)-Epicatechin Contains Procyanidins and Shows Antiproliferative and Apoptotic Activity in Breast Cancer Cells. Pharmaceuticals (Basel) 2024; 17:258. [PMID: 38399473 PMCID: PMC10892779 DOI: 10.3390/ph17020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
For this study, procyanidins generated through the autoxidation of (-)-epicatechin (Flavan-3-ol) under mildly acidic conditions (pH = 6.0) were characterized with ultra high-performance liquid chromatography (UHPLC) coupled with tandem mass spectrometry (MS/MS). Two procyanidins (types A and B) and a mix of oligomers were generated through the autoxidation of (-)-epicatechin. The antiproliferative activity of this mixture of procyanidins on MDA-MB-231, MDA-MB-436, and MCF-7 breast cancer cells was evaluated. The results indicate that the procyanidin mixture inhibited the proliferation of breast cancer cells, where the activity of the procyanidin mixture was stronger than that of (-)-epicatechin. Moreover, the mechanism underlying the antiproliferative activity of procyanidins was investigated. The resulting data demonstrate that the procyanidins induced apoptotic cell death in a manner selective to cancerous cells. In particular, they caused the activation of intrinsic and extrinsic apoptotic pathways in the breast cancer cells. The findings obtained in this study demonstrate that the generation of procyanidins in vitro by the autoxidation of (-)-epicatechin has potential for the development of anti-breast cancer agents.
Collapse
Affiliation(s)
- Yazmin Osorio-Cruz
- Laboratorio de Oncología Molecular y Estrés Oxidativo de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; (Y.O.-C.); (F.P.-V.)
| | - Ivonne María Olivares-Corichi
- Laboratorio de Oncología Molecular y Estrés Oxidativo de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; (Y.O.-C.); (F.P.-V.)
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - José Arnold González-Garrido
- Laboratorio de Bioquímica y Biología Molecular, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa KM. 1 Colonia la Esmeralda, Villahermosa 86690, Mexico;
| | - Fernando Pereyra-Vergara
- Laboratorio de Oncología Molecular y Estrés Oxidativo de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; (Y.O.-C.); (F.P.-V.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - José Rubén García-Sánchez
- Laboratorio de Oncología Molecular y Estrés Oxidativo de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; (Y.O.-C.); (F.P.-V.)
| |
Collapse
|
7
|
Yeh TY, Chang MF, Kan YY, Chiang H, Hsieh ST. HSP27 Modulates Neuropathic Pain by Inhibiting P2X3 Degradation. Mol Neurobiol 2024; 61:707-724. [PMID: 37656312 DOI: 10.1007/s12035-023-03582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
The role of heat shock protein 27 (HSP27), a chaperone, in neuropathic pain after nerve injury has not been systematically surveyed despite its neuroprotective and regeneration-promoting effects. In this study, we found that HSP27 expression in sensory neurons of the dorsal root ganglia (DRG) mediated nerve injury-induced neuropathic pain. Neuropathic pain behaviors were alleviated by silencing HSP27 in the DRG of a rat spinal nerve ligation (SNL) model. Local injection of an HSP27-overexpression construct into the DRG of naïve rats elicited neuropathic pain behaviors. HSP27 interacted with a purinergic receptor, P2X3, and their expression patterns corroborated the induction and reversal of neuropathic pain according to two lines of evidence: colocalization immunohistochemically and immunoprecipitation biochemically. In a cell model cotransfected with HSP27 and P2X3, the degradation rate of P2X3 was reduced in the presence of HSP27. Such an alteration was mediated by reducing P2X3 ubiquitination in SNL rats and was reversed after silencing HSP27 in the DRGs of SNL rats. In summary, the interaction of HSP27 with P2X3 provides a new mechanism of injury-induced neuropathic pain that could serve as an alternative therapeutic target.
Collapse
Affiliation(s)
- Ti-Yen Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ming-Fong Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Yu-Yu Kan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | | | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Department of Neurology, National Taiwan University Hospital, Taipei, 10002, Taiwan.
| |
Collapse
|
8
|
Geng SL, Zhao XJ, Zhang X, Zhang JH, Mi CL, Wang TY. Recombinant therapeutic proteins degradation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2024; 108:182. [PMID: 38285115 PMCID: PMC10824870 DOI: 10.1007/s00253-024-13008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiao-Jie Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ji-Hong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
9
|
Lu H, Yang X, Wang H. Tuning Phase Transition of Molecular Self-Assembly by Artificial Chaperones through Aromatic-Aromatic Interactions. Biomacromolecules 2024; 25:466-473. [PMID: 38147794 DOI: 10.1021/acs.biomac.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The molecular chaperones are essential and play significant roles in controlling the protein phase transition and maintaining physiological homeostasis. However, manipulating phase transformation in biomimetic peptide self-assembly is still challenging. This work shows that an artificial chaperone modulates the energy landscape of supramolecular polymerization, thus controlling the phase transition of amyloid-like assemblies from crystals to hydrogels to solution. The absence of a chaperone allows the NapP to form crystals, while the presence of the chaperone biases the pathway to form nanofibrous hydrogels to soluble oligomers by adjusting the chaperone ratios. Mechanistic studies reveal that the aromatic-aromatic interaction is the key to trapping the molecules in a higher energy fold. Adding the chaperone relieves this restriction, lowers the energy barrier, and transforms the crystal into a hydrogel. This phase transformation can also be achieved in the macromolecular crowding environment, thus providing new insights into understanding molecular self-assembly in multiple component systems.
Collapse
Affiliation(s)
- Honglei Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
| | - Xuejiao Yang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
10
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
11
|
Castelli M, Magni A, Bonollo G, Pavoni S, Frigerio F, Oliveira ASF, Cinquini F, Serapian SA, Colombo G. Molecular mechanisms of chaperone-directed protein folding: Insights from atomistic simulations. Protein Sci 2023; 33:e4880. [PMID: 38145386 PMCID: PMC10895457 DOI: 10.1002/pro.4880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Molecular chaperones, a family of proteins of which Hsp90 and Hsp70 are integral members, form an essential machinery to maintain healthy proteomes by controlling the folding and activation of a plethora of substrate client proteins. This is achieved through cycles in which Hsp90 and Hsp70, regulated by task-specific co-chaperones, process ATP and become part of a complex network that undergoes extensive compositional and conformational variations. Despite impressive advances in structural knowledge, the mechanisms that regulate the dynamics of functional assemblies, their response to nucleotides, and their relevance for client remodeling are still elusive. Here, we focus on the glucocorticoid receptor (GR):Hsp90:Hsp70:co-chaperone Hop client-loading and the GR:Hsp90:co-chaperone p23 client-maturation complexes, key assemblies in the folding cycle of glucocorticoid receptor (GR), a client strictly dependent upon Hsp90/Hsp70 for activity. Using a combination of molecular dynamics simulation approaches, we unveil with unprecedented detail the mechanisms that underpin function in these chaperone machineries. Specifically, we dissect the processes by which the nucleotide-encoded message is relayed to the client and how the distinct partners of the assemblies cooperate to (pre)organize partially folded GR during Loading and Maturation. We show how different ligand states determine distinct dynamic profiles for the functional interfaces defining the interactions in the complexes and modulate their overall flexibility to facilitate progress along the chaperone cycle. Finally, we also show that the GR regions engaged by the chaperone machinery display peculiar energetic signatures in the folded state, which enhance the probability of partial unfolding fluctuations. From these results, we propose a model where a dynamic cross-talk emerges between the chaperone dynamics states and remodeling of client-interacting regions. This factor, coupled to the highly dynamic nature of the assemblies and the conformational heterogeneity of their interactions, provides the basis for regulating the functions of distinct assemblies during the chaperoning cycle.
Collapse
Affiliation(s)
| | - Andrea Magni
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy
| | | | - Silvia Pavoni
- Department of Physical Chemistry, R&D Eni SpA, San Donato Milanese, Italy
| | - Francesco Frigerio
- Department of Physical Chemistry, R&D Eni SpA, San Donato Milanese, Italy
| | - A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Fabrizio Cinquini
- Upstream & Technical Services - TECS/STES - Eni Spa, San Donato Milanese, Italy
| | | | | |
Collapse
|
12
|
Qiao H, Xu Q, Xu Y, Zhao Y, He N, Tang J, Zhao J, Liu Y. Molecular chaperones in stroke-induced immunosuppression. Neural Regen Res 2023; 18:2638-2644. [PMID: 37449602 DOI: 10.4103/1673-5374.373678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome. Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections, such as urinary tract infections and stroke-associated pneumonia, worsening prognosis. Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains, refolding misfolded proteins, and targeting misfolded proteins for degradation. Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones, cochaperones, and their associated pathways. This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.
Collapse
Affiliation(s)
- Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| |
Collapse
|
13
|
Xu J, Hu S, Chen Q, Shu L, Wang P, Wang J. Integrated bioinformatics analysis of noncoding RNAs with tumor immune microenvironment in gastric cancer. Sci Rep 2023; 13:15006. [PMID: 37696973 PMCID: PMC10495442 DOI: 10.1038/s41598-023-41444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023] Open
Abstract
In recent years, molecular and genetic research hotspots of gastric cancer have been investigated, including microRNAs, long noncoding RNAs (lncRNAs) and messenger RNA (mRNAs). The study on the role of lncRNAs may help to develop personalized treatment and identify potential prognostic biomarkers in gastric cancer. The RNA-seq and miRNA-seq data of gastric cancer were downloaded from the TCGA database. Differential analysis of RNA expression between gastric cancer samples and normal samples was performed using the edgeR package. The ceRNA regulatory network was visualized using Cytoscape. KEGG pathway analysis of mRNAs in the ceRNA network was performed using the clusterProfiler package. CIBERSORT was used to distinguish 22 immune cell types and the prognosis-related genes and immune cells were determined using Kaplan-Meier and Cox proportional hazard analyses. To estimate these nomograms, we used receiver operating characteristic and calibration curve studies. The ceRNA regulation network of gastric cancer was built in this study, and the genes in the network were analyzed for prognosis. A total of 980 lncRNAs were differentially expressed, of which 774 were upregulated and 206 were downregulated. A survival study identified 15 genes associated with gastric cancer prognosis, including VCAN-AS1, SERPINE1, AL139002.1, LINC00326, AC018781.1, C15orf54, hsa-miR-145. Monocytes and Neutrophils were associated with the survival rate of gastric cancer. Our research uncovers new ceRNA network for the detection, treatment, and monitoring of gastric cancer.
Collapse
Affiliation(s)
- Jun Xu
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shengnan Hu
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiuli Chen
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Lilu Shu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China.
| | - Jianjiang Wang
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
14
|
Liao Y, Liu Y, Yu C, Lei Q, Cheng J, Kong W, Yu Y, Zhuang X, Sun W, Yin S, Cai G, Huang H. HSP90β Impedes STUB1-Induced Ubiquitination of YTHDF2 to Drive Sorafenib Resistance in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302025. [PMID: 37515378 PMCID: PMC10520652 DOI: 10.1002/advs.202302025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/06/2023] [Indexed: 07/30/2023]
Abstract
YTH domain family 2 (YTHDF2) is the first identified N6-methyladenosine (m6 A) reader that regulates the status of mRNA. It has been reported that overexpressed YTHDF2 promotes carcinogenesis; yet, its role in hepatocellular carcinoma (HCC) is elusive. Herein, it is demonstrated that YTHDF2 is upregulated and can predict poor outcomes in HCC. Decreased ubiquitination levels of YTHDF2 contribute to the upregulation of YTHDF2. Furthermore, heat shock protein 90 beta (HSP90β) and STIP1 homology and U-box-containing protein 1 (STUB1) physically interact with YTHDF2 in the cytoplasm. Mechanically, the large and small middle domain of HSP90β is required for its interaction with STUB1 and YTHDF2. HSP90β inhibits the STUB1-induced degradation of YTHDF2 to elevate the expression of YTHDF2 and to further boost the proliferation and sorafenib resistance of HCC. Moreover, HSP90β and YTHDF2 are upregulated, while STUB1 is downregulated in HCC tissues. The expression of HSP90β is positively correlated with the YTHDF2 protein level, whereas the expression of STUB1 is negatively correlated with the protein levels of YTHDF2 and HSP90β. These findings deepen the understanding of how YTHDF2 is regulated to drive HCC progression and provide potential targets for treating HCC.
Collapse
Affiliation(s)
- Yuning Liao
- Affiliated Cancer Hospital & institute of Guangzhou Medical UniversityGuangzhou510095China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Yuan Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Cuifu Yu
- Shenshan Medical CenterMemorial Hospital of Sun Yat‐sen UniversityShanwei516600China
| | - Qiucheng Lei
- Department of Hepatopancreatic SurgeryThe First People's Hospital of FoshanFoshan528000China
| | - Ji Cheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Weiyao Kong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Yuanhui Yu
- KingMed School of Laboratory MedicineGuangzhou Medical UniversityGuangzhou511436China
| | - Xuefen Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Wenshuang Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Shusha Yin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Gengxi Cai
- Department of Breast SurgeryThe First People's Hospital of FoshanFoshan528000China
| | - Hongbiao Huang
- Affiliated Cancer Hospital & institute of Guangzhou Medical UniversityGuangzhou510095China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| |
Collapse
|
15
|
Nadel CM, Thwin AC, Callahan M, Lee K, Connelly E, Craik CS, Southworth DR, Gestwicki JE. The E3 Ubiquitin Ligase, CHIP/STUB1, Inhibits Aggregation of Phosphorylated Proteoforms of Microtubule-associated Protein Tau (MAPT). J Mol Biol 2023; 435:168026. [PMID: 37330289 PMCID: PMC10491737 DOI: 10.1016/j.jmb.2023.168026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Hyper-phosphorylated tau accumulates as insoluble fibrils in Alzheimer's disease (AD) and related dementias. The strong correlation between phosphorylated tau and disease has led to an interest in understanding how cellular factors discriminate it from normal tau. Here, we screen a panel of chaperones containing tetratricopeptide repeat (TPR) domains to identify those that might selectively interact with phosphorylated tau. We find that the E3 ubiquitin ligase, CHIP/STUB1, binds 10-fold more strongly to phosphorylated tau than unmodified tau. The presence of even sub-stoichiometric concentrations of CHIP strongly suppresses aggregation and seeding of phosphorylated tau. We also find that CHIP promotes rapid ubiquitination of phosphorylated tau, but not unmodified tau, in vitro. Binding to phosphorylated tau requires CHIP's TPR domain, but the binding mode is partially distinct from the canonical one. In cells, CHIP restricts seeding by phosphorylated tau, suggesting that it could be an important barrier in cell-to-cell spreading. Together, these findings show that CHIP recognizes a phosphorylation-dependent degron on tau, establishing a pathway for regulating the solubility and turnover of this pathological proteoform.
Collapse
Affiliation(s)
- Cory M Nadel
- Departments of Pharmaceutical Chemistry and University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA
| | - Aye C Thwin
- Biochemistry & Biophysics and the University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA
| | - Matthew Callahan
- Departments of Pharmaceutical Chemistry and University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA
| | - Kanghyun Lee
- Biochemistry & Biophysics and the University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA
| | - Emily Connelly
- Departments of Pharmaceutical Chemistry and University of California San Francisco, San Francisco, CA 94508, USA
| | - Charles S Craik
- Departments of Pharmaceutical Chemistry and University of California San Francisco, San Francisco, CA 94508, USA
| | - Daniel R Southworth
- Biochemistry & Biophysics and the University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA.
| | - Jason E Gestwicki
- Departments of Pharmaceutical Chemistry and University of California San Francisco, San Francisco, CA 94508, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94508, USA.
| |
Collapse
|
16
|
Abdul NS, Ahmad Alrashed N, Alsubaie S, Albluwi H, Badr Alsaleh H, Alageel N, Ghaleb Salma R. Role of Extracellular Heat Shock Protein 90 Alpha in the Metastasis of Oral Squamous Cell Carcinoma: A Systematic Review. Cureus 2023; 15:e38514. [PMID: 37273315 PMCID: PMC10238764 DOI: 10.7759/cureus.38514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Heat shock proteins (HSPs) are expressed in a variety of cancers in human beings and are correlated with differentiation, proliferation, and metastasis. Head and neck squamous cell carcinomas, like other tumors, are exposed to environmental stress, and lack of oxygen and nutrients, and in such situations, hypoxic inducible factor (HIF) initiates the expression of genes causing angiogenesis, invasion, and metastasis. Extracellular heat shock proteins 90 alpha (eHSP90α) are overexpressed in cancers leading to tumor progression and metastasis. Hence, this review will focus on the role of eHSP90α in the metastasis of oral squamous cell carcinomas (OSCC). Different online databases were scoured for relevant articles from October 2000 to October 2022. A total of 342 articles along with duplicates were excluded. The retrieved 45 articles were studied and 39 of them were found to be not eligible as they lacked intervention and their outcome measures did not match with the present review. The final qualitative evaluation included four articles that fulfilled the eligibility criterion. A definitive expression of HSP90 was implicated, as seen in three studies, suggesting its probable role as a prognostic marker for OSCC, but no conclusive evidence was found. The present review suggests that eHSP90α plays a significant role in OSCC. Though a positive association was found between HSP90 expression and its possible correlation with metastasis, affirmative evidence can only be derived with the conduction of many more research studies and their subsequent synthesis of results.
Collapse
Affiliation(s)
- Nishath Sayed Abdul
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Riyadh Elm University, Riyadh, SAU
| | - Najla Ahmad Alrashed
- Department of Dentistry, College of Dentistry, Riyadh Elm University, Riyadh, SAU
| | - Sara Alsubaie
- Department of Dentistry, College of Dentistry, Riyadh Elm University, Riyadh, SAU
| | - Hadeel Albluwi
- Department of Dentistry, College of Dentistry, Riyadh Elm University, Riyadh, SAU
| | - Hessa Badr Alsaleh
- Department of Dentistry, College of Dentistry, Riyadh Elm University, Riyadh, SAU
| | - Norah Alageel
- Department of Dentistry, College of Dentistry, Riyadh Elm University, Riyadh, SAU
| | - Ra'ed Ghaleb Salma
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Riyadh Elm University, Riyadh, SAU
| |
Collapse
|
17
|
Mulholland C, Jestřábová I, Sett A, Ondruš M, Sýkorová V, Manzanares CL, Šimončík O, Muller P, Hocek M. The selection of a hydrophobic 7-phenylbutyl-7-deazaadenine-modified DNA aptamer with high binding affinity for the Heat Shock Protein 70. Commun Chem 2023; 6:65. [PMID: 37024672 PMCID: PMC10079658 DOI: 10.1038/s42004-023-00862-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Nucleic acids aptamers often fail to efficiently target some proteins because of the hydrophilic character of the natural nucleotides. Here we present hydrophobic 7-phenylbutyl-7-deaadenine-modified DNA aptamers against the Heat Shock Protein 70 that were selected via PEX and magnetic bead-based SELEX. After 9 rounds of selection, the pool was sequenced and a number of candidates were identified. Following initial screening, two modified aptamers were chemically synthesised in-house and their binding affinity analysed by two methods, bio-layer interferometry and fluorescent-plate-based binding assay. The binding affinities of the modified aptamers were compared with that of their natural counterparts. The resulting modified aptamers bound with higher affinity (low nanomolar range) to the Hsp70 than their natural sequence (>5 µM) and hence have potential for applications and further development towards Hsp70 diagnostics or even therapeutics.
Collapse
Affiliation(s)
- Catherine Mulholland
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
| | - Ivana Jestřábová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, Prague, 12843, Czech Republic
| | - Arghya Sett
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, Prague, 12843, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
| | - C Lorena Manzanares
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
| | - Oliver Šimončík
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Petr Muller
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic.
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, Prague, 12843, Czech Republic.
| |
Collapse
|
18
|
Dowling NV, Naumann TA, Price NPJ, Rose DR. Crystal structure of a polyglycine hydrolase determined using a RoseTTAFold model. Acta Crystallogr D Struct Biol 2023; 79:168-176. [PMID: 36762862 PMCID: PMC9912923 DOI: 10.1107/s2059798323000311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Polyglycine hydrolases (PGHs) are secreted fungal proteases that cleave the polyglycine linker of Zea mays ChitA, a defensive chitinase, thus overcoming one mechanism of plant resistance to infection. Despite their importance in agriculture, there has been no previous structural characterization of this family of proteases. The objective of this research was to investigate the proteolytic mechanism and other characteristics by structural and biochemical means. Here, the first atomic structure of a polyglycine hydrolase was identified. It was solved by X-ray crystallography using a RoseTTAFold model, taking advantage of recent technical advances in structure prediction. PGHs are composed of two domains: the N- and C-domains. The N-domain is a novel tertiary fold with an as-yet unknown function that is found across all kingdoms of life. The C-domain shares structural similarities with class C β-lactamases, including a common catalytic nucleophilic serine. In addition to insights into the PGH family and its relationship to β-lactamases, the results demonstrate the power of complementing experimental structure determination with new computational techniques.
Collapse
Affiliation(s)
- Nicole V. Dowling
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Todd A. Naumann
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL 61604, USA
| | - Neil P. J. Price
- Renewable Product Technology Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL 61604, USA
| | - David R. Rose
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
19
|
Torielli L, Serapian SA, Mussolin L, Moroni E, Colombo G. Integrating Protein Interaction Surface Prediction with a Fragment-Based Drug Design: Automatic Design of New Leads with Fragments on Energy Surfaces. J Chem Inf Model 2023; 63:343-353. [PMID: 36574607 PMCID: PMC9832486 DOI: 10.1021/acs.jcim.2c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) have emerged in the past years as significant pharmacological targets in the development of new therapeutics due to their key roles in determining pathological pathways. Herein, we present fragments on energy surfaces, a simple and general design strategy that integrates the analysis of the dynamic and energetic signatures of proteins to unveil the substructures involved in PPIs, with docking, selection, and combination of drug-like fragments to generate new PPI inhibitor candidates. Specifically, structural representatives of the target protein are used as inputs for the blind physics-based prediction of potential protein interaction surfaces using the matrix of low coupling energy decomposition method. The predicted interaction surfaces are subdivided into overlapping windows that are used as templates to direct the docking and combination of fragments representative of moieties typically found in active drugs. This protocol is then applied and validated using structurally diverse, important PPI targets as test systems. We demonstrate that our approach facilitates the exploration of the molecular diversity space of potential ligands, with no requirement of prior information on the location and properties of interaction surfaces or on the structures of potential lead compounds. Importantly, the hit molecules that emerge from our ab initio design share high chemical similarity with experimentally tested active PPI inhibitors. We propose that the protocol we describe here represents a valuable means of generating initial leads against difficult targets for further development and refinement.
Collapse
Affiliation(s)
- Luca Torielli
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia27100, Italy
| | - Stefano A. Serapian
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia27100, Italy
| | - Lara Mussolin
- Department
of Woman’s and Child’s Health, Pediatric Hematology,
Oncology and Stem Cell Transplant Center, University of Padua, Via Giustiniani, 3, Padua35128, Italy,Istituto
di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti, 4 F, Padova35127, Italy
| | | | - Giorgio Colombo
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia27100, Italy,
| |
Collapse
|
20
|
Yang M, Li C, Li Y, Cheng C, Shi M, Yin L, Xue H, Liu Y. Design, synthesis, biological evaluation and molecular docking study of 2,4-diarylimidazoles and 2,4-bis(benzyloxy)-5-arylpyrimidines as novel HSP90 N-terminal inhibitors. J Enzyme Inhib Med Chem 2022; 37:2551-2565. [PMID: 36120957 PMCID: PMC9518286 DOI: 10.1080/14756366.2022.2124407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The molecular chaperone HSP90 plays an essential role in cancer occurrence and development. Therefore, it is an important target for the development of anticancer drugs. 1,3-Dibenzyl-2-aryl imidazolidine (8) is a previously reported inhibitor of HSP90; however, its anticancer activity is poor. In this work, chemical modification of 8 led to the discovery of 2,4-diarylimidazoles and 2,4-bis(benzyloxy)-5-arylpyrimidines as two types of novel HSP90 N-terminal inhibitors. 16l and 22k exhibited antiproliferative activity against multiple breast cancer cell lines with IC50 values at the low micromolar level. 16l and 22k induced significant degradation of the client proteins AKT and ERK and a lower level of the heat shock response in comparison with tanespimycin (17-AAG). 22k exhibited a strong affinity for the HSP90α N-terminus with an IC50 value of 0.21 μM. A molecular docking study revealed that 16l and 22k successfully bind to the geldanamycin binding site at the N-terminus of HSP90α.
Collapse
Affiliation(s)
- Man Yang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Chenyao Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yajing Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Chen Cheng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Meiyun Shi
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Lei Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Hongyu Xue
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yajun Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| |
Collapse
|
21
|
Sun H, Wu M, Wang M, Zhang X, Zhu J. The regulatory role of endoplasmic reticulum chaperone proteins in neurodevelopment. Front Neurosci 2022; 16:1032607. [DOI: 10.3389/fnins.2022.1032607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest tubular reticular organelle spanning the cell. As the main site of protein synthesis, Ca2+ homeostasis maintenance and lipid metabolism, the ER plays a variety of essential roles in eukaryotic cells, with ER molecular chaperones participate in all these processes. In recent years, it has been reported that the abnormal expression of ER chaperones often leads to a variety of neurodevelopmental disorders (NDDs), including abnormal neuronal migration, neuronal morphogenesis, and synaptic function. Neuronal development is a complex and precisely regulated process. Currently, the mechanism by which neural development is regulated at the ER level remains under investigation. Therefore, in this work, we reviewed the recent advances in the roles of ER chaperones in neural development and developmental disorders caused by the deficiency of these molecular chaperones.
Collapse
|
22
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
23
|
Sklirou AD, Gianniou DD, Karousi P, Cheimonidi C, Papachristopoulou G, Kontos CK, Scorilas A, Trougakos IP. High mRNA Expression Levels of Heat Shock Protein Family B Member 2 (HSPB2) Are Associated with Breast Cancer Patients’ Relapse and Poor Survival. Int J Mol Sci 2022; 23:ijms23179758. [PMID: 36077156 PMCID: PMC9456243 DOI: 10.3390/ijms23179758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that contribute to the maintenance of proteome integrity and functionality. Recent evidence suggests that sHSPs are ubiquitously expressed in numerous types of tumors and have been proposed to be implicated in oncogenesis and malignant progression. Heat shock protein family B member 2 (HSPB2) is a member of the sHSPs, which is found to be expressed, among others, in human breast cancer cell lines and constitutes an inhibitor of apical caspase activation in the extrinsic apoptotic pathway. In this study, we investigated the potential prognostic significance of HSPB2 mRNA expression levels in breast cancer, which represents the most frequent malignancy in females and one of the three most common cancer types worldwide. To this end, malignant breast tumors along with paired non-cancerous breast tissue specimens were used. HSPB2 expression levels were quantified in these two cohorts using a sensitive and accurate SYBR green-based quantitative real-time polymerase chain reaction (q-RT-PCR). Extensive biostatistical analyses were performed including Kaplan–Meier and Cox regression survival analyses for the assessment of the results. The significant downregulation of HSPB2 gene expression was revealed in breast tumors compared to their adjacent non-cancerous breast tissues. Notably, high HSPB2 mRNA expression predicts poor disease-free survival and overall survival of breast cancer patients. Multivariate Cox regression analysis revealed that HSPB2 mRNA overexpression is a significant predictor of poor prognosis in breast cancer, independent of other clinicopathological factors. In conclusion, high HSPB2 mRNA expression levels are associated with breast cancer patients’ relapse and poor survival.
Collapse
Affiliation(s)
- Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
- Correspondence: (A.S.); (I.P.T.); Tel.: +30-210-727-4306 (A.S.); +30-210-727-4555 (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: (A.S.); (I.P.T.); Tel.: +30-210-727-4306 (A.S.); +30-210-727-4555 (I.P.T.)
| |
Collapse
|
24
|
Zhu L, Zhang MQ, Jing HR, Zhang XP, Xu LL, Ma RJ, Huang F, Shi LQ. Bioinspired Self-assembly Nanochaperone Inhibits Tau-Derived PHF6 Peptide Aggregation in Alzheimer’s Disease. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Johnson OT, Gestwicki JE. Multivalent protein-protein interactions are pivotal regulators of eukaryotic Hsp70 complexes. Cell Stress Chaperones 2022; 27:397-415. [PMID: 35670950 PMCID: PMC9346034 DOI: 10.1007/s12192-022-01281-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is a molecular chaperone and central regulator of protein homeostasis (proteostasis). Paramount to this role is Hsp70's binding to client proteins and co-chaperones to produce distinct complexes, such that understanding the protein-protein interactions (PPIs) of Hsp70 is foundational to describing its function and dysfunction in disease. Mounting evidence suggests that these PPIs include both "canonical" interactions, which are universally conserved, and "non-canonical" (or "secondary") contacts that seem to have emerged in eukaryotes. These two categories of interactions involve discrete binding surfaces, such that some clients and co-chaperones engage Hsp70 with at least two points of contact. While the contributions of canonical interactions to chaperone function are becoming increasingly clear, it can be challenging to deconvolute the roles of secondary interactions. Here, we review what is known about non-canonical contacts and highlight examples where their contributions have been parsed, giving rise to a model in which Hsp70's secondary contacts are not simply sites of additional avidity but are necessary and sufficient to impart unique functions. From this perspective, we propose that further exploration of non-canonical contacts will generate important insights into the evolution of Hsp70 systems and inspire new approaches for developing small molecules that tune Hsp70-mediated proteostasis.
Collapse
Affiliation(s)
- Oleta T Johnson
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
26
|
Xu T, Zhang J, Wang T, Wang X. Recombinant antibodies aggregation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2022; 106:3913-3922. [PMID: 35608667 DOI: 10.1007/s00253-022-11977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modifications similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies (RTAs) are among the most important and promising RTPs for biomedical applications. A major limitation associated with the use of RTAs is their aggregation, which can be caused by a variety of factors; this results in a reduction of quality. RTA aggregations are especially concerning as they can trigger human immune responses in humans and may be fatal. Therefore, the mechanisms underlying RTA aggregation and measures for avoiding aggregation are interesting topics in RTAs research. In this review, we discuss recent progress in the field of RTAs aggregation, with a focus on factors that cause aggregation during RTA production and the development of strategies for overcoming RTA aggregation. KEY POINTS: • The recombinant antibody aggregation in mammalian cell systems is reviewed. • Intracellular environment and extracellular parameters influence recombinant antibody aggregation. • Reducing the aggregations can improve the quality of recombinant antibodies.
Collapse
Affiliation(s)
- Tingting Xu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.,The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jihong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China. .,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiaoyin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China. .,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
27
|
Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther 2022; 7:113. [PMID: 35379777 PMCID: PMC8977435 DOI: 10.1038/s41392-022-00966-4] [Citation(s) in RCA: 279] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Traditional drug discovery mainly focuses on direct regulation of protein activity. The development and application of protein activity modulators, particularly inhibitors, has been the mainstream in drug development. In recent years, PROteolysis TArgeting Chimeras (PROTAC) technology has emerged as one of the most promising approaches to remove specific disease-associated proteins by exploiting cells’ own destruction machinery. In addition to PROTAC, many different targeted protein degradation (TPD) strategies including, but not limited to, molecular glue, Lysosome-Targeting Chimaera (LYTAC), and Antibody-based PROTAC (AbTAC), are emerging. These technologies have not only greatly expanded the scope of TPD, but also provided fresh insights into drug discovery. Here, we summarize recent advances of major TPD technologies, discuss their potential applications, and hope to provide a prime for both biologists and chemists who are interested in this vibrant field.
Collapse
|
28
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Tugaeva KV, Kurganov BI. Effect of Betaine and Arginine on Interaction of αB-Crystallin with Glycogen Phosphorylase b. Int J Mol Sci 2022; 23:3816. [PMID: 35409175 PMCID: PMC8998655 DOI: 10.3390/ijms23073816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Protein-protein interactions (PPIs) play an important role in many biological processes in a living cell. Among them chaperone-client interactions are the most important. In this work PPIs of αB-crystallin and glycogen phosphorylase b (Phb) in the presence of betaine (Bet) and arginine (Arg) at 48 °C and ionic strength of 0.15 M were studied using methods of dynamic light scattering, differential scanning calorimetry, and analytical ultracentrifugation. It was shown that Bet enhanced, while Arg reduced both the stability of αB-crystallin and its adsorption capacity (AC0) to the target protein at the stage of aggregate growth. Thus, the anti-aggregation activity of αB-crystallin increased in the presence of Bet and decreased under the influence of Arg, which resulted in inhibition or acceleration of Phb aggregation, respectively. Our data show that chemical chaperones can influence the tertiary and quaternary structure of both the target protein and the protein chaperone. The presence of the substrate protein also affects the quaternary structure of αB-crystallin, causing its disassembly. This is inextricably linked to the anti-aggregation activity of αB-crystallin, which in turn affects its PPI with the target protein. Thus, our studies contribute to understanding the mechanism of interaction between chaperones and proteins.
Collapse
Affiliation(s)
- Tatiana B. Eronina
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia; (V.V.M.); (N.A.C.); (K.V.T.); (B.I.K.)
| | | | | | | | | |
Collapse
|
29
|
Shkedi A, Taylor IR, Echtenkamp F, Ramkumar P, Alshalalfa M, Rivera-Márquez GM, Moses MA, Shao H, Karnes RJ, Neckers L, Feng F, Kampmann M, Gestwicki JE. Selective vulnerabilities in the proteostasis network of castration-resistant prostate cancer. Cell Chem Biol 2022; 29:490-501.e4. [PMID: 35108506 PMCID: PMC8934263 DOI: 10.1016/j.chembiol.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/17/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is associated with an increased reliance on heat shock protein 70 (HSP70), but it is not clear what other protein homeostasis (proteostasis) factors might be involved. To address this question, we performed functional and synthetic lethal screens in four prostate cancer cell lines. These screens confirmed key roles for HSP70, HSP90, and their co-chaperones, but also suggested that the mitochondrial chaperone, HSP60/HSPD1, is selectively required in CRPC cell lines. Knockdown of HSP60 does not impact the stability of androgen receptor (AR) or its variants; rather, it is associated with loss of mitochondrial spare respiratory capacity, partly owing to increased proton leakage. Finally, transcriptional data revealed a correlation between HSP60 levels and poor survival of prostate cancer patients. These findings suggest that re-wiring of the proteostasis network is associated with CRPC, creating selective vulnerabilities that might be targeted to treat the disease.
Collapse
Affiliation(s)
- Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Isabelle R Taylor
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frank Echtenkamp
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Poornima Ramkumar
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mohamed Alshalalfa
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Génesis M Rivera-Márquez
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael A Moses
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Felix Feng
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Johnson OT, Nadel CM, Carroll EC, Arhar T, Gestwicki JE. Two distinct classes of cochaperones compete for the EEVD motif in heat shock protein 70 to tune its chaperone activities. J Biol Chem 2022; 298:101697. [PMID: 35148989 PMCID: PMC8913300 DOI: 10.1016/j.jbc.2022.101697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Chaperones of the heat shock protein 70 (Hsp70) family engage in protein-protein interactions with many cochaperones. One "hotspot" for cochaperone binding is the EEVD motif, found at the extreme C terminus of cytoplasmic Hsp70s. This motif is known to bind tetratricopeptide repeat domain cochaperones, such as the E3 ubiquitin ligase CHIP. In addition, the EEVD motif also interacts with a structurally distinct domain that is present in class B J-domain proteins, such as DnaJB4. These observations suggest that CHIP and DnaJB4 might compete for binding to Hsp70's EEVD motif; however, the molecular determinants of such competition are not clear. Using a collection of EEVD-derived peptides, including mutations and truncations, we explored which residues are critical for binding to both CHIP and DnaJB4. These results revealed that some features, such as the C-terminal carboxylate, are important for both interactions. However, CHIP and DnaJB4 also had unique preferences, especially at the isoleucine position immediately adjacent to the EEVD. Finally, we show that competition between these cochaperones is important in vitro, as DnaJB4 limits the ubiquitination activity of the Hsp70-CHIP complex, whereas CHIP suppresses the client refolding activity of the Hsp70-DnaJB4 complex. Together, these data suggest that the EEVD motif has evolved to support diverse protein-protein interactions, such that competition between cochaperones may help guide whether Hsp70-bound proteins are folded or degraded.
Collapse
Affiliation(s)
- Oleta T Johnson
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California, USA
| | - Cory M Nadel
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California, USA
| | - Emma C Carroll
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California, USA
| | - Taylor Arhar
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California, USA; Department of Chemistry, Beloit College, Beloit, Wisconsin, USA.
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
31
|
Liu R, Feng Z, Cheng C, Li H, Liu J, Wei J, Yang Z. Active Regulation of Supramolecular Chirality through Integration of CdSe/CdS Nanorods for Strong and Tunable Circular Polarized Luminescence. J Am Chem Soc 2022; 144:2333-2342. [DOI: 10.1021/jacs.1c12676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Zhenyu Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Caikun Cheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Hui Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Jiaming Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| |
Collapse
|
32
|
Karamanos TK, Clore GM. Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy. Annu Rev Biophys 2022; 51:223-246. [PMID: 35044800 DOI: 10.1146/annurev-biophys-090921-120150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones are the guardians of the proteome inside the cell. Chaperones recognize and bind unfolded or misfolded substrates, thereby preventing further aggregation; promoting correct protein folding; and, in some instances, even disaggregating already formed aggregates. Chaperones perform their function by means of an array of weak protein-protein interactions that take place over a wide range of timescales and are therefore invisible to structural techniques dependent upon the availability of highly homogeneous samples. Nuclear magnetic resonance (NMR) spectroscopy, however, is ideally suited to study dynamic, rapidly interconverting conformational states and protein-protein interactions in solution, even if these involve a high-molecular-weight component. In this review, we give a brief overview of the principles used by chaperones to bind their client proteins and describe NMR methods that have emerged as valuable tools to probe chaperone-substrate and chaperone-chaperone interactions. We then focus on a few systems for which the application of these methods has greatly increased our understanding of the mechanisms underlying chaperone functions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom;
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
33
|
Zhu F, Li F, Deng L, Meng F, Liang Z. Protein Interaction Network Reconstruction with a Structural Gated Attention Deep Model by Incorporating Network Structure Information. J Chem Inf Model 2022; 62:258-273. [PMID: 35005980 DOI: 10.1021/acs.jcim.1c00982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein-protein interactions (PPIs) provide a physical basis of molecular communications for a wide range of biological processes in living cells. Establishing the PPI network has become a fundamental but essential task for a better understanding of biological events and disease pathogenesis. Although many machine learning algorithms have been employed to predict PPIs, with only protein sequence information as the training features, these models suffer from low robustness and prediction accuracy. In this study, a new deep-learning-based framework named the Structural Gated Attention Deep (SGAD) model was proposed to improve the performance of PPI network reconstruction (PINR). The improved predictive performances were achieved by augmenting multiple protein sequence descriptors, the topological features and information flow of the PPI network, which were further implemented with a gating mechanism to improve its robustness to noise. On 11 independent test data sets and one combined data set, SGAD yielded area under the curve values of approximately 0.83-0.93, outperforming other models. Furthermore, the SGAD ensemble can learn more characteristics information on protein pairs through a two-layer neural network, serving as a powerful tool in the exploration of PPI biological space.
Collapse
Affiliation(s)
- Fei Zhu
- School of Computer Science and Technology, Soochow University, Suzhou 215 006, China
| | - Feifei Li
- School of Computer Science and Technology, Soochow University, Suzhou 215 006, China
| | - Lei Deng
- School of Computer Science and Technology, Soochow University, Suzhou 215 006, China
| | - Fanwang Meng
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215 006, China
| |
Collapse
|
34
|
Arhar T, Shkedi A, Nadel CM, Gestwicki JE. The interactions of molecular chaperones with client proteins: why are they so weak? J Biol Chem 2021; 297:101282. [PMID: 34624315 PMCID: PMC8567204 DOI: 10.1016/j.jbc.2021.101282] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
The major classes of molecular chaperones have highly variable sequences, sizes, and shapes, yet they all bind to unfolded proteins, limit their aggregation, and assist in their folding. Despite the central importance of this process to protein homeostasis, it has not been clear exactly how chaperones guide this process or whether the diverse families of chaperones use similar mechanisms. For the first time, recent advances in NMR spectroscopy have enabled detailed studies of how unfolded, "client" proteins interact with both ATP-dependent and ATP-independent classes of chaperones. Here, we review examples from four distinct chaperones, Spy, Trigger Factor, DnaK, and HscA-HscB, highlighting the similarities and differences between their mechanisms. One striking similarity is that the chaperones all bind weakly to their clients, such that the chaperone-client interactions are readily outcompeted by stronger, intra- and intermolecular contacts in the folded state. Thus, the relatively weak affinity of these interactions seems to provide directionality to the folding process. However, there are also key differences, especially in the details of how the chaperones release clients and how ATP cycling impacts that process. For example, Spy releases clients in a largely folded state, while clients seem to be unfolded upon release from Trigger Factor or DnaK. Together, these studies are beginning to uncover the similarities and differences in how chaperones use weak interactions to guide protein folding.
Collapse
Affiliation(s)
- Taylor Arhar
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Cory M Nadel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA.
| |
Collapse
|
35
|
Shkedi A, Adkisson M, Schroeder A, Eckalbar WL, Kuo SY, Neckers L, Gestwicki JE. Inhibitor Combinations Reveal Wiring of the Proteostasis Network in Prostate Cancer Cells. J Med Chem 2021; 64:14809-14821. [PMID: 34606726 PMCID: PMC8806517 DOI: 10.1021/acs.jmedchem.1c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein homeostasis (proteostasis) network is composed of multiple pathways that work together to balance protein folding, stability, and turnover. Cancer cells are particularly reliant on this network; however, it is hypothesized that inhibition of one node might lead to compensation. To better understand these connections, we dosed 22Rv1 prostate cancer cells with inhibitors of four proteostasis targets (Hsp70, Hsp90, proteasome, and p97), either alone or in binary combinations, and measured the effects on cell growth. The results reveal a series of additive, synergistic, and antagonistic relationships, including strong synergy between inhibitors of p97 and the proteasome and striking antagonism between inhibitors of Hsp90 and the proteasome. Based on RNA-seq, these relationships are associated, in part, with activation of stress pathways. Together, these results suggest that cocktails of proteostasis inhibitors might be a powerful way of treating some cancers, although antagonism that blunts the efficacy of both molecules is also possible.
Collapse
Affiliation(s)
- Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| | - Michael Adkisson
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Andrew Schroeder
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Walter L Eckalbar
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Szu-Yu Kuo
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| | - Leonard Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| |
Collapse
|
36
|
Daniyan MO. Heat Shock Proteins as Targets for Novel Antimalarial Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:205-236. [PMID: 34569027 DOI: 10.1007/978-3-030-78397-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Plasmodium falciparum, the parasitic agent that is responsible for a severe and dangerous form of human malaria, has a history of long years of cohabitation with human beings with attendant negative consequences. While there have been some gains in the fight against malaria through the application of various control measures and the use of chemotherapeutic agents, and despite the global decline in malaria cases and associated deaths, the continual search for new and effective therapeutic agents is key to achieving sustainable development goals. An important parasite survival strategy, which is also of serious concern to the scientific community, is the rate at which the parasites continually develop resistance to drugs. Among the key players in the parasite's ability to develop resistance, maintain cellular integrity, and survives within an unusual environment of the red blood cells are the molecular chaperones of the heat shock proteins (HSP) family. HSPs constitute a novel avenue for antimalarial drug discovery and by exploring their ubiquitous nature and multifunctional activities, they may be suitable targets for the discovery of multi-targets antimalarial drugs, needed to fight incessant drug resistance. In this chapter, features of selected families of plasmodial HSPs that can be exploited in drug discovery are presented. Also, known applications of HSPs in small molecule screening, their potential usefulness in high throughput drug screening, as well as possible challenges are highlighted.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| |
Collapse
|
37
|
Evans SR, West C, Klein-Seetharaman J. Similarity of the non-amyloid-β component and C-terminal tail of monomeric and tetrameric alpha-synuclein with 14-3-3 sigma. Comput Struct Biotechnol J 2021; 19:5348-5359. [PMID: 34667532 PMCID: PMC8495038 DOI: 10.1016/j.csbj.2021.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Alpha-synuclein (αSyn) is often described as a predominantly disordered protein that has a propensity to self-assemble into toxic oligomers that are found in patients with Parkinson's and Alzheimer's diseases. αSyn's chaperone behavior and tetrameric structure are proposed to be protective against toxic oligomerization. In this paper, we extended the previously proposed similarity between αSyn and 14-3-3 proteins to the α-helical tetrameric species of αSyn in detail. 14-3-3 proteins are a family of well-folded proteins with seven human isoforms, and function in signal transduction and as molecular chaperones. We investigated protein homology, using sequence alignment, amyloid, and disorder prediction, as well as three-dimensional visualization and protein-interaction networks. Our results show sequence homology and structural similarity between the aggregation-prone non-amyloid-β component (NAC) residues Val-52 to Gly-111 in αSyn and 14-3-3 sigma residues Leu-12 to Gly-78. We identified an additional region of sequence homology in the C-terminal region of αSyn (residues Ser-129 to Asp-135) and a C-terminal loop of 14-3-3 between helix αH and αI (residues Ser-209 to Asp-215). This data indicates αSyn shares conserved domain architecture with small heat shock proteins. We show predicted regions of high amyloidogenic propensity and intrinsic structural disorder in αSyn coincide with amyloidogenic and disordered predictions for 14-3-3 proteins. The homology in the NAC region aligns with residues involved in dimer- and tetramerization of the non-amyloidogenic 14-3-3 proteins. Because 14-3-3 proteins are generally not prone to misfolding, our results lend further support to the hypothesis that the NAC region is critical to the assembly of αSyn into the non-toxic tetrameric state.
Collapse
Key Words
- 14-3-3 proteins
- Alpha-synuclein
- BAD, BCL2 associated agonist of cell death gene name
- Homology
- IDP, Intrinsically disorder protein(s)
- MAPT, microtubule-associated protein tau gene name
- PPI, Protein-Protein interactions
- Prediction
- Protein structure
- SIP, shared interaction partner
- SNCA, alpha-synuclein gene name
- TH, tyrosine hydroxylase gene name
- Tetramer
- YWHAB, 14-3-3 protein beta isoform gene name
- YWHAE, 14-3-3 protein epsilon isoform gene name
- YWHAH, 14-3-3 protein eta isoform gene name
- pHSPB6, phosphorylated Heat Shock Protein beta-6
- sHSP, small heat shock protein
- αSyn, alpha-synuclein
Collapse
Affiliation(s)
- Sarah R. Evans
- Colorado School of Mines, Quantitative Biosciences and Engineering, 1012 14 St, Chemistry, Golden, CO 80401, USA
| | - Colista West
- Colorado School of Mines, Department of Chemistry, 1012 14 St, Chemistry, Golden, CO 80401, USA
| | - Judith Klein-Seetharaman
- Colorado School of Mines, Quantitative Biosciences and Engineering, 1012 14 St, Chemistry, Golden, CO 80401, USA
- Colorado School of Mines, Department of Chemistry, 1012 14 St, Chemistry, Golden, CO 80401, USA
| |
Collapse
|
38
|
Budrass L, Fahlman RP, Mok SA. Deciphering Network Crosstalk: The Current Status and Potential of miRNA Regulatory Networks on the HSP40 Molecular Chaperone Network. Front Genet 2021; 12:689922. [PMID: 34234816 PMCID: PMC8255926 DOI: 10.3389/fgene.2021.689922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperone networks fulfill complex roles in protein homeostasis and are essential for maintaining cell health. Hsp40s (commonly referred to as J-proteins) have critical roles in development and are associated with a variety of human diseases, yet little is known regarding the J-proteins with respect to the post-transcriptional mechanisms that regulate their expression. With relatively small alterations in their abundance and stoichiometry altering their activity, post-transcriptional regulation potentially has significant impact on the functions of J-proteins. MicroRNAs (miRNAs) are a large group of non-coding RNAs that form a complex regulatory network impacting gene expression. Here we review and investigate the current knowledge and potential intersection of miRNA regulatory networks with the J-Protein chaperone network. Analysis of datasets from the current version of TargetScan revealed a great number of predicted microRNAs targeting J-proteins compared to the limited reports of interactions to date. There are likely unstudied regulatory interactions that influence chaperone biology contained within our analysis. We go on to present some criteria for prioritizing candidate interactions including potential cooperative targeting of J-Proteins by multiple miRNAs. In summary, we offer a view on the scope of regulation of J-Proteins through miRNAs with the aim of guiding future investigations by identifying key regulatory nodes within these two complex cellular networks.
Collapse
Affiliation(s)
- Lion Budrass
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Sue-Ann Mok
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
40
|
Horianopoulos LC, Kronstad JW. Chaperone Networks in Fungal Pathogens of Humans. J Fungi (Basel) 2021; 7:209. [PMID: 33809191 PMCID: PMC7998936 DOI: 10.3390/jof7030209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The heat shock proteins (HSPs) function as chaperones to facilitate proper folding and modification of proteins and are of particular importance when organisms are subjected to unfavourable conditions. The human fungal pathogens are subjected to such conditions within the context of infection as they are exposed to human body temperature as well as the host immune response. Herein, the roles of the major classes of HSPs are briefly reviewed and their known contributions in human fungal pathogens are described with a focus on Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. The Hsp90s and Hsp70s in human fungal pathogens broadly contribute to thermotolerance, morphological changes required for virulence, and tolerance to antifungal drugs. There are also examples of J domain co-chaperones and small HSPs influencing the elaboration of virulence factors in human fungal pathogens. However, there are diverse members in these groups of chaperones and there is still much to be uncovered about their contributions to pathogenesis. These HSPs do not act in isolation, but rather they form a network with one another. Interactions between chaperones define their specific roles and enhance their protein folding capabilities. Recent efforts to characterize these HSP networks in human fungal pathogens have revealed that there are unique interactions relevant to these pathogens, particularly under stress conditions. The chaperone networks in the fungal pathogens are also emerging as key coordinators of pathogenesis and antifungal drug tolerance, suggesting that their disruption is a promising strategy for the development of antifungal therapy.
Collapse
Affiliation(s)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
41
|
Abrams J, Arhar T, Mok SA, Taylor IR, Kampmann M, Gestwicki JE. Functional genomics screen identifies proteostasis targets that modulate prion protein (PrP) stability. Cell Stress Chaperones 2021; 26:443-452. [PMID: 33547632 PMCID: PMC7925731 DOI: 10.1007/s12192-021-01191-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Prion protein (PrP) adopts either a helical conformation (PrPC) or an alternative, beta sheet-rich, misfolded conformation (PrPSc). The PrPSc form has the ability to "infect" PrPC and force it into the misfolded state. Accumulation of PrPSc is associated with a number of lethal neurodegenerative disorders, including Creutzfeldt-Jacob disease (CJD). Knockout of PrPC protects cells and animals from PrPSc infection; thus, there is interest in identifying factors that regulate PrPC stability, with the therapeutic goal of reducing PrPC levels and limiting infection by PrPSc. Here, we assembled a short-hairpin RNA (shRNA) library composed of 25+ shRNA sequences for each of 133 protein homeostasis (aka proteostasis) factors, such as molecular chaperones and co-chaperones. This Proteostasis shRNA Library was used to identify regulators of PrPC stability in HEK293 Hu129M cells. Strikingly, the screen identified a number of Hsp70 family members and their co-chaperones as putative targets. Indeed, a chemical pan-inhibitor of Hsp70s reduced PrPC levels and limited conversion to PrPSc in N2a cells. These results implicate specific proteostasis sub-networks, especially the Hsp70 system, as potential new targets for the treatment of CJD. More broadly, the Proteostasis shRNA Library might be a useful tool for asking which proteostasis factors are important for a given protein.
Collapse
Affiliation(s)
- Jennifer Abrams
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Taylor Arhar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Sue Ann Mok
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Isabelle R Taylor
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| |
Collapse
|
42
|
Zhou X, Chen X, Hong T, Zhang M, Cai Y, Cui L. TTC3-Mediated Protein Quality Control, A Potential Mechanism for Cognitive Impairment. Cell Mol Neurobiol 2021; 42:1659-1669. [PMID: 33638766 PMCID: PMC9239942 DOI: 10.1007/s10571-021-01060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
The tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.
Collapse
Affiliation(s)
- Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China.
| |
Collapse
|
43
|
Serapian SA, Triveri A, Marchetti F, Castelli M, Colombo G. Exploiting Folding and Degradation Machineries To Target Undruggable Proteins: What Can a Computational Approach Tell Us? ChemMedChem 2021; 16:1593-1599. [PMID: 33443306 DOI: 10.1002/cmdc.202000960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 01/03/2023]
Abstract
Advances in genomics and proteomics have unveiled an ever-growing number of key proteins and provided mechanistic insights into the genesis of pathologies. This wealth of data showed that changes in expression levels of specific proteins, mutations, and post-translational modifications can result in (often subtle) perturbations of functional protein-protein interaction networks, which ultimately determine disease phenotypes. Although many such validated pathogenic proteins have emerged as ideal drug targets, there are also several that escape traditional pharmacological regulation; these proteins have thus been labeled "undruggable". The challenges posed by undruggable targets call for new sorts of molecular intervention. One fascinating solution is to perturb a pathogenic protein's expression levels, rather than blocking its activities. In this Concept paper, we shall discuss chemical interventions aimed at recruiting undruggable proteins to the ubiquitin proteasome system, or aimed at disrupting protein-protein interactions in the chaperone-mediated cellular folding machinery: both kinds of intervention lead to a decrease in the amount of active pathogenic protein expressed. Specifically, we shall discuss the role of computational strategies in understanding the molecular determinants characterizing the function of synthetic molecules typically designed for either type of intervention. Finally, we shall provide our perspectives and views on the current limitations and possibilities to expand the scope of rational approaches to the design of chemical regulators of protein levels.
Collapse
Affiliation(s)
- Stefano A Serapian
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Alice Triveri
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Filippo Marchetti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Matteo Castelli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
44
|
Armaos A, Zacco E, Sanchez de Groot N, Tartaglia GG. RNA-protein interactions: Central players in coordination of regulatory networks. Bioessays 2020; 43:e2000118. [PMID: 33284474 DOI: 10.1002/bies.202000118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration-dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post-transcriptional layer of gene regulation. We describe the structural and interaction network properties that characterize the ability of protein and RNA molecules to interact and phase separate in liquid-like compartments. Finally, we show that presence of structurally disordered regions in proteins correlate with the propensity to undergo liquid-to-solid phase transitions and cause human diseases. Also see the video abstract here https://youtu.be/kfpqibsNfS0.
Collapse
Affiliation(s)
- Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Elsa Zacco
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Natalia Sanchez de Groot
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Biology 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
45
|
Small Heat Shock Proteins in Cancers: Functions and Therapeutic Potential for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21186611. [PMID: 32927696 PMCID: PMC7555140 DOI: 10.3390/ijms21186611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that play essential roles in response to cellular stresses and protein homeostasis. Investigations of sHSPs reveal that sHSPs are ubiquitously expressed in numerous types of tumors, and their expression is closely associated with cancer progression. sHSPs have been suggested to control a diverse range of cancer functions, including tumorigenesis, cell growth, apoptosis, metastasis, and chemoresistance, as well as regulation of cancer stem cell properties. Recent advances in the field indicate that some sHSPs have been validated as a powerful target in cancer therapy. In this review, we present and highlight current understanding, recent progress, and future challenges of sHSPs in cancer development and therapy.
Collapse
|
46
|
Polypeptides derived from α-Synuclein binding partners to prevent α-Synuclein fibrils interaction with and take-up by cells. PLoS One 2020; 15:e0237328. [PMID: 32790707 PMCID: PMC7425896 DOI: 10.1371/journal.pone.0237328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
α-Synuclein (αSyn) fibrils spread from one neuronal cell to another. This prion-like phenomenon is believed to contribute to the progression of the pathology in Parkinson’s disease and other synucleinopathies. The binding of αSyn fibrils originating from affected cells to the plasma membrane of naïve cells is key in their prion-like propagation propensity. To interfere with this process, we designed polypeptides derived from proteins we previously showed to interact with αSyn fibrils, namely the molecular chaperone Hsc70 and the sodium/potassium pump NaK-ATPase and assessed their capacity to bind αSyn fibrils and/or interfere with their take-up by cells of neuronal origin. We demonstrate here that polypeptides that coat αSyn fibrils surfaces in such a way that they are changed affect αSyn fibrils binding to the plasma membrane components and/or their take-up by cells. Altogether our observations suggest that the rationale design of αSyn fibrils polypeptide binders that interfere with their propagation between neuronal cells holds therapeutic potential.
Collapse
|
47
|
Shakeran Z, Javadi-Zarnaghi F, Emamzadeh R. Novel luminescent affiprobes for molecular detection of Staphylococcus aureus using flow cytometry. J Appl Microbiol 2020; 130:493-503. [PMID: 32738017 DOI: 10.1111/jam.14799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/27/2022]
Abstract
AIMS Diagnosis of Staphylococcus aureus is important in various diseases from hospital-acquired infections to foodborne diseases. This work reports two new luminescent affiprobes for specific detection of S. aureus. METHODS AND RESULTS To develop advanced luminescent affiprobes, enhanced green fluorescent protein (EGFP) was flanked by single and double repeats of ZpA963 affibody using molecular biology studies. The recombinant proteins including fluorescent monomeric affibody (fA1 ) and fluorescent dimeric affibody (fA2 ) were expressed in the bacterial expression system, purified and used to identify the S. aureus. Fluorescence microscope and flow cytometry results demonstrated that the treated samples with fA1 and fA2 had relatively high fluorescent mean intensities in comparison to the untreated S. aureus cells. Moreover, it was revealed that 'fA2 ' affiprobe had lower dissociation constant value (about 25-fold) and was more effective for detection of S. aureus than the 'fA1 ' affiprobe. In addition, the binding of the affiprobes for some other pathogenic bacteria i.e. Escherichia coli, Bacillus cereus, Enterococcus faecalis and Staphylococcus saprophyticus was examined. Expectedly, no cross-reaction was observed for binding the constructed affiprobes to these bacteria, eliminating possibilities for false positive results. CONCLUSIONS The results show that 'fA1 ' affiprobe and 'fA2 ' affiprobe are two new efficient luminescent affiprobes for detecting S. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY We developed a new approach for detection of Staphylococcus aureus in a simple one-step process and in low concentrations of probes. In the best of our knowledge, this is the first study to direct detection of bacterial cells by affiprobes and may be used to develop new diagnostic kits.
Collapse
Affiliation(s)
- Z Shakeran
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - F Javadi-Zarnaghi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - R Emamzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,NanoBioPhotonics Lab, Department of Biological Engineering, Utah State University, Utah, United States
| |
Collapse
|
48
|
Yin CY, Zhang SS, Zhong JT, Zhou SH. Pepsin and Laryngeal and Hypopharyngeal Carcinomas. Clin Exp Otorhinolaryngol 2020; 14:159-168. [PMID: 32734742 PMCID: PMC8111387 DOI: 10.21053/ceo.2020.00465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
Laryngeal and hypopharyngeal carcinomas are common malignant tumors of the head and neck, and the incidence of both is increasing. Laryngopharyngeal reflux refers to the retrograde flow of gastric contents into the larynx, oropharynx, and/or nasopharynx. It remains controversial whether laryngopharyngeal reflux is a risk factor for laryngeal and hypopharyngeal cancers. The refluxing substances mainly include hydrochloric acid, pepsin, and occasionally bile acids and bile salts, as well as bacteria that colonize the gastrointestinal tract. Loss of epithelium in the mucous membrane of the larynx and hypopharynx is thought to be caused by pepsin. Here, we review the relationships between laryngopharyngeal reflux and both laryngeal and hypopharyngeal carcinomas, as well as the significance of pepsin, methods of clinical detection, and the mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Cheng-Yi Yin
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Otolaryngology, The First People's Hospital of Huzhou City, Zhejiang, China
| | - Sha-Sha Zhang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang-Tao Zhong
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Poot Velez AH, Fontove F, Del Rio G. Protein-Protein Interactions Efficiently Modeled by Residue Cluster Classes. Int J Mol Sci 2020; 21:E4787. [PMID: 32640745 PMCID: PMC7370293 DOI: 10.3390/ijms21134787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 01/22/2023] Open
Abstract
Predicting protein-protein interactions (PPI) represents an important challenge in structural bioinformatics. Current computational methods display different degrees of accuracy when predicting these interactions. Different factors were proposed to help improve these predictions, including choosing the proper descriptors of proteins to represent these interactions, among others. In the current work, we provide a representative protein structure that is amenable to PPI classification using machine learning approaches, referred to as residue cluster classes. Through sampling and optimization, we identified the best algorithm-parameter pair to classify PPI from more than 360 different training sets. We tested these classifiers against PPI datasets that were not included in the training set but shared sequence similarity with proteins in the training set to reproduce the situation of most proteins sharing sequence similarity with others. We identified a model with almost no PPI error (96-99% of correctly classified instances) and showed that residue cluster classes of protein pairs displayed a distinct pattern between positive and negative protein interactions. Our results indicated that residue cluster classes are structural features relevant to model PPI and provide a novel tool to mathematically model the protein structure/function relationship.
Collapse
Affiliation(s)
- Albros Hermes Poot Velez
- Department of biochemistry and structural biology, Instituto de fisiologia celular, UNAM Mexico City 04510, Mexico;
| | | | - Gabriel Del Rio
- Department of biochemistry and structural biology, Instituto de fisiologia celular, UNAM Mexico City 04510, Mexico;
| |
Collapse
|
50
|
Hu N, Dong ZQ, Chen TT, Zheng N, Wu Q, Chen P, Lu C, Pan MH. A novel system to rapidly detect protein-protein interactions (PPIs) based on fluorescence co-localization. Biotechnol Lett 2020; 42:2111-2122. [PMID: 32533375 DOI: 10.1007/s10529-020-02934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/29/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Rapid and convenient detection of protein-protein interactions (PPIs) is of great significance for understanding function of protein. RESULTS For efficiently detecting PPIs, we used the changes of proteins fluorescence localization to design a novel system, fluorescence translocation co-localization (FTCL), based on nuclear localization signal (NLS) in living cells. Depending on the original state of protein localization (both in the cytoplasm, both in the nucleus, one in the nucleus and another in the cytoplasm), two target proteins can be partitioned into the cytoplasm and nucleus by adding a NLS or mutating an existing NLS. Three independent results display that the changes of protein fluorescence co-localization were observed following co-expression of the two target proteins. At the same time, we verified the accuracy of fluorescence co-localization by co-immunoprecipitation. CONCLUSIONS There FTCL system provided a novel detection method for PPIs, regardless of protein localization in the nucleus or cytoplasm. More importantly, this study provides a new strategy for future protein interaction studies through organelle localization (such as mitochondria, Golgi and cytomembrane, etc.).
Collapse
Affiliation(s)
- Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| | - Ting-Ting Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ning Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Qin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|