1
|
Qu P, Liu GQ. Recent progress in the organoselenium-catalyzed difunctionalization of alkenes. Org Biomol Chem 2025. [PMID: 39810650 DOI: 10.1039/d4ob01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Selenium-based catalysts have recently been utilized to facilitate a variety of new organic transformations, owing to their intrinsic advantages, including low cost, low toxicity, stability in both air and water, and strong compatibility with diverse functional groups. The difunctionalization of alkenes-the process of incorporating two functional groups onto a carbon-carbon double bond-has garnered particular interest within the chemical community owing to its significant applications in organic synthesis. Recently, organoselenium-catalyzed difunctionalization of alkenes has emerged as an ideal and powerful route to obtain high-value vicinal difunctionalized molecules. This review emphasizes recent advancements in this rapidly evolving field, focusing on the scope, limitations, and mechanisms of various reactions.
Collapse
Affiliation(s)
- Pei Qu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Gong-Qing Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| |
Collapse
|
2
|
Dzurka Camelio ER, Maday M, Sarkar A, Jackson JE, Borhan B. Syn vs. Anti? What Controls Addition Stereochemistry in Chlorolactonization. Chemistry 2025; 31:e202403108. [PMID: 39429093 DOI: 10.1002/chem.202403108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The stereochemistry of the uncatalyzed chlorolactonization of 4-phenylpent-4-enoic acid at room temperature was examined to probe the reaction's intrinsic diastereoselectivities as a function of chlorenium ion donor, solvent polarity, and reactant concentration ranges. Kinetic studies using Variable Time Normalization Analysis (VTNA) revealed differing reaction orders for the syn and anti alkene addition processes. Aided and illustrated by quantum chemical modeling, this detailed mechanistic analysis of the substrate's intrinsic chlorolactonization reactions points to concerted AdE3-type paths for both syn and anti additions. By illuminating the factors selecting for syn- vs anti-addition paths, the results provide key reference points for future studies of stereocontrol in halofunctionalization reactions.
Collapse
Affiliation(s)
- Emily R Dzurka Camelio
- Department of Green Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI, 48502, USA
| | - Mitchell Maday
- Department of Chemistry, Michigan State University, 578 S. Shaw Rd, East Lansing, MI, 48824, USA
| | - Aritra Sarkar
- Department of Chemistry, Michigan State University, 578 S. Shaw Rd, East Lansing, MI, 48824, USA
| | - James E Jackson
- Department of Chemistry, Michigan State University, 578 S. Shaw Rd, East Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, 578 S. Shaw Rd, East Lansing, MI, 48824, USA
| |
Collapse
|
3
|
Dehnert BW, Yin Y, Kwon O. Halodealkenylation: Ozonolysis and Catalytic Fe II with Vitamin C Convert C(sp 3)-C(sp 2) Bonds to C(sp 3)-Halide Bonds. Org Lett 2024; 26:10921-10927. [PMID: 39652442 DOI: 10.1021/acs.orglett.4c04084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
As part of our investigations into C-C bond scission and functionalization, we report a halodealkenylation in which the C(sp3)-C(sp2) bonds of alkenes are cleaved and C(sp3)-halide bonds are formed, via a radical intermediate. These transformations occur through Criegee ozonolysis and FeII-catalyzed reductive coupling assisted by vitamin C as a stoichiometric reductant. We applied this strategy to the formal synthesis of (R,R,R)-γ-tocopherol.
Collapse
Affiliation(s)
- Brady W Dehnert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Youwei Yin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
4
|
Im JK, Choi JH, Chung WJ. Stereospecific syn-dichlorination of allylic amines enabled by identification of a superior stereo-directing group. Commun Chem 2024; 7:277. [PMID: 39592813 PMCID: PMC11599576 DOI: 10.1038/s42004-024-01365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Alteration of a well-established reaction mechanism for access to different molecular structures is an inherently intriguing research subject. In that context, syn-stereospecific alkene dihalogenation draws attention as a long-standing problem in synthetic organic chemistry. The simplest approach would be the incorporation of an additional stereo-inverting step within the traditional anti-dihalogenation process. Surprisingly, this seemingly trivial idea turned out challenging, and no suitable stereo-directing group was known before our work. Herein, we describe a highly efficient syn-dichlorination of N-protected allylic amines through the anchimeric assistant phenomenon that has been inapplicable to alkene dihalogenation. Upon rational identification of a superior stereo-director, 1,8-naphthalimide, our practical reaction conditions with mild and convenient dichlorinating reagents can accommodate the formerly unemployable aryl alkenes in excellent yields (>95%) and stereospecificity (>50:1). DFT calculation suggests a concerted internal trapping mechanism without a discrete carbocationic species, which accounts for the conservation of the stereochemical integrity.
Collapse
Affiliation(s)
- Jeong Kyun Im
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| | - Won-Jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
5
|
Chakraborty A, Soltanzadeh B, Wills NR, Jaganathan A, Borhan B. Synthesis of N-Bromo and N-Iodo Imides: A Rapid Redox-Neutral and Bench Stable Process. Org Process Res Dev 2024; 28:3959-3962. [PMID: 39569051 PMCID: PMC11574840 DOI: 10.1021/acs.oprd.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024]
Abstract
This report presents a rapid, ecofriendly technique for the formation of commonly used N-bromo and N-iodinating reagents by reacting readily available N-chloro derivatives with inorganic bromide and iodide salts. All reagents were easily handled, commercially available, and bench stable. This strategy illustrates the expeditious formation of these halogenating reagents in multigram scale in high-yields and purity with an operationally straightforward recrystallization. The mechanistic details suggest an in situ generation of an interhalogen species.
Collapse
Affiliation(s)
- Ankush Chakraborty
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bardia Soltanzadeh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nicholas R Wills
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arvind Jaganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Yue HQ, Shi DW, Zhang P, Xiao B, Jia LT, Li R, Zhao SN, Yang SD, Yang B. DMSO-Catalyzed Double P-O Bond or Double P-S Bond Formations of Phosphinic Acids. Org Lett 2024; 26:8939-8944. [PMID: 39365645 DOI: 10.1021/acs.orglett.4c03425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A DMSO-catalyzed double P-O bond or double P-S bond formation of phosphinic acid with an O- or S-containing nucleophile has been developed. Under metal-free and mild conditions, this simple procedure provides a compatible and rapid access to a variety of phosphonates and dithiophosphates. The DFT calculation of stabilization energy (SE) and the mechanism studies demonstrated that the "just right" Lewis base property and the relatively "soft" interaction strength with the phosphenium-dication ensure the unique catalytic activity of DMSO in this transformation.
Collapse
Affiliation(s)
- Hui-Qi Yue
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Da-Wei Shi
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Peiqing Zhang
- College of Chemical Engineering and Technology, Yantai Nanshan University, Yantai, 265713, P. R. China
| | - Bo Xiao
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Lu-Tong Jia
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Sheng-Nan Zhao
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
7
|
Ahmad M, Tranchant MJ, Comesse S, Saffon-Merceron N, Pilmé J, Lakhdar S, Chataigner I, Dalla V, Taillier C. Unlocking the C-centered ring-opening of phosphiranium ions for a straightforward entry to functionalized phosphines. Nat Commun 2024; 15:8554. [PMID: 39362940 PMCID: PMC11449923 DOI: 10.1038/s41467-024-53003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
Phosphorus chemistry occupies a pivotal position in contemporary organic chemistry but significant synthetic challenges still endure. In this report, a class of electrophilic phosphiranium salts, bearing fluorinated benzyl quaternizing groups, is introduced for the direct synthesis of diversely β-functionalized phosphines. We show that, in comparison with regular quaternary phosphiranium salts, these species display the sought balance of excellent stability and high electrophilic reactivity that allow the unlocking of the C-centered ring-opening reactions with different classes of weak nitrogen-, sulfur- and oxygen protic nucleophiles.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Normandie Univ, UNILEHAVRE FR 3038 CNRS, URCOM, 76600, Le Havre, France
| | | | - Sébastien Comesse
- Normandie Univ, UNILEHAVRE FR 3038 CNRS, URCOM, 76600, Le Havre, France
| | - Nathalie Saffon-Merceron
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse ICT-UAR2599, Université de Toulouse III Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Julien Pilmé
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT UMR7616, 75005, Paris, France
| | - Sami Lakhdar
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Isabelle Chataigner
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT UMR7616, 75005, Paris, France
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000, Rouen, France
| | - Vincent Dalla
- Normandie Univ, UNILEHAVRE FR 3038 CNRS, URCOM, 76600, Le Havre, France.
| | - Catherine Taillier
- Normandie Univ, UNILEHAVRE FR 3038 CNRS, URCOM, 76600, Le Havre, France.
| |
Collapse
|
8
|
Luderer SE, Masoudi B, Sarkar A, Grant C, Jaganathan A, Jackson JE, Borhan B. Structure-Enantioselectivity Relationship (SER) Study of Cinchona Alkaloid Chlorocyclization Catalysts. J Org Chem 2024; 89:11921-11929. [PMID: 36795431 DOI: 10.1021/acs.joc.3c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Various structural elements of the Cinchona alkaloid dimers are interrogated to establish a structure-enantioselectivity relationship (SER) in three different halocyclization reactions. SER for chlorocyclizations of a 1,1-disubstituted alkenoic acid, a 1,1-disubstituted alkeneamide, and a trans-1,2-disubstituted alkeneamide showed variable sensitivities to linker rigidity and polarity, aspects of the alkaloid structure, and the presence of two or only one alkaloid side group defining the catalyst pocket. The conformational rigidity of the linker-ether connections was probed via DFT calculations on the methoxylated models, uncovering especially high barriers to ether rotation out of plane in the arene systems that include the pyridazine ring. These linkers are also found in the catalysts with the highest enantioinduction. The diversity of the SER results suggested that the three apparently analogous test reactions may proceed by significantly different mechanisms. Based on these findings, a stripped-down analogue of (DHQD)2PYDZ, termed "(trunc)2PYDZ", was designed, synthesized, and evaluated, showing modest but considerable asymmetric induction in the three test reactions, with the best performance on the 1,1-disubstituted alkeneamide cyclization. This first effort to map out the factors essential to effective stereocontrol and reaction promotion offers guidance for the simplified design and systematic refinement of new, selective organocatalysts.
Collapse
Affiliation(s)
- Sarah E Luderer
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Behrad Masoudi
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aritra Sarkar
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Calvin Grant
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arvind Jaganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Lu QT, Du YB, Xu MM, Xie PP, Cai Q. Catalytic Asymmetric Aza-Electrophilic Additions of 1,1-Disubstituted Styrenes. J Am Chem Soc 2024; 146:21535-21545. [PMID: 39056748 DOI: 10.1021/jacs.4c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Electrophilic addition of alkenes is a textbook reaction that plays a pivotal role in organic chemistry. In the past decades, catalytic asymmetric variants of this important type of reaction have witnessed great achievements by the development of novel catalytic systems. However, enantioselective aza-electrophilic additions of unactivated alkenes, which could provide a transformative strategy for the preparation of synthetically significant nitrogen-containing compounds, still remain a formidable challenge. Herein, we have developed unprecedented Au(I)/NHC-catalyzed asymmetric aza-electrophilic additions of unactivated 1,1-disubstituted styrenes by the utilization of readily available dialkyl azodicarboxylates as electrophilic nitrogen sources. Based on this approach, a series of transformations, including [2 + 2] cycloaddition, intermolecular 1,2-oxyamination, and several types of intramolecular hydrazination-induced cyclizations, have been realized. These transformations provide a previously unattainable platform for the divergent synthesis of hydrazine derivatives, which could also be converted to other nitrogen-containing chiral synthons. Experimental and computational studies support the idea that carbocation intermediates are involved in reaction pathways.
Collapse
Affiliation(s)
- Qi-Tao Lu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Yuan-Bo Du
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Meng-Meng Xu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Quan Cai
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Xu X, Qin T, Huang N, Liao L, Zhao X. Catalytic Enantioselective Electrophilic Difunctionalization of Unsaturated Sulfones. Org Lett 2024; 26:4514-4519. [PMID: 38758611 DOI: 10.1021/acs.orglett.4c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
An efficient protocol of enantioselective thiolative azidation of sulfone-tethered alkenes via a chiral chalcogenide catalyzed electrophilic reaction is disclosed. A series of enantioenriched sulfones bearing remote stereogenic centers was achieved with good yields and high enantioselectivities with linear unsaturated sulfones and cyclic unsaturated sulfones. Mechanistic studies revealed the importance of the sulfone group in the improvement of the reactivity and enantioselectivity of the reaction.
Collapse
Affiliation(s)
- Xinru Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Tian Qin
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Nan Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
11
|
Wilson RH, Chatterjee S, Smithwick ER, Damodaran AR, Bhagi-Damodaran A. Controllable multi-halogenation of a non-native substrate by SyrB2 iron halogenase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593161. [PMID: 38766225 PMCID: PMC11100670 DOI: 10.1101/2024.05.08.593161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Geminal, multi-halogenated functional groups are widespread in natural products and pharmaceuticals, yet no synthetic methodologies exist that enable selective multi-halogenation of unactivated C-H bonds. Biocatalysts are powerful tools for late-stage C-H functionalization, as they operate with high degrees of regio-, chemo-, and stereoselectivity. 2-oxoglutarate (2OG)-dependent non-heme iron halogenases chlorinate and brominate aliphatic C-H bonds offering a solution for achieving these challenging transformations. Here, we describe the ability of a non-heme iron halogenase, SyrB2, to controllably halogenate non-native substrate alpha-aminobutyric acid (Aba) to yield mono-chlorinated, di-chlorinated, and tri-chlorinated products. These chemoselective outcomes are achieved by controlling the loading of 2OG cofactor and SyrB2 biocatalyst. By using a ferredoxin-based biological reductant for electron transfer to the catalytic center of SyrB2, we demonstrate order-of-magnitude enhancement in the yield of tri-chlorinated product that were previously inaccessible using any single halogenase enzyme. We also apply these strategies to broaden SyrB2's reactivity scope to include multi-bromination and demonstrate chemoenzymatic conversion of the ethyl side chain in Aba to an ethylyne functional group. We show how steric hindrance induced by the successive addition of halogen atoms on Aba's C4 carbon dictates the degree of multi-halogenation by hampering C3-C4 bond rotation within SyrB2's catalytic pocket. Overall, our work showcases the synthetic potential of iron halogenases to facilitate multi-C-H functionalization chemistry.
Collapse
Affiliation(s)
- R Hunter Wilson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Sourav Chatterjee
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Elizabeth R Smithwick
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Anoop R Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| |
Collapse
|
12
|
Huang N, Luo J, Liao L, Zhao X. Catalytic Enantioselective Aminative Difunctionalization of Alkenes. J Am Chem Soc 2024; 146:7029-7038. [PMID: 38425285 DOI: 10.1021/jacs.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Enantioselective difunctionalization of alkenes offers a straightforward means for the rapid construction of enantioenriched complex molecules. Despite the tremendous efforts devoted to this field, enantioselective aminative difunctionalization remains a challenge, particularly through an electrophilic addition fashion. Herein, we report an unprecedented approach for the enantioselective aminative difunctionalization of alkenes via copper-catalyzed electrophilic addition with external azo compounds as nitrogen sources. A series of valuable cyclic hydrazine derivatives via either [3 + 2] cycloaddition or intramolecular cyclization have been achieved in high chemo-, regio-, enantio-, and diastereoselectivities. In this transformation, a wide range of functional groups, such as carboxylic acid, hydroxy, amide, sulfonamide, and aryl groups, could serve as nucleophiles. Importantly, a new cyano oxazoline chiral ligand was found to play a crucial role in the control of enantioselectivity.
Collapse
Affiliation(s)
- Nan Huang
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jie Luo
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lihao Liao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaodan Zhao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Cui HL. Recent advances in oxidative chlorination. Org Biomol Chem 2024; 22:1580-1601. [PMID: 38312070 DOI: 10.1039/d3ob02012f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Considering the wide occurrence and extensive application of organic chlorides in many research fields, the development of easy, practical and green chlorination methodologies is much needed. In the oxidative chlorination strategy, active chlorinating species can be in situ formed by the interaction of easily accessible chlorides such as NaCl, HCl, KCl, CHCl3, etc. and suitable oxidants. Among the established chlorination approaches, this strategy is an attractive one as it features the use of readily available, cheap and safe inorganic or organic chlorides, good atom economy of chlorine, and multiple choices of oxidants. This review summarizes the representative methodologies in the field of oxidative chlorination, covering 2013 to 2023.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| |
Collapse
|
14
|
Huang W, Yang J, Gao K, Wang Z, Huang G, Yao W, Yang J. Construction of Enantioenriched Quaternary C-Cl Oxindoles through Palladium-Catalyzed Asymmetric Allylic Substitution with Chloroenolates. J Org Chem 2023; 88:15298-15310. [PMID: 37831540 DOI: 10.1021/acs.joc.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A palladium-catalyzed asymmetric chloroenolate allylation with vinyl benzoxazinanones under mild reaction conditions has been developed, affording a series of optically active 3,3-disubstituted oxindoles exhibiting a chloro-group and a linear aryl amino side chain in good yields with up to 96% ee. Versatile functional group tolerance on the benzene ring has been demonstrated, and the utility of this method was probed by a scale-up synthesis and highlighted by product derivatizations.
Collapse
Affiliation(s)
- Wen Huang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Jingjie Yang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Kai Gao
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Guobo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| |
Collapse
|
15
|
Liang Y, Huang H, Huang N, Liao L, Zhao X. Catalytic Enantioselective Construction of Chiral γ-Azido Nitriles through Nitrile Group-Promoted Electrophilic Reaction of Alkenes. Org Lett 2023; 25:6757-6762. [PMID: 37656917 DOI: 10.1021/acs.orglett.3c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
An efficient approach for the construction of enantioenriched γ-azido nitriles through the chiral sulfide-catalyzed asymmetric electrophilic thioazidation of allylic nitriles is disclosed. A wide range of electron-deficient and -rich aryl, heterocyclic aryl, and alkyl substituents are suitable on the substrates of allylic nitriles. The regio-, enantio-, and diastereoselectivities of the reactions are excellent. As versatile platform molecules, the obtained chiral γ-azido nitriles can be easily converted into high-value-added chiral molecules that are not easily accessed by other methods. Control experiments revealed that the allylic nitrile group is important for control of the reactivity and enantioselectivity of the reaction leading to a broad substrate scope.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Hongtai Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Nan Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
16
|
Hu M, Zhang S, Qin C, Nie H, Xiong Z, Shi X, Zhao Y, Li M, Wang S, Ji F, Jiang G. Selective Electrochemical Halogenation of Functionalized Quinolone. J Org Chem 2023; 88:12958-12970. [PMID: 37620989 DOI: 10.1021/acs.joc.3c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
This work describes an effective C3-H halogenation of quinoline-4(1H)-ones under electrochemical conditions, in which potassium halides serve as both halogenating agents and electrolytes. The protocol provides expedient access to different halogenated quinoline-4(1H)-ones with unique regioselectivity, broad substrate scope, and gram-scale synthesis employing convenient, environmentally friendly electrolysis, in an undivided cell. Mechanism studies have shown that halogen radicals can promote the activation of N-H bonds in quinolones.
Collapse
Affiliation(s)
- Meiqian Hu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shuai Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Changsheng Qin
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Xiaoyu Shi
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Yumiao Zhao
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Mingzhe Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
17
|
Li H, Fu J, Fu J, Li X, Wei D, Chen H, Bai L, Yang L, Yang H, Wang W. Regioselective and Diastereoselective Halofunctionalization of Alkenes Promoted by Organophotocatalytic Solar Catalysis. J Org Chem 2023. [PMID: 37154472 DOI: 10.1021/acs.joc.3c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A visible-light metal-free photocatalytic regioselective and enantioselective alkene halofunctionalization reaction under mild conditions is reported. Various terminal and internal alkenes were transformed to their α-halogenated and α,β-dibrominated derivatives in good to excellent yields within reaction time as short as 5 min. Water can be used as the "green" nucleophile and solvent in the halohydroxylation and halo-oxidation reactions. Different types of products can be obtained by adjusting the reaction conditions. In addition, sunlight is proved to produce products with similar yields, representing a practical example of solar synthesis and providing an opportunity for solar energy utilization.
Collapse
Affiliation(s)
- Huili Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jianmin Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jundong Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xueji Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
18
|
Zhang D, Pu M, Liu Z, Zhou Y, Yang Z, Liu X, Wu YD, Feng X. Enantioselective anti-Dihalogenation of Electron-Deficient Olefin: A Triplet Halo-Radical Pylon Intermediate. J Am Chem Soc 2023; 145:4808-4818. [PMID: 36795915 DOI: 10.1021/jacs.2c13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The textbook alkene halogenation reaction establishes straightforward access to vicinal dihaloalkanes. However, a robust catalytic method for dihalogenizing electron-deficient olefins in an enantioselective manner is still under development, and its mechanism remains controversial. Herein, we disclose efficient regio-, anti-diastereo-, and enantioselective dibromination, bromochlorination, and dichlorination reactions of enones catalyzed by a chiral N,N'-dioxide/Yb(OTf)3 complex. With the combination of electrophilic halogen and halide salts as halogenating agents, an array of homo- and heterodihalogenated derivatives is achieved in moderate to good enantioselectivities. Moreover, DFT calculations reveal that a novel triplet halo-radical pylon intermediate is probable in accounting for the exclusive regio- and anti-diastereoselectivity.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhendong Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Cao J, Ma Y, Hu L, Xia W, Zhang X, Xiong Y. Polyhalogenation-Facilitated Spirolactonization at the meta-Position of Phenols. J Org Chem 2023; 88:1075-1084. [PMID: 36598128 DOI: 10.1021/acs.joc.2c02527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel dearomative spirolactonization/polyhalogenation of phenols that employs hypervalent iodine PhICl2 (iodobenzene dichloride) as both an oxidant and chlorine source with an indispensable base, or only using NBS (N-bromosuccinimide) without any additives, is presented. Halide participations are a vital factor in the cascade reaction of 3'-hydroxy-[1,1'-biphenyl]-2-carboxylic acids with good selectivities and reactivities and induced the rapid constructions of multiple C-halogen bonds and directional C═O bonds in a one-step operation under mild conditions. In gaining a good understanding of the mechanism, the increase in number of bromine atoms was inferred rationally from the spirolactonization process, assisted by DFT calculations and high-resolution mass spectrometry. Mechanistic experiments suggest that the formation of a stable carbocation intermediate plays a great role in the migration of oxygen to spirolactonization.
Collapse
Affiliation(s)
- Jiaqi Cao
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Youcai Ma
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Liangzhen Hu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Wen Xia
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Xiaohui Zhang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.,School of Chemical and Environmental Engineering, and Collaborative Innovation Center for High Value Transformation of Coal Chemical Process By-products, Xinjiang Institute of Engineering, Xinjiang 830091, China
| |
Collapse
|
20
|
Xiang JC, Wang JW, Yuan P, Ma JT, Wu AX, Liao ZX. Switching Over of the Chemoselectivity: I 2-DMSO-Enabled α,α-Dichlorination of Functionalized Methyl Ketones. J Org Chem 2022; 87:15101-15113. [PMID: 36349364 DOI: 10.1021/acs.joc.2c01591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Precise control of the chemoselectivity of the halogenation of a substrate equipped with multiple nucleophilic sites is highly demanding and challenging. Most reported chlorinations of methyl ketones show poor compatibility or even exclusive selectivity toward electron-rich arene, olefin, and alkyne residues. This is attributed to the direct or in situ employment of electrophilic Cl2/Cl+ species. Here, we reported that, even bearing those competitive residues, methyl ketones can still undergo dichlorination to afford α,α-dichloroketones in a chemo-specific manner. Enabled by the I2-dimethyl sulfoxide catalytic system, in which hydrochloric acid only acts as a nucleophilic Cl- donor, this straightforward dichlorination reaction is safe and operator-friendly and has high atomic economy, giving access to structurally diverse α,α-dichloroketones in good yields and with good functional-group tolerance.
Collapse
Affiliation(s)
- Jia-Chen Xiang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jia-Wei Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Peng Yuan
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
21
|
Liang Y, Jiao H, Zhang H, Wang YQ, Zhao X. Chiral Chalcogenide-Catalyzed Enantioselective Electrophilic Hydrothiolation of Alkenes. Org Lett 2022; 24:7210-7215. [PMID: 36154012 DOI: 10.1021/acs.orglett.2c03009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy for the construction of chiral sulfides by catalytic enantioselective hydrothiolation of alkenes via an electrophilic pathway has been developed. Using this strategy, cyclic and acyclic unactivated alkenes efficiently afforded various chiral products in the presence of electrophilic sulfur reagents and silanes through chiral chalcogenide catalysis. The obtained products were easily transformed into other types of valuable chiral sulfur-containing compounds. Mechanistic studies revealed that the superior construction of chiral thiiranium ion intermediate is the key to achieving such a transformation.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Hui Jiao
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hang Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - You-Qing Wang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
22
|
Pramod Charpe V, Gupta M, Chu Hwang K. Visible-Light-Induced Oxidative α-keto-Dichlorination of Arylalkynes by CuCl 2 at Room Temperature. CHEMSUSCHEM 2022; 15:e202200957. [PMID: 35730105 DOI: 10.1002/cssc.202200957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
A visible light-induced oxidative α-keto-dichlorination of terminal and internal aryl alkynes was developed to form dichloroacetophenones (DCAPs) and dichlorophenyl-acetophenones (DCPAPs), respectively, by using CuCl2 as a photoredox catalyst in the presence of air at room temperature (without using any exogenous photocatalyst). Here, photoexcited CuCl2 underwent ligand-to-metal charge transfer to generate a Cl radical, which readily added to the alkynes to form DCAPs or DCPAPs in the presence of O2 . This α-keto-dichlorination reaction is a green and mild protocol as it produced water as the only by-product. Moreover, the evaluation of green chemistry metrics indicated that the E-factor (mass of wastes/mass of products) of the current α-keto-chlorination method is around 10.1 times lower than that of a literature-reported photochemical method. The Eco Scale value (score 55, which on a scale of 0-100 indicates an acceptable synthesis) signifies that this process is simple, highly efficient, eco-friendly, and cost-effective.
Collapse
Affiliation(s)
| | - Mahima Gupta
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R. O. C
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R. O. C
| |
Collapse
|
23
|
Liao L, Zhao X. Indane-Based Chiral Aryl Chalcogenide Catalysts: Development and Applications in Asymmetric Electrophilic Reactions. Acc Chem Res 2022; 55:2439-2453. [PMID: 36007167 DOI: 10.1021/acs.accounts.2c00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Asymmetric electrophilic reactions provide an ideal method for the construction of chiral molecules by incorporating one or more functional groups into the parent substrates under mild conditions. However, due to the issues of the reactivities of electrophilic species and the possible racemization of chiral intermediates as well as the restriction of the chiral scaffolds of chiral catalysts, many limitations remain in this field, such as the narrow scopes of substrates and electrophiles as well as the limited types of nucleophiles and reactions. To overcome the limitations in the synthesis of diversified chiral molecules, we developed a series of indane-based chiral amino aryl chalcogenide catalysts. These catalysts are easily prepared based on the privileged chiral indane scaffold. They can provide an appropriate H-bonding effect by varying the amino protecting groups as well as offer a proper Lewis basicity and steric hindrance by adjusting different substituents on the aryl chalcogenide motifs. These features allow for them to meet the requirements of reactivity and the chiral environment of the reactions. Notably, they have been successfully applied to various asymmetric electrophilic reactions of alkenes, alkynes, and arenes, expanding the field of electrophilic reactions.Using these catalysts, we realized the enantioselective CF3S-lactonization of olefinic carboxylic acids, enantioselective CF3S-aminocyclization of olefinic sulfonamides, desymmetrizing enantioselective CF3S-carbocyclization of gem-diaryl-tethered alkenes, enantioselective CF3S-oxycyclization of N-allylamides, enantioselective intermolecular trifluoromethylthiolating difunctionalization and allylic C-H trifluoromethylthiolation of trisubstituted alkenes, formally the intermolecular CF3S-oxyfunctionalization of aliphatic internal alkenes, intermolecular azidothiolation, oxythiolation, thioarylation of N-allyl sulfonamides, desymmetrizing enantioselective chlorocarbocyclization of aryl-tethered diolefins, enantioselective Friedel-Crafts-type electrophilic chlorination of N-allyl anilides, and enantioselective chlorocarbocyclization and dearomatization of N-allyl 1-naphthanilides. Additionally, the enantioselective electrophilic carbothiolation of alkynes to construct enantiopure carbon chirality center-containing molecules and axially chiral amino sulfide vinyl arenes and the electrophilic aromatic halogenation to produce P-chirogenic compounds can be accomplished. In these reactions, a bifunctional binding mode is proposed in the catalytic cycles, in which an acid-derived anion-binding interaction might exist and account for the high enantioselectivities of the reactions.In this Account, we demonstrate our achievements in asymmetric electrophilic reactions and share our thoughts on catalyst design, our understanding of asymmetric electrophilic reactions, and our perspectives in the field of chiral chalcogenide-catalyzed asymmetric electrophilic reactions. We hope that the experience we share will promote the design and development of other novel organocatalysts and new challenging reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
24
|
Liao L, Xu X, Ji J, Zhao X. Asymmetric Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides Enabled by Organosulfide Catalysis: Modular Entry to Iodinated Chiral Molecules. J Am Chem Soc 2022; 144:16490-16501. [PMID: 36053004 DOI: 10.1021/jacs.2c05668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrophilic halogenation of alkenes is a powerful transformation offering a convenient route for the construction of valuable functionalized molecules. However, as a highly important reaction in this field, catalytic asymmetric intermolecular iodinative difunctionalization remains a formidable challenge. Herein, we report that an efficient Lewis basic chiral sulfide-catalyzed approach enables this reaction. By this approach, challenging substrates such as γ,γ-disubstituted allylic sulfonamides and 1,1-disubstituted alkenes with an allylic sulfonamide unit undergo electrophilic iodinative difunctionalization to give a variety of iodine-functionalized chiral molecules in good yields with excellent enantio- and diastereoselectivities. A series of free phenols as nucleophiles are successfully incorporated into the substrates. Aside from phenols, primary and secondary alcohols, fluoride, and azide also serve as efficient nucleophiles. The obtained iodinated products are a good platform molecule, which can be easily transformed into various chiral compounds such as α-aryl ketones, chiral secondary amines, and aziridines via rearrangement or substitution. Mechanistic studies revealed that the chiral sulfide catalyst displays a superior effect on control of the reactivity of electrophilic iodine and the enantioselective construction of the chiral iodiranium ion intermediate and catalyst aggregates might be formed as a resting state in the reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinru Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
25
|
Liu B, Duan XY, Li J, Wu Y, Li Y, Qi J. N-Heterocyclic Carbene-Catalyzed [3 + 2] Annulation of 3,3'-Bisoxindoles with α-Bromoenals: Enantioselective Construction of Contiguous Quaternary Stereocenters. Org Lett 2022; 24:5929-5934. [PMID: 35947030 DOI: 10.1021/acs.orglett.2c02180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An NHC-catalyzed enantio- and diastereoselective [3 + 2] annulation of α-bromoenals with bisoxindoles is developed, affording efficient access to various spirocyclic bisoxindole alkaloids. This protocol tolerates a broad substrates scope, with various spirocyclic bisoxindoles obtained in generally excellent enantioselectivities. More importantly, two contiguous sterically congested all-carbon quaternary stereocenters are successfully created during this process.
Collapse
Affiliation(s)
- Binghao Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Xiao-Yong Duan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| | - Jiahan Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Yatong Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Yanting Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Jing Qi
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|
26
|
Lubaev A, Rathnayake MD, Eze F, Bayeh-Romero L. Catalytic Chemo-, Regio-, Diastereo-, and Enantioselective Bromochlorination of Unsaturated Systems Enabled by Lewis Base-Controlled Chloride Release. J Am Chem Soc 2022; 144:13294-13301. [PMID: 35820071 PMCID: PMC9945878 DOI: 10.1021/jacs.2c04588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new strategy is described for the Lewis base-catalyzed bromochlorination of unsaturated systems that is mechanistically distinct from prior methodologies. The novelty of this method hinges on the utilization of thionyl chloride as a latent chloride source in combination with as little as 1 mol % of triphenylphosphine or triphenylphosphine oxide as Lewis basic activators. This metal-free, catalytic chemo-, regio-, and diastereoselective bromochlorination of alkenes and alkynes exhibits excellent site selectivity in polyunsaturated systems and provides access to a wide variety of vicinal bromochlorides with up to >20:1 regio- and diastereoselectivity. The precision installation of Br, Cl, and I in various combinations is also demonstrated by simply varying the commercial halogenating reagents employed. Notably, when a chiral Lewis base promoter is employed, an enantioselective bromochlorination of chalcones is possible with up to a 92:8 enantiomeric ratio when utilizing only 1-3 mol % of (DHQD)2PHAL.
Collapse
|
27
|
Zheng Y, Zhang S, Low KH, Zi W, Huang Z. A Unified and Desymmetric Approach to Chiral Tertiary Alkyl Halides. J Am Chem Soc 2022; 144:1951-1961. [DOI: 10.1021/jacs.1c12404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yin Zheng
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Suihan Zhang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Yan J, Zhou Z, He Q, Chen G, Wei H, Xie W. The applications of catalytic asymmetric halocyclization in natural product synthesis. Org Chem Front 2022. [DOI: 10.1039/d1qo01395e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Catalytic asymmetric halocyclization of olefinic substrate has evolved rapidly and been well utilized as a practical strategy for constructing enantioenriched cyclic skeletons in natural product synthesis.
Collapse
Affiliation(s)
- Jiahang Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhiqiang Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qiaoqiao He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Guzhou Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
29
|
Zhu D, Chen ZM. Application of Chiral Lewis Base/Brønsted Acid Synergistic Catalysis Strategy in Enantioselective Synthesis of Organic Sulfides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Abstract
The first example for the electrochemical cis-dichlorination of alkenes is presented. The reaction can be performed with little experimental effort by using phenylselenyl chloride as catalyst and tetrabutylammoniumchloride as supporting electrolyte, which also acts as nucleophilic reagent for the SN 2-type replacement of selenium versus chloride. Cyclic voltammetric measurements and control experiments revealed a dual role of phenylselenyl chloride in the reaction. Based on these results a reaction mechanism was postulated, where the key step of the process is the activation of a phenylselenyl chloride-alkene adduct by electrochemically generated phenylselenyl trichloride. Like this, different aliphatic and aromatic cyclic and acyclic alkenes were converted to the dichlorinated products. Thereby, throughout high diastereoselectivities were achieved for the cis-chlorinated compounds of >95 : 5 or higher.
Collapse
Affiliation(s)
- Julia Strehl
- Institut für ChemieUniversität OldenburgCarl-von-Ossietzky-Straße 9–1126111OldenburgGermany
| | - Cornelius Fastie
- Institut für ChemieUniversität OldenburgCarl-von-Ossietzky-Straße 9–1126111OldenburgGermany
| | - Gerhard Hilt
- Institut für ChemieUniversität OldenburgCarl-von-Ossietzky-Straße 9–1126111OldenburgGermany
| |
Collapse
|
31
|
Cheng J, Li YH, Huang J, Yang Z. Total Syntheses of Vicinal Dichloride Monoterpenes Enabled by Aza-Belluš-Claisen Rearrangement. Org Lett 2021; 23:8465-8470. [PMID: 34652926 DOI: 10.1021/acs.orglett.1c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diastereoselective syntheses of syn- and anti-vicinal dihalides were achieved via an aza-Belluš-Claisen rearrangement, which involved the reaction of an α-chloro carboxylic acid chloride with halogen-substituted trans-allyl morpholines in the presence of Lewis acids. The developed method was used for the total synthesis of a group of monoterpene natural products bearing vicinal dichloride subunits.
Collapse
Affiliation(s)
- Jiangqun Cheng
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking University, Beijing 100871, China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Kong Y, Cao T, Zhu S. TEMPO‐Regulated
Regio‐ and Stereoselective
Cross‐Dihalogenation
with Dual Electrophilic X
+
Reagents. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yi Kong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
33
|
von der Heiden D, Németh FB, Andreasson M, Sethio D, Pápai I, Erdelyi M. Are bis(pyridine)iodine(I) complexes applicable for asymmetric halogenation? Org Biomol Chem 2021; 19:8307-8323. [PMID: 34522944 PMCID: PMC8494190 DOI: 10.1039/d1ob01532j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Enantiopure halogenated molecules are of tremendous importance as synthetic intermediates in the construction of pharmaceuticals, fragrances, flavours, natural products, pesticides, and functional materials. Enantioselective halofunctionalizations remain poorly understood and generally applicable procedures are lacking. The applicability of chiral trans-chelating bis(pyridine)iodine(i) complexes in the development of substrate independent, catalytic enantioselective halofunctionalization has been explored herein. Six novel chiral bidentate pyridine donor ligands have been designed, routes for their synthesis developed and their [N–I–N]+-type halogen bond complexes studied by 15N NMR and DFT. The chiral complexes encompassing a halogen bond stabilized iodenium ion are shown to be capable of efficient iodenium transfer to alkenes; however, without enantioselectivity. The lack of stereoselectivity is shown to originate from the availability of multiple ligand conformations of comparable energies and an insufficient steric influence by the chiral ligand. Substrate preorganization by the chiral catalyst appears a necessity for enantioselective halofunctionalization. The enantioselectivity of the iodine(i) transfer process from chiral bis(pyridine)iodine(i) complexes to alkenes is explored.![]()
Collapse
Affiliation(s)
| | - Flóra Boróka Németh
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Måns Andreasson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Daniel Sethio
- Department of Chemistry - BMC, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.,Department of Chemistry, University J. Selyeho, 94505 Komárno, Slovakia
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
34
|
Iordanidis NS, Zografos AL, Gallos JK, Koftis TV, Stathakis CI. Continuous Flow Organocatalytic Chlorination of Alkenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicolaos S. Iordanidis
- Department of Chemistry Aristotle University of Thessaloniki University Campus Thessaloniki 541 24 Greece
| | - Alexandros L. Zografos
- Department of Chemistry Aristotle University of Thessaloniki University Campus Thessaloniki 541 24 Greece
| | - John K. Gallos
- Department of Chemistry Aristotle University of Thessaloniki University Campus Thessaloniki 541 24 Greece
| | - Theocharis V. Koftis
- API Research and Development Operations Pharmathen S.A. 9th km Thessaloniki-Thermi Thessaloniki 570 01 Greece
| | - Christos I. Stathakis
- Department of Chemistry Aristotle University of Thessaloniki University Campus Thessaloniki 541 24 Greece
| |
Collapse
|
35
|
Rubio‐Presa R, García‐Pedrero O, López‐Matanza P, Barrio P, Rodríguez F. Dihalogenation of Alkenes Using Combinations of
N
‐Halosuccinimides and Alkali Metal Halides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rubén Rubio‐Presa
- Instituto Universitario de Química Organometálica “Enrique Moles” Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo Julián Clavería, 8 33006 Oviedo Spain
| | - Olaya García‐Pedrero
- Instituto Universitario de Química Organometálica “Enrique Moles” Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo Julián Clavería, 8 33006 Oviedo Spain
| | - Pablo López‐Matanza
- Instituto Universitario de Química Organometálica “Enrique Moles” Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo Julián Clavería, 8 33006 Oviedo Spain
| | - Pablo Barrio
- Instituto Universitario de Química Organometálica “Enrique Moles” Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo Julián Clavería, 8 33006 Oviedo Spain
| | - Félix Rodríguez
- Instituto Universitario de Química Organometálica “Enrique Moles” Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo Julián Clavería, 8 33006 Oviedo Spain
| |
Collapse
|
36
|
Bhattacharya A, mani Shukla P, Maji B. “Haliranium Ion”‐Induced Intermolecular Friedel‐Crafts Alkylation in HFIP: Synthesis of β,β‐Diaryl α‐Halo carbonyl Compounds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Aditya Bhattacharya
- Department of Chemistry Indira Gandhi National Tribal University Amarkantak Anuppur-484886 India
| | - Pushpendra mani Shukla
- Department of Chemistry Indira Gandhi National Tribal University Amarkantak Anuppur-484886 India
| | - Biswajit Maji
- Department of Chemistry Indira Gandhi National Tribal University Amarkantak Anuppur-484886 India
| |
Collapse
|
37
|
Ju W, Wang X, Tian H, Gui J. Asymmetric Total Synthesis of Clionastatins A and B. J Am Chem Soc 2021; 143:13016-13021. [PMID: 34398601 DOI: 10.1021/jacs.1c07511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein we report the first total synthesis of polychlorinated steroids clionastatins A and B, which was accomplished asymmetrically by means of a convergent, radical fragment coupling approach. Key features of the synthesis include an Ireland-Claisen rearrangement to introduce the C5 stereocenter (which was ultimately transferred to the C10 quaternary stereocenter of the clionastatins via a traceless stereochemical relay), a regioselective acyl radical conjugate addition to join the two fragments, an intramolecular Heck reaction to install the C10 quaternary stereocenter, and a diastereoselective olefin dichlorination to establish the synthetically challenging pseudoequatorial dichlorides. This work also enabled us to determine that the true structures of clionastatins A and B are in fact C14 epimers of the originally proposed structures.
Collapse
Affiliation(s)
- Wei Ju
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xudong Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hailong Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
38
|
Liu S, Su YL, Sun TY, Doyle MP, Wu YD, Zhang X. Precise Introduction of the -CH nX 3-n (X = F, Cl, Br, I) Moiety to Target Molecules by a Radical Strategy: A Theoretical and Experimental Study. J Am Chem Soc 2021; 143:13195-13204. [PMID: 34374531 DOI: 10.1021/jacs.1c05208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Addition of halomethyl radicals to form bioactive molecules has recently become an efficient strategy. The reaction has a bottleneck, however, which is the effective and selective generation of the proper halomethyl •CHnX3-n radical by combining CHnX4-n with a carbon radical. Understanding the reactivity and selectivity of carbon radicals in the hydrogen atom transfer (HAT) and halogen atom transfer (XAT) reactions of CHnX4-n is key to the development of such an attractive method. With the help of the emerging data-driven strategy, DFT calculations were used to explore various correlations. For selectivity, the relative energy barriers between HAT and XAT reactions (ΔG⧧H - ΔG⧧X) correlate reasonably well with the three parameters ΔGH, ΔGX, and IP, and the correlation studies reveal that the calculated IPinver and the experimental ΔBDE can be used to conveniently predict the selectivity. Predicted selectivities are consistent with experimental determinations. This work not only provides a possibility for selecting carbon radicals with the known or easily obtained physicochemical data but also demonstrates that the informatic workflow such as generating data and identifying correlations has potential applications in mining reaction rules.
Collapse
Affiliation(s)
- Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yun-Dong Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen, 518132, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518132, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
39
|
Meyer S, Häfliger J, Gilmour R. Expanding organofluorine chemical space: the design of chiral fluorinated isosteres enabled by I(i)/I(iii) catalysis. Chem Sci 2021; 12:10686-10695. [PMID: 34476053 PMCID: PMC8372324 DOI: 10.1039/d1sc02880d] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Short aliphatic groups are prevalent in bioactive small molecules and play an essential role in regulating physicochemistry and molecular recognition phenomena. Delineating their biological origins and significance have resulted in landmark developments in synthetic organic chemistry: Arigoni's venerable synthesis of the chiral methyl group is a personal favourite. Whilst radioisotopes allow the steric footprint of the native group to be preserved, this strategy was never intended for therapeutic chemotype development. In contrast, leveraging H → F bioisosterism provides scope to complement the chiral, radioactive bioisostere portfolio and to reach unexplored areas of chiral chemical space for small molecule drug discovery. Accelerated by advances in I(i)/I(iii) catalysis, the current arsenal of achiral 2D and 3D drug discovery modules is rapidly expanding to include chiral units with unprecedented topologies and van der Waals volumes. This Perspective surveys key developments in the design and synthesis of short multivicinal fluoroalkanes under the auspices of main group catalysis paradigms.
Collapse
Affiliation(s)
- Stephanie Meyer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Germany
| | - Joel Häfliger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Germany
| |
Collapse
|
40
|
|
41
|
Yeung YY, Wong J. Recent Advances in C–Br Bond Formation. Synlett 2021. [DOI: 10.1055/s-0037-1610772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractOrganobromine compounds are extremely useful in organic synthesis. In this perspective, a focused discussion on some recent advancements in C–Br bond-forming reactions is presented.1 Introduction2 Selected Recent Advances2.1 Catalytic Asymmetric Bromopolycyclization of Olefinic Substrates2.2 Catalytic Asymmetric Intermolecular Bromination2.3 Some New Catalysts and Reagents for Bromination2.4 Catalytic Site-Selective Bromination of Aromatic Compounds2.5 sp3 C–H Bromination via Atom Transfer/Cross-Coupling3 Outlook
Collapse
|
42
|
Zhang Y, Liang Y, Zhao X. Chiral Selenide-Catalyzed, Highly Regio- and Enantioselective Intermolecular Thioarylation of Alkenes with Phenols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00296] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
43
|
Wang D, Wan Z, Zhang H, Lei A. Electrochemical Oxidative Functionalization of Arylalkynes: Access to α,α‐Dibromo Aryl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Wang
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| | - Zhaohua Wan
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| |
Collapse
|
44
|
Bock J, Guria S, Wedek V, Hennecke U. Enantioselective Dihalogenation of Alkenes. Chemistry 2021; 27:4517-4530. [DOI: 10.1002/chem.202003176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/01/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Jonathan Bock
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Sudip Guria
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Volker Wedek
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Ulrich Hennecke
- Organic Chemistry Research Group (ORGC) Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| |
Collapse
|
45
|
Scheide MR, Nicoleti CR, Martins GM, Braga AL. Electrohalogenation of organic compounds. Org Biomol Chem 2021; 19:2578-2602. [DOI: 10.1039/d0ob02459g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review we target sp, sp2 and sp3 carbon fluorination, chlorination, bromination and iodination reactions using electrolysis as a redox medium. Mechanistic insights and substrate reactivity are also discussed.
Collapse
Affiliation(s)
- Marcos R. Scheide
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Celso R. Nicoleti
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Guilherme M. Martins
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Antonio L. Braga
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| |
Collapse
|
46
|
Li J, Shi Y. Catalytic enantioselective bromohydroxylation of cinnamyl alcohols. RSC Adv 2021; 11:13040-13046. [PMID: 35423889 PMCID: PMC8697332 DOI: 10.1039/d1ra02297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
This work describes an effective enantioselective bromohydroxylation of cinnamyl alcohols with (DHQD)2PHAL as the catalyst and H2O as the nucleophile, providing a variety of corresponding optically active bromohydrins with up to 95% ee. Optically active bromohydrins are obtained with up to 95% ee via asymmetric bromohydroxylation of cinnamyl alcohols with H2O as nucleophile.![]()
Collapse
Affiliation(s)
- Jing Li
- Institute of Natural and Synthetic Organic Chemistry
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry
- Changzhou University
- Changzhou 213164
- P. R. China
- Department of Chemistry
| |
Collapse
|
47
|
Steigerwald DC, Soltanzadeh B, Sarkar A, Morgenstern CC, Staples RJ, Borhan B. Ritter-enabled catalytic asymmetric chloroamidation of olefins. Chem Sci 2020; 12:1834-1842. [PMID: 34163947 PMCID: PMC8179065 DOI: 10.1039/d0sc05224h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intermolecular asymmetric haloamination reactions are challenging due to the inherently high halenium affinity (HalA) of the nitrogen atom, which often leads to N-halogenated products as a kinetic trap. To circumvent this issue, acetonitrile, possessing a low HalA, was used as the nucleophile in the catalytic asymmetric Ritter-type chloroamidation of allyl-amides. This method is compatible with Z and E alkenes with both alkyl and aromatic substitution. Mild acidic workup reveals the 1,2-chloroamide products with enantiomeric excess greater than 95% for many examples. We also report the successful use of the sulfonamide chlorenium reagent dichloramine-T in this chlorenium-initiated catalytic asymmetric Ritter-type reaction. Facile modifications lead to chiral imidazoline, guanidine, and orthogonally protected 1,2,3 chiral tri-amines. Intermolecular haloamination reactions are challenging due to the high halenium affinity of the nitrogen atom. This is circumvented by using acetonitrile as an attenuated nucleophile, resulting in an enantioselective halo-Ritter reaction.![]()
Collapse
Affiliation(s)
| | - Bardia Soltanzadeh
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | - Aritra Sarkar
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | | | - Richard J Staples
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | - Babak Borhan
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| |
Collapse
|
48
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
49
|
Lian P, Long W, Li J, Zheng Y, Wan X. Visible‐Light‐Induced Vicinal Dichlorination of Alkenes through LMCT Excitation of CuCl
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Wenhao Long
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Jingjing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
50
|
Lian P, Long W, Li J, Zheng Y, Wan X. Visible‐Light‐Induced Vicinal Dichlorination of Alkenes through LMCT Excitation of CuCl
2. Angew Chem Int Ed Engl 2020; 59:23603-23608. [DOI: 10.1002/anie.202010801] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Wenhao Long
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Jingjing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|