1
|
Palio L, Bru F, Ruggiero T, Bourda L, Van Hecke K, Cazin C, Nolan SP. The role of the stabilizing/leaving group in palladium catalysed cross-coupling reactions. Dalton Trans 2024. [PMID: 39440538 DOI: 10.1039/d4dt02533d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Despite the widespread use of well-defined PdII complexes as pre-catalysts for cross-coupling processes, the role of the throw-away ligand is still underexplored. In this work we focused on the complexes of the type [Pd(NHC)(η3-R-allyl)Cl] (NHC = N-heterocyclic carbene) and we investigated the influence of the R substitution on the allyl moiety. Starting from the already described [Pd(IPr)(η3-cinnamyl)Cl] and [Pd(IPr*)(η3-cinnamyl)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, IPr* = N,N'-1,3-bis[2,6-bis(diphenylmethyl)-4-methylphenyl]imidazol-2-ylidene) we prepared eight new complexes bearing new substitutions on the cinnamyl motif and we tested them in the C-N bond formation to evaluate the effect of the throw-away ligand modification in the catalytic activity. In addition, we studied the undesired formation of the less active off-cycle [PdI2(NHC)2(η3-R-allyl)(μ-Cl)] dimers from the corresponding PdII complexes to evaluate the role of the new throw-away ligands on the inhibition of this process.
Collapse
Affiliation(s)
- Lorenzo Palio
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS Unité de Catalyse et Chimie Solide, F-59000, Lille, France
| | - Francis Bru
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Tommaso Ruggiero
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Laurens Bourda
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Catherine Cazin
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| |
Collapse
|
2
|
Iyer KS, Dismuke Rodriguez KB, Lammert RM, Yirak JR, Saunders JM, Kavthe RD, Aue DH, Lipshutz BH. Rapid Aminations of Functionalized Aryl Fluorosulfates in Water. Angew Chem Int Ed Engl 2024; 63:e202411295. [PMID: 39034288 DOI: 10.1002/anie.202411295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Aryl fluorosulfates of varying complexities have been used in amination reactions in water using a new Pd oxidative addition complex (OAC-1) developed specifically to match the needs of the fine chemicals industry, not only in terms of functional group tolerance, but also reflecting time considerations associated with these important C-N couplings. Also especially noteworthy is that they replace both PFAS-related triflates and nonaflates, which are today out of favor due to recent government regulations. The new complex based on the BippyPhos ligand is used at low loadings and under aqueous micellar conditions. Moreover, it is easily prepared and stable to long term storage. DFT calculations on the OAC precatalyst compare well with the X-ray structure of the crystals with π-complexation to the aromatic system of the ligand and also confirm the NMR data showing a mixture of conformers in solution that differ from the X-ray structure in rotation of the phenyl and t-butyl ligand substituents. An extensive variety of coupling partners, including pharmaceutically relevant APIs, readily participate under mild and environmentally responsible reaction conditions.
Collapse
Affiliation(s)
- Karthik S Iyer
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | - Robert M Lammert
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Jordan R Yirak
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - John M Saunders
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Rahul D Kavthe
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Donald H Aue
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Utecht-Jarzyńska G, Shi S, Gao P, Jarzyński S, Mahbubur Rahman M, Lalancette R, Szostak R, Szostak M. IPr* F - Highly Hindered, Fluorinated N-Heterocyclic Carbenes. Chemistry 2024:e202402847. [PMID: 39298645 DOI: 10.1002/chem.202402847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The introduction of fluorine atom has attracted considerable interest in molecular design owing to the high electronegativity and the resulting polarization of carbon-fluorine bonds. Simultaneously, sterically-hindered N-heterocyclic carbenes (NHCs) have received major interest due to high stabilization of the reactive metal centers, which has paved the way for the synthesis of stable and reactive organometallic compounds with broad applications in main group chemistry, inorganic synthesis and transition-metal-catalysis. Herein, we report the first class of sterically-hindered, fluorinated N-heterocyclic carbenes. These ligands feature variable fluorine substitution at the N-aromatic wingtip, permitting to rationally vary steric and electronic characteristics of the carbene center imparted by the fluorine atom. An efficient, one-pot synthesis of fluorinated IPr*F ligands is presented, enabling broad access of academic and industrial researchers to the fluorinated ligands. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au(I), Rh(I) and Se is presented. Considering the unique properties of carbon-fluorine bonds, we anticipate that this novel class of fluorinated carbene ligands will find widespread application in stabilizing reactive metal centers.
Collapse
Affiliation(s)
- Greta Utecht-Jarzyńska
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
- Faculty of Chemistry, University of Lodz, Tamka 12, Łódź, 91-403, Poland
| | - Shicheng Shi
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Szymon Jarzyński
- Faculty of Chemistry, University of Lodz, Tamka 12, Łódź, 91-403, Poland
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
4
|
Gnyawali KP, Shakenov A, Kirinde Arachchige PT, Yi CS. Benzoquinone Ligand-Enabled Ruthenium-Catalyzed Deaminative Coupling of 2-Aminoaryl Aldehydes and Ketones with Branched Amines for Regioselective Synthesis of Quinoline Derivatives. J Org Chem 2024; 89:11119-11135. [PMID: 39058560 DOI: 10.1021/acs.joc.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The catalytic system generated in situ from the cationic Ru-H complex [(C6H6)(PCy3)(CO)RuH]+BF4- (1) with 2,3,4,5-tetrachloro-1,2-benzoquinone (L1) was found to be highly effective for promoting the deaminative coupling reaction of 2-aminoaryl aldehydes with branched amines to form 2-substituted quinoline products. The analogous deaminative coupling reaction of 2-aminoaryl ketones with branched amines led to the regioselective formation of 2,4-disubstituted quinoline products. A number of biologically active quinoline derivatives including graveolinine and a triplex DNA intercalator have been synthesized by using the catalytic method.
Collapse
Affiliation(s)
| | - Aldiyar Shakenov
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | | | - Chae S Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
5
|
Kumar M, Sharma AK, Ishu K, Singh KN. Sulfur-Mediated Decarboxylative Amidation of Cinnamic Acids via C═C Bond Cleavage. J Org Chem 2024; 89:9888-9895. [PMID: 38920263 DOI: 10.1021/acs.joc.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A new strategy for the synthesis of amides has been developed using sulfur-mediated decarboxylative coupling of cinnamic acids with amines via oxidative cleavage of the C═C bond.
Collapse
Affiliation(s)
- Mahesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anup Kumar Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Km Ishu
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
6
|
Zhu Y, Yang S, Zhou T, Szostak M. [(NHC)Pd(OAc) 2]: Highly Active Carboxylate Pd(II)-NHC (NHC = N-Heterocyclic Carbene) Precatalysts for Suzuki-Miyaura and Buchwald-Hartwig Cross-Coupling of Amides by N-C(O) Activation. J Org Chem 2024. [PMID: 38950123 DOI: 10.1021/acs.joc.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In the past eight years, the selective cross-coupling of amides by N-C(O) bond activation has emerged as a highly attractive manifold for the manipulation of traditionally unreactive amide bonds. In this Special Issue on Next-Generation Cross-Coupling Chemistry, we report the Suzuki-Miyaura and Buchwald-Hartwig cross-coupling of amides by selective N-C(O) cleavage catalyzed by bench-stable, well-defined carboxylate Pd(II)-NHC (NHC = N-heterocyclic carbene) catalysts {[(NHC)Pd(O2CR)2]}. This class of Pd(II)-NHCs promotes cross-coupling under exceedingly mild room-temperature conditions owing to the facile dissociation of the carboxylate ligands to form the active complex. These readily accessible Pd(II)-NHC precatalysts show excellent functional group tolerance and are compatible with a broad range of amide activating groups. Considering the mild conditions for the cross-coupling and the facile access to carboxylate Pd(II)-NHC complexes, we anticipate that this class of bench-stable complexes will find wide application in the activation of amide N-C(O) and related acyl X-C(O) bonds.
Collapse
Affiliation(s)
- Yawei Zhu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
7
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
8
|
Gao Y, Hu Y, Ye J, Ma Z, Feng J, Liu X, Lei P, Szostak M. Pd-NHC (NHC = N-Heterocyclic Carbene)-Catalyzed B-Alkyl Suzuki Cross-Coupling of 2-Pyridyl Ammonium Salts by N-C Activation: Application to the Discovery of Agrochemical Molecular Hybrids. Org Lett 2024; 26:2309-2314. [PMID: 38466078 DOI: 10.1021/acs.orglett.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
2-Alkylpyridines are a privileged scaffold throughout the realm of organic synthesis and play a key role in natural products, pharmaceuticals, and agrochemicals. Herein, we report the first B-alkyl Suzuki cross-coupling of 2-pyridyl ammonium salts to access functionalized 2-alkylpyridines. The use of well-defined, operationally simple Pd-NHCs permits for an exceptionally broad scope of the challenging B-alkyl C-N cross-coupling with organoboranes containing β-hydrogen, representing a novel method for the discovery of highly sought-after molecules for plant protection.
Collapse
Affiliation(s)
- Yanqing Gao
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuge Hu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiuhui Ye
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqing Ma
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Lei
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
9
|
Zhang J, Liu T, Zhang G, Cai J, Wang Y, Tong J, Ma Y, Szostak R, Szostak M. Indazolin-3-ylidenes (Indy*): easily accessible, sterically-hindered indazole-derived N-heterocyclic carbenes and their application in gold catalysis. Dalton Trans 2024; 53:4260-4265. [PMID: 38344761 DOI: 10.1039/d4dt00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Sterically-hindered N-heterocyclic carbenes (NHCs) with functionalized N-wingtips are a pivotal class of ligands in organic synthesis. Herein, we report the first class of sterically-hindered N-heterocyclic carbenes based on the indazole framework. These ligands combine the strong σ-donation of the carbene center due to the carbene placement at the C3-indazole position with the sterically-hindered and flexible N-substitution with the versatile 2,6-bis(diphenylmethyl)aryl moiety that extends beyond the metal centre for the first time in non-classical N-heterocyclic carbenes. The ligands are readily accessible by the rare Cadogan indazole synthesis of sterically-hindered N-aryl-1-(2-nitrophenyl)methanimines. Steric and electronic characterization as well as catalytic studies in the synthesis of oxazolines are described. Considering the unique properties of indazole-derived carbenes, we anticipate that this class of compounds will find broad application in organic synthesis and catalysis.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Ting Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Gaopeng Zhang
- Kaili Catalyst & New Materials Co., Ltd, Xi'an 710299, China
| | - Jianglong Cai
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yue Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jianbo Tong
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| |
Collapse
|
10
|
Escayola S, Bahri-Laleh N, Poater A. % VBur index and steric maps: from predictive catalysis to machine learning. Chem Soc Rev 2024; 53:853-882. [PMID: 38113051 DOI: 10.1039/d3cs00725a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Steric indices are parameters used in chemistry to describe the spatial arrangement of atoms or groups of atoms in molecules. They are important in determining the reactivity, stability, and physical properties of chemical compounds. One commonly used steric index is the steric hindrance, which refers to the obstruction or hindrance of movement in a molecule caused by bulky substituents or functional groups. Steric hindrance can affect the reactivity of a molecule by altering the accessibility of its reactive sites and influencing the geometry of its transition states. Notably, the Tolman cone angle and %VBur are prominent among these indices. Actually, steric effects can also be described using the concept of steric bulk, which refers to the space occupied by a molecule or functional group. Steric bulk can affect the solubility, melting point, boiling point, and viscosity of a substance. Even though electronic indices are more widely used, they have certain drawbacks that might shift preferences towards others. They present a higher computational cost, and often, the weight of electronics in correlation with chemical properties, e.g. binding energies, falls short in comparison to %VBur. However, it is worth noting that this may be because the steric index inherently captures part of the electronic content. Overall, steric indices play an important role in understanding the behaviour of chemical compounds and can be used to predict their reactivity, stability, and physical properties. Predictive chemistry is an approach to chemical research that uses computational methods to anticipate the properties and behaviour of these compounds and reactions, facilitating the design of new compounds and reactivities. Within this domain, predictive catalysis specifically targets the prediction of the performance and behaviour of catalysts. Ultimately, the goal is to identify new catalysts with optimal properties, leading to chemical processes that are both more efficient and sustainable. In this framework, %VBur can be a key metric for deepening our understanding of catalysis, emphasizing predictive catalysis and sustainability. Those latter concepts are needed to direct our efforts toward identifying the optimal catalyst for any reaction, minimizing waste, and reducing experimental efforts while maximizing the efficacy of the computational methods.
Collapse
Affiliation(s)
- Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Naeimeh Bahri-Laleh
- Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
- Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Hiroshima, 739-8526, Japan
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
11
|
Cai Y, Zhao Y, Tang K, Zhang H, Mo X, Chen J, Huang Y. Amide C-N bonds activation by A new variant of bifunctional N-heterocyclic carbene. Nat Commun 2024; 15:496. [PMID: 38216571 PMCID: PMC10786861 DOI: 10.1038/s41467-024-44756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
We report an organocatalyst that combines a triazolium N-heterocyclic carbene (NHC) with a squaramide as a hydrogen-bonding donor (HBD), which can effectively catalyze the atroposelective ring-opening of biaryl lactams via a unique amide C-N bond cleavage mode. The free carbene species attacks the amide carbonyl, forming an axially chiral acyl-azolium intermediate. Various axially chiral biaryl amines can be accessed by this methodology with up to 99% ee and 99% yield. By using mercaptan as a catalyst turnover agent, the resulting thioester synthon can be transformed into several interesting atropisomers. Both control experiments and theoretical calculations reveal the crucial role of the hybrid NHC-HBD skeleton, which activates the amide via H-bonding and brings it spatially close to the carbene centre. This discovery illustrates the potential of the NHC-HBD chimera and demonstrates a complementary strategy for amide bond activation and manipulation.
Collapse
Affiliation(s)
- Yuxing Cai
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Yuxin Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Kai Tang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Hong Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Xueling Mo
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
12
|
Yang S, Zeng H, Luo M, Zeng X. Reductive transamidation of tertiary amides with nitroarenes enabled by magnesium and chlorosilane. Org Biomol Chem 2023; 21:9337-9340. [PMID: 37987529 DOI: 10.1039/d3ob01728a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Reported here is the reductive transamidation of tertiary amides with nitroarenes promoted by main group metal magnesium and chlorosilane. The reaction uses commercially available and air-stable nitroarenes as nitrogen sources, so it can occur under transition-metal- and ligand-free conditions, thus providing a step-economic and cost-effective strategy for forming centrally important secondary amides. Several biologically interesting amide motifs are readily accessible by the Mg-promoted reductive transamidation.
Collapse
Affiliation(s)
- Shangru Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Haohao Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
13
|
Singh V, Rajput K, Mishra A, Singh S, Srivastava V. Microwave-assisted chemoselective transamidation of secondary amides by selective N-C(O) bond cleavage under catalyst, additive and solvent-free conditions. Chem Commun (Camb) 2023; 59:14009-14012. [PMID: 37941417 DOI: 10.1039/d3cc04128j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A microwave-assisted, highly chemoselective protocol has been developed for the transamidation of tert-butyloxycarbonyl (Boc) activated secondary carboxamides with amines. Under non-conventional microwave techniques, the reactions were achieved under catalyst, additive, promoter and solvent-free conditions. The transamidation of a structurally diverse set of amides and amines was accomplished in good to excellent yields. The salient features of the developed methodology include a simple operation, broad substrate scope, functional group tolerance, practicality, and the scalability.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Khushbu Rajput
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Ankush Mishra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| |
Collapse
|
14
|
Bensalah D, Mansour L, Sauthier M, Gurbuz N, Özdemir I, Beji L, Gatri R, Hamdi N. Plausible PEPPSI catalysts for direct C-H functionalization of five-membered heterocyclic bioactive motifs: synthesis, spectral, X-ray crystallographic characterizations and catalytic activity. RSC Adv 2023; 13:31386-31410. [PMID: 37941793 PMCID: PMC10628855 DOI: 10.1039/d3ra06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 11/10/2023] Open
Abstract
In this study, a series of benzimidazolium salts were synthesized as asymmetric N-heterocyclic carbene (NHC) precursors. Nine novel palladium complexes with the general formula [PdX2(NHC)(pyridine)] were synthesized using benzimidazolium salts in the PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) theme. All synthesized Pd(ii) complexes are stable. The synthesized compounds were thoroughly characterized by respective spectroscopic techniques, such as 1HNMR, 13C NMR, FTIR spectroscopy, X-ray crystallography and elemental analysis. The geometric structure of the palladium N-heterocyclic carbene has been optimized in the framework of density functional theory (DFT) using the B3LYP-D3 dispersion functional with LANL2DZ as a basis set. The on/off mechanism of pyridine assisted Pd-NHC complexes made them the best C-H functionalized catalysts for regioselective C-5 arylated products. Five membered heterocyclic compounds such as 2-acetyl furan, furfuryl acetate 2-acetylthiophene and N-methylpyrrole-2-carboxaldehyde were treated with numerous aryl bromides and arylchlorides under optimal catalytic reaction conditions. Interestingly, all the prepared catalysts possessed essential structural features that facilitated the formation of desired coupling products in quantitative yield with excellent selectivity. The arylation reaction of bromoacetophenone was highly catalytically active with only 1 mol% catalyst loading at 150 °C for 2 hours. To check the efficiency of the synthesized complexes, three different five member heterocyclic substrates (2-acetylfuran, 2-acetylthiophen, 2-propylthaizole) were tested with a number of aryl bromides bearing both electron-donating and electron-withdrawing groups on para position. The data in Tables 2-4. Indicated that electron-donating groups on the para position of aryl halide decreased the catalytic conversion while electron-withdrawing groups increased the catalytic conversion this was due to the high nucleophilicity of the electron-donating substituents.
Collapse
Affiliation(s)
- Donia Bensalah
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage Hammam-Lif Tunisia +96 6556394839
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mathieu Sauthier
- Ecole Nationale Superieure de Chimie de Lille, Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, USTL BP 90108, Villeneuve d'Ascq 59652 France
| | - Nevin Gurbuz
- Department of Chemistry, Faculty of Science and Art, İnönü University Malatya 44280 Turkey
- İnönü University, Catalysis Research and Application Center Malatya 44280 Turkey
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University Malatya 44280 Turkey
- İnönü University, Catalysis Research and Application Center Malatya 44280 Turkey
| | - Lotfi Beji
- Department of Physics, College of Sciences and Arts at Arras, Qassim University Saudi Arabia
| | - Rafik Gatri
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique Évaluation Biologique LR17ES01 Faculté des Sciences de Tunis Campus Universitaire, Université de Tunis El Manar 1092 Tunis Tunisia
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage Hammam-Lif Tunisia +96 6556394839
| |
Collapse
|
15
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
16
|
Zhong H, Egger DT, Gasser VCM, Finkelstein P, Keim L, Seidel MZ, Trapp N, Morandi B. Skeletal metalation of lactams through a carbonyl-to-nickel-exchange logic. Nat Commun 2023; 14:5273. [PMID: 37644031 PMCID: PMC10465567 DOI: 10.1038/s41467-023-40979-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Classical metalation reactions such as the metal-halogen exchange have had a transformative impact on organic synthesis owing to their broad applicability in building carbon-carbon bonds from carbon-halogen bonds. Extending the metal-halogen exchange logic to a metal-carbon exchange would enable the direct modification of carbon frameworks with new implications in retrosynthetic analysis. However, such a transformation requires the selective cleavage of highly inert chemical bonds and formation of stable intermediates amenable to further synthetic elaborations, hence its development has remained considerably challenging. Here we introduce a skeletal metalation strategy that allows lactams, a prevalent motif in bioactive molecules, to be readily converted into well-defined, synthetically useful organonickel reagents. The reaction features a selective activation of unstrained amide C-N bonds mediated by an easily prepared Ni(0) reagent, followed by CO deinsertion and dissociation under mild room temperature conditions in a formal carbonyl-to-nickel-exchange process. The underlying principles of this unique reactivity are rationalized by organometallic and computational studies. The skeletal metalation is further applied to a direct CO excision reaction and a carbon isotope exchange reaction of lactams, underscoring the broad potential of metal-carbon exchange logic in organic synthesis.
Collapse
Affiliation(s)
- Hongyu Zhong
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Dominic T Egger
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | | | | | - Loris Keim
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Merlin Z Seidel
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
17
|
Rahman MM, Zhao Q, Meng G, Lalancette R, Szostak R, Szostak M. [IPr #-PEPPSI]: A Well-Defined, Highly Hindered and Broadly Applicable Pd(II)-NHC (NHC = N-Heterocyclic Carbene) Precatalyst for Cross-Coupling Reactions. Molecules 2023; 28:5833. [PMID: 37570803 PMCID: PMC10421006 DOI: 10.3390/molecules28155833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
In this Special Issue, "Featured Papers in Organometallic Chemistry", we report on the synthesis and characterization of [IPr#-PEPPSI], a new, well-defined, highly hindered Pd(II)-NHC precatalyst for cross-coupling reactions. This catalyst was commercialized in collaboration with MilliporeSigma, Burlington, ON, Canada (no. 925489) to provide academic and industrial researchers with broad access to reaction screening and optimization. The broad activity of [IPr#-PEPPSI] in cross-coupling reactions in a range of bond activations with C-N, C-O, C-Cl, C-Br, C-S and C-H cleavage is presented. A comprehensive evaluation of the steric and electronic properties is provided. Easy access to the [IPr#-PEPPSI] class of precatalysts based on modular pyridine ligands, together with the steric impact of the IPr# peralkylation framework, will facilitate the implementation of well-defined, air- and moisture-stable Pd(II)-NHC precatalysts in chemistry research.
Collapse
Affiliation(s)
- Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430000, China
| | - Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-383 Wroclaw, Poland;
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| |
Collapse
|
18
|
Rahman MM, Meng G, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. I tOct (I tOctyl) - pushing the limits of I tBu: highly hindered electron-rich N-aliphatic N-heterocyclic carbenes. Chem Sci 2023; 14:5141-5147. [PMID: 37206400 PMCID: PMC10189875 DOI: 10.1039/d3sc01006f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
ItBu (ItBu = 1,3-di-tert-butylimidazol-2-ylidene) represents the most important and most versatile N-alkyl N-heterocyclic carbene available in organic synthesis and catalysis. Herein, we report the synthesis, structural characterization and catalytic activity of ItOct (ItOctyl), C2-symmetric, higher homologues of ItBu. The new ligand class, including saturated imidazolin-2-ylidene analogues has been commercialized in collaboration with MilliporeSigma: ItOct, 929 298; SItOct, 929 492 to enable broad access of the academic and industrial researchers within the field of organic and inorganic synthesis. We demonstrate that replacement of the t-Bu side chain with t-Oct results in the highest steric volume of N-alkyl N-heterocyclic carbenes reported to date, while retaining the electronic properties inherent to N-aliphatic ligands, such as extremely strong σ-donation crucial to the reactivity of N-alkyl N-heterocyclic carbenes. An efficient large-scale synthesis of imidazolium ItOct and imidazolinium SItOct carbene precursors is presented. Coordination chemistry to Au(i), Cu(i), Ag(i) and Pd(ii) as well as beneficial effects on catalysis using Au(i), Cu(i), Ag(i) and Pd(ii) complexes are described. Considering the tremendous importance of ItBu in catalysis, synthesis and metal stabilization, we anticipate that the new class of ItOct ligands will find wide application in pushing the boundaries of new and existing approaches in organic and inorganic synthesis.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Guangrong Meng
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Elwira Bisz
- Department of Chemistry, Opole University 48 Oleska Street Opole 45-052 Poland
| | - Błażej Dziuk
- Department of Chemistry, Wroclaw University of Science and Technology Norwida 4/6 14 Wroclaw 50-373 Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University F. Joliot-Curie 14 Wroclaw 50-383 Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
19
|
Gao P, Xu J, Zhou T, Liu Y, Bisz E, Dziuk B, Lalancette R, Szostak R, Zhang D, Szostak M. L-Shaped Heterobidentate Imidazo[1,5-a]pyridin-3-ylidene (N,C)-Ligands for Oxidant-Free Au I /Au III Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218427. [PMID: 36696514 PMCID: PMC9992098 DOI: 10.1002/anie.202218427] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
In the last decade, major advances have been made in homogeneous gold catalysis. However, AuI /AuIII catalytic cycle remains much less explored due to the reluctance of AuI to undergo oxidative addition and the stability of the AuIII intermediate. Herein, we report activation of aryl halides at gold(I) enabled by NHC (NHC=N-heterocyclic carbene) ligands through the development of a new class of L-shaped heterobidentate ImPy (ImPy=imidazo[1,5-a]pyridin-3-ylidene) N,C ligands that feature hemilabile character of the amino group in combination with strong σ-donation of the carbene center in a rigid conformation, imposed by the ligand architecture. Detailed characterization and control studies reveal key ligand features for AuI /AuIII redox cycle, wherein the hemilabile nitrogen is placed at the coordinating position of a rigid framework. Given the tremendous significance of homogeneous gold catalysis, we anticipate that this ligand platform will find widespread application.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Jihong Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Yanhong Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052 (Poland)
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373 (Poland)
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383 (Poland)
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| |
Collapse
|
20
|
Malav R, Ray S. Carbon-carbon Cross Coupling Reactions Assisted by Schiff Base Complexes of Palladium, Cobalt and Copper: A Brief Overview. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
21
|
Lv C, Zhao R, Wang X, Liu D, Muschin T, Sun Z, Bai C, Bao A, Bao YS. Copper-Catalyzed Transamidation of Unactivated Secondary Amides via C-H and C-N Bond Simultaneous Activations. J Org Chem 2023; 88:2140-2157. [PMID: 36701175 DOI: 10.1021/acs.joc.2c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here, we demonstrate that α-C-H and C-N bonds of unactivated secondary amides can be activated simultaneously by the copper catalyst to synthesize α-ketoamides or α-ketoesters in one step, which is a challenging and underdeveloped transformation. Using copper as a catalyst and air as an oxidant, the reaction is compatible with a broad range of acetoamides, amines, and alcohols. The preliminary mechanism studies and density functional theory calculation indicated that the reaction process may undergo first radical α-oxygenation and then transamidation with the help of the resonant six-membered N,O-chelation and molecular oxygen plays a role as an initiator to trigger the transamidation process. The combination of chelation assistance and dioxygen selective oxygenation strategy would substantially extend the modern mild synthetic amide cleavage toolbox, and we envision that this broadly applicable method will be of great interest in the biopharmaceutical industry, synthetic chemistry, and agrochemical industry.
Collapse
Affiliation(s)
- Cong Lv
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Ruisheng Zhao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Xiuying Wang
- Inner Mongolia Autonomous Region Animal Epidemic Prevention Center, Hohhot 010020, China
| | - Dan Liu
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Tegshi Muschin
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Zhaorigetu Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Chaolumen Bai
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Agula Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yong-Sheng Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
22
|
Li C, Ling L, Luo Z, Wang S, Zhang X, Zeng X. Deoxygenative Cross-Coupling of C(aryl)–O and C(amide)═O Electrophiles Enabled by Chromium Catalysis Using Bipyridine Ligand. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Chao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liang Ling
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zheng Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Sha Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoyu Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
23
|
Yang S, Yu X, Szostak M. Divergent Acyl and Decarbonylative Liebeskind-Srogl Cross-Coupling of Thioesters by Cu-Cofactor and Pd-NHC (NHC = N-Heterocyclic Carbene) Catalysis. ACS Catal 2023; 13:1848-1855. [PMID: 38037656 PMCID: PMC10686545 DOI: 10.1021/acscatal.2c05550] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition-metal-catalyzed cross-coupling reactions of thioesters by selective acyl C(O)-S cleavage have emerged as a powerful platform for the preparation of complex molecules. Herein, we report divergent Liebeskind-Srogl cross-coupling of thioesters by Pd-NHC (NHC = N-heterocyclic carbene) catalysis. The reaction provides straightforward access to functionalized ketones by highly selective C(acyl)-S cleavage under mild conditions. Most crucially, the conditions enable direct functionalization of a range of complex pharmaceuticals decorated with a palette of sensitive functional groups, providing attractive products for medicinal chemistry programs. Furthermore, decarbonylative Liebeskind-Srogl cross-coupling by C(acyl)-S/C(aryl)-C(O) cleavage is reported. Cu metal cofactor directs the reaction pathway to acyl or decarbonylative pathway. This reactivity is applicable to complex pharmaceuticals. The reaction represents the mildest decarbonylative Suzuki cross-coupling discovered to date. The Cu-directed divergent acyl and decarbonylative cross-coupling of thioesters opens up chemical space in complex molecule synthesis.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
24
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
25
|
Yang S, Zhou T, Yu X, Szostak M. Ag-NHC Complexes in the π-Activation of Alkynes. Molecules 2023; 28:molecules28030950. [PMID: 36770617 PMCID: PMC9920927 DOI: 10.3390/molecules28030950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Silver-NHC (NHC = N-heterocyclic carbene) complexes play a special role in the field of transition-metal complexes due to (1) their prominent biological activity, and (2) their critical role as transfer reagents for the synthesis of metal-NHC complexes by transmetalation. However, the application of silver-NHCs in catalysis is underdeveloped, particularly when compared to their group 11 counterparts, gold-NHCs (Au-NHC) and copper-NHCs (Cu-NHC). In this Special Issue on Featured Reviews in Organometallic Chemistry, we present a comprehensive overview of the application of silver-NHC complexes in the p-activation of alkynes. The functionalization of alkynes is one of the most important processes in chemistry, and it is at the bedrock of organic synthesis. Recent studies show the significant promise of silver-NHC complexes as unique and highly selective catalysts in this class of reactions. The review covers p-activation reactions catalyzed by Ag-NHCs since 2005 (the first example of p-activation in catalysis by Ag-NHCs) through December 2022. The review focuses on the structure of NHC ligands and p-functionalization methods, covering the following broadly defined topics: (1) intramolecular cyclizations; (2) CO2 fixation; and (3) hydrofunctionalization reactions. By discussing the role of Ag-NHC complexes in the p-functionalization of alkynes, the reader is provided with an overview of this important area of research and the role of Ag-NHCs to promote reactions that are beyond other group 11 metal-NHC complexes.
Collapse
|
26
|
Underwood SJ, Douglas CJ. N-Pyridylimidates as Traceless Acyl Equivalents for Directed C-O Bond Functionalization. Org Lett 2023; 25:146-151. [PMID: 36583549 DOI: 10.1021/acs.orglett.2c03961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Directing groups are a common strategy to target traditionally inert bonds, with an easily removable directing group being ideal. Herein we disclose our method for rhodium-catalyzed C-O bond functionalization of N-pyridylimidates using a recyclable and traceless amine directing group. In addition to the substrate scope, we discuss the behavior of this class of compounds and how that behavior affects their reactivity.
Collapse
Affiliation(s)
- Steven J Underwood
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J Douglas
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Sequential Iron-Catalyzed C(sp 2)-C(sp 3) Cross-Coupling of Chlorobenzamides/Chemoselective Amide Reduction and Reductive Deuteration to Benzylic Alcohols. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010223. [PMID: 36615417 PMCID: PMC9821805 DOI: 10.3390/molecules28010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Benzylic alcohols are among the most important intermediates in organic synthesis. Recently, the use of abundant metals has attracted significant attention due to the issues with the scarcity of platinum group metals. Herein, we report a sequential method for the synthesis of benzylic alcohols by a merger of iron catalyzed cross-coupling and highly chemoselective reduction of benzamides promoted by sodium dispersion in the presence of alcoholic donors. The method has been further extended to the synthesis of deuterated benzylic alcohols. The iron-catalyzed Kumada cross-coupling exploits the high stability of benzamide bonds, enabling challenging C(sp2)-C(sp3) cross-coupling with alkyl Grignard reagents that are prone to dimerization and β-hydride elimination. The subsequent sodium dispersion promoted reduction of carboxamides proceeds with full chemoselectivity for the C-N bond cleavage of the carbinolamine intermediate. The method provides access to valuable benzylic alcohols, including deuterium-labelled benzylic alcohols, which are widely used as synthetic intermediates and pharmacokinetic probes in organic synthesis and medicinal chemistry. The combination of two benign metals by complementary reaction mechanisms enables to exploit underexplored avenues for organic synthesis.
Collapse
|
28
|
Yang S, Yu X, Poater A, Cavallo L, Cazin CSJ, Nolan SP, Szostak M. Buchwald-Hartwig Amination and C-S/S-H Metathesis of Aryl Sulfides by Selective C-S Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl] 2 Precatalysts: Unified Mechanism for Activation of Inert C-S Bonds. Org Lett 2022; 24:9210-9215. [PMID: 36480689 DOI: 10.1021/acs.orglett.2c03717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a combined experimental and mechanistic study on the Buchwald-Hartwig amination and C-S/S-H metathesis of aryl sulfides by selective activation of C-S bonds mediated by well-defined, air- and moisture-stable Pd(II)-NHC precatalysts, [Pd(NHC)(μ-Cl)Cl]2. This class of Pd(II)-NHC precatalysts displays excellent activity in the cross coupling of aryl sulfides. Most crucially, we unravel the unified mechanism for activation of C-S bonds in the C-N cross-coupling and C-S metathesis manifolds, where the inert C-S bond serves as a precursor to valuable amine or thioether products.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
29
|
Pierce JK, Hiatt LD, Howard JR, Hu H, Qu F, Shaughnessy KH. Amines as Activating Ligands for Phosphine Palladium(II) Precatalysts: Effect of Amine Ligand Identity on the Catalyst Efficiency. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jordan K. Pierce
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Lindsey D. Hiatt
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - James R. Howard
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Huaiyuan Hu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Kevin H. Shaughnessy
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
30
|
Chu W, Zhou T, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. CAAC-IPr*: easily accessible, highly sterically-hindered cyclic (alkyl)(amino)carbenes. Chem Commun (Camb) 2022; 58:13467-13470. [PMID: 36382995 PMCID: PMC9737351 DOI: 10.1039/d2cc05668b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
IPr* (IPr* = 1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene) has emerged as a powerful highly hindered and sterically-flexible ligand platform for transition-metal catalysis. CAACs (CAAC = cyclic (al-kyl)(amino)carbenes) have gained major attention as strongly electron-rich carbon analogues of NHCs (NHC = N-heterocyclic carbene) with broad applications in both industry and academia. Herein, we report a merger of CAAC ligands with highly-hindered IPr*. The efficient synthesis, electronic characterization and application in model Cu-catalyzed hydroboration of alkynes is described. The ligands are strongly electron-rich, bulky and flexible around the N-Ar wingtip. The availability of various IPr* and CAAC templates offers a significant potential to expand the existing arsenal of NHC ligands to electron-rich bulky architectures with critical applications in metal stabilization and catalysis.
Collapse
Affiliation(s)
- Wenchao Chu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| |
Collapse
|
31
|
Riva L, Nicastro G, Liu M, Battocchio C, Punta C, Sacchetti A. Pd-Loaded Cellulose NanoSponge as a Heterogeneous Catalyst for Suzuki-Miyaura Coupling Reactions. Gels 2022; 8:gels8120789. [PMID: 36547313 PMCID: PMC9778444 DOI: 10.3390/gels8120789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The (eco)design and synthesis of durable heterogeneous catalysts starting from renewable sources derived from biomass waste represents an important step for reducing environmental impacts of organic transformations. Herein, we report the efficient loading of Pd(II) ions on an eco-safe cellulose-based organic support (CNS), obtained by thermal cross-linking between TEMPO-oxidized cellulose nanofibers and branched polyethyleneimine in the presence of citric acid. A 22.7% w/w Pd-loading on CNS was determined by the ICP-OES technique, while the metal distribution on the xerogel was evidenced by SEM-EDS analysis. XPS analysis confirmed the direct chelation of Pd(II) ions by means of the high number of amino groups present in the network, so that further functionalization of the support with specific ligands was not necessary. The new composite turned to be an efficient heterogeneous pre-catalyst for promoting Suzuki-Miyaura coupling reactions between aryl halides and phenyl boronic acid in water, obtaining yields higher than 90% in 30 min, by operating in a microwave reactor at 100 °C and with just 2% w/w of CNS-Pd catalyst with respect to aryl halides (4.5‱ for Pd). At the end of first reaction cycle, Pd(II) ions on the support resulted in being reduced to Pd(0) while maintaining the same catalytic efficiency. In fact, no leaching was observed at the end of reactions, and five cycles of recycling and reusing of CNS-Pd catalyst provided excellent results in terms of yields and selectivity in the desired products.
Collapse
Affiliation(s)
- Laura Riva
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy
| | - Gloria Nicastro
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy
| | - Mingchong Liu
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy
- Istituto di Scienze e Tecnologie Chimiche, “Giulio Natta” (SCITEC), National Research Council-CNR, 20131 Milan, Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy
- Correspondence: ; Tel.: +39-0223993017
| |
Collapse
|
32
|
Ahmad MG, Chanda K. Ionic liquid coordinated metal-catalyzed organic transformations: A comprehensive review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Meng H, Liu MS, Shu W. Organothianthrenium salts: synthesis and utilization. Chem Sci 2022; 13:13690-13707. [PMID: 36544727 PMCID: PMC9710214 DOI: 10.1039/d2sc04507a] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Organothianthrenium salts are a class of compounds containing a positively charged sulfur atom and a neutral sulfur atom. Over the past years, organothianthrenium salts have been emerging as attractive precursors for a myriad of transformations to forge new C-C and C-X bonds due to their unique structural characteristics and chemical behaviors. The use of the thianthrenation strategy selectively transforms C-H, C-O, and other chemical bonds into organothianthrenium salts in a predictable manner, providing a straightforward alternative for regioselective functionalizations for arenes, alkenes, alkanes, alcohols, amines and so on through diverse reaction mechanisms under mild conditions. In this review, the preparation of different organothianthrenium salts is summarized, including aryl, alkenyl and alkyl thianthrenium salts. Moreover, the utilization of organothianthrenium salts in different catalytic processes and their synthetic potentials are also discussed.
Collapse
Affiliation(s)
- Huan Meng
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and TechnologyShenzhen 518055GuangdongP. R. China
| | - Ming-Shang Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and TechnologyShenzhen 518055GuangdongP. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and TechnologyShenzhen 518055GuangdongP. R. China
| |
Collapse
|
34
|
Zhang J, Li X, Li T, Zhang G, Wan K, Ma Y, Fang R, Szostak R, Szostak M. Copper(I)–Thiazol-2-ylidenes: Highly Reactive N-Heterocyclic Carbenes for the Hydroboration of Terminal and Internal Alkynes. Ligand Development, Synthetic Utility, and Mechanistic Studies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Tao Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Gaopeng Zhang
- Kaili Catalyst & New Materials Co., Limited, Xi’an710299, China
| | - Kerou Wan
- Kaili Catalyst & New Materials Co., Limited, Xi’an710299, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Ran Fang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an710021, China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey07102, United States
| |
Collapse
|
35
|
Zhou T, Gao P, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. Well-Defined, Air- and Moisture-Stable Palladium-Imidazo[1,5- a]pyridin-3-ylidene Complexes: A Versatile Catalyst Platform for Cross-Coupling Reactions by L-Shaped NHC Ligands. Catal Sci Technol 2022; 12:6581-6589. [PMID: 38045636 PMCID: PMC10691866 DOI: 10.1039/d2cy01136k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We describe the development of [(NHC)Pd(cinnamyl)Cl] complexes of ImPy (ImPy = imidazo[1,5-a]pyridin-3-ylidene) as a versatile class of precatalysts for cross-coupling reactions. These precatalysts feature fast activation to monoligated Pd(0) with 1:1 Pd to ligand ratio in a rigid imidazo[1,5-a]pyridin-3-ylidene template. Steric matching of the C5-substituent and N2-wingtip in the catalytic pocket of the catalyst framework led to the discovery of ImPyMesDipp as a highly reactive imidazo[1,5-a]pyridin-3-ylidene ligand for Pd-catalyzed cross-coupling of nitroarenes by challenging C-NO2 activation. Kinetic studies demonstrate fast activation and high reactivity of this class of well-defined ImPy-Pd catalysts. Structural studies provide full characteristics of this new class of imidazo[1,5-a]pyridin-3-ylidene ligands. Computational studies establish electronic properties of sterically-restricted imidazo[1,5-a]pyridin-3-ylidene ligands. Finally, a scalable synthesis of C5-substituted imidazo[1,5-a]pyridin-3-ylidene ligands through Ni-catalyzed Kumada cross-coupling is disclosed. The method obviates chromatographic purification at any of the steps, resulting in a facile and modular access to ImPy ligands. We anticipate that well-defined [Pd-ImPy] complexes will find broad utility in organic synthesis and catalysis for activation of unreactive bonds.
Collapse
Affiliation(s)
- Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
36
|
Jones A, Williams MTJ, Morrill LC, Browne DL. Mechanical Activation of Zero-Valent Metal Reductants for Nickel-Catalyzed Cross-Electrophile Coupling. ACS Catal 2022; 12:13681-13689. [PMID: 36366760 PMCID: PMC9638985 DOI: 10.1021/acscatal.2c03117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Indexed: 12/04/2022]
Abstract
The cross-electrophile coupling of either twisted-amides or heteroaryl halides with alkyl halides, enabled by ball-milling, is herein described. The operationally simple nickel-catalyzed process has no requirement for inert atmosphere or dry solvents and delivers the corresponding acylated or heteroarylated products across a broad range of substrates. Key to negating the necessity of inert reaction conditions is the mechanical activation of the raw metal terminal reductant: manganese in the case of twisted amides and zinc for heteroaryl halides.
Collapse
Affiliation(s)
- Andrew
C. Jones
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Matthew T. J. Williams
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Duncan L. Browne
- School
of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, U.K.
| |
Collapse
|
37
|
Polydentate P, N-based ligands for palladium-catalyzed cross-coupling reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Yang S, Li H, Yu X, An J, Szostak M. Suzuki–Miyaura Cross-Coupling of Aryl Fluorosulfonates Mediated by Air- and Moisture-stable [Pd(NHC)(μ-Cl)Cl] 2 Precatalysts: Broad Platform for C–O Cross-Coupling of Stable Phenolic Electrophiles. J Org Chem 2022; 87:15250-15260. [DOI: 10.1021/acs.joc.2c01778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Hengzhao Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
39
|
Yu H, Wang ZX. Rhodium(I)-Catalyzed P(III)-Directed Aromatic C–H Acylation with Amides. J Org Chem 2022; 87:14384-14393. [DOI: 10.1021/acs.joc.2c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
40
|
Adebomi V, Wang Y, Sriram M, Raj M. Selective Conversion of Unactivated C-N Amide Bond to C-C bond via Steric and Electronic Resonance Destabilization. Org Lett 2022; 24:6525-6530. [PMID: 36067532 PMCID: PMC10165555 DOI: 10.1021/acs.orglett.2c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemo- and site-selective reaction at the particular C-N amide bond among a sea of other amides is a significant and long-standing challenge. Although the use of twisted amides has been demonstrated for modifications of inert C-N amide bonds, none of these methods can selectively activate a particular amide bond for C-C bond formation in the presence of similar amides. Using density functional theory as a guide, we report the first site-selective C-C bond modification of a particular C-N amide bond in polyamides with a low twist angle by combining ground-state steric distortion with electronic activation.
Collapse
Affiliation(s)
- Victor Adebomi
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yuwen Wang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mahesh Sriram
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
41
|
Yu. Kostyukovich A, Gordeev EG, Ananikov VP. A computational mapping of the R–NHC coupling pathway – the key process in the evolution of Pd/NHC catalytic systems. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
42
|
Ye Y, Liu Z, Wang Y, Zhang Y, Yin F, He Q, Peng J, Tan K, Shen Y. N-Indole-substituted N-heterocyclic carbene palladium precatalysts: Synthesis, characterization and catalytic cross-couplings. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
43
|
Zhao Q, Li G, Nareddy P, Jordan F, Lalancette R, Szostak R, Szostak M. Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on N-C(X) Resonance. Angew Chem Int Ed Engl 2022; 61:e202207346. [PMID: 35776856 PMCID: PMC9398953 DOI: 10.1002/anie.202207346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Amide bond replacement with planar isosteric chalcogen analogues has an important implication for the properties of the N-C(X) linkage in structural chemistry, biochemistry and organic synthesis. Herein, we report the first higher chalcogen derivatives of non-planar twisted amides. The synthesis of twisted thioamide in a versatile system has been accomplished by direct thionation without cleavage of the σ N-C bond. The synthesis of twisted selenoamide has been accomplished by selenation with Woollins' reagent. The structures of higher chalcogen analogues of non-planar amides were unambiguously confirmed by X-ray crystallography. Reactivity studies were conducted to determine the effect of isologous N-C(O) to N-C(X) replacement on the properties of the amide linkage. Computational studies were employed to evaluate structural and energetic parameters of amide bond alteration in higher chalcogen amides. The study provides the first experimental evidence on the effect of chalcogen isologues on the structural and electronic properties of the non-planar amide N-C(X) linkage.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Pradeep Nareddy
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
44
|
Singh S, Kandasamy J. Synthesis of 1,3‐dicarbonyl compounds using N‐Cbz amides as an acyl source under transition metal‐free conditions at room temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shweta Singh
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
45
|
Wang F, Tong Y, Zou G. Nickel-Catalyzed, Manganese-Assisted Denitrogenative Cross-Electrophile-Coupling of Benzotriazinones with Alkyl Halides for ortho-Alkylated Benzamides. Org Lett 2022; 24:5741-5745. [PMID: 35916781 DOI: 10.1021/acs.orglett.2c02182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nickel-catalyzed denitrogenative cross-electrophile-coupling of benzotriazinones with unactivated alkyl halides (X = Cl, Br, I) in the presence of manganese powder as a reductant has been developed. The reaction furnishes ortho-alkylated secondary benzamides in modest to good yields under mild conditions. The scope of the reaction is demonstrated with 25 examples, showing good tolerance of steric hindrance and common functional groups, thus providing an efficient protocol to ortho-alkylated benzamide derivatives without the use of preprepared organometallic reagents.
Collapse
Affiliation(s)
- Fengze Wang
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Yi Tong
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
46
|
He F, Gourlaouen C, Pang H, Braunstein P. Experimental and Theoretical Study of Ni II - and Pd II -Promoted Double Geminal C(sp 3 )-H Bond Activation Providing Facile Access to NHC Pincer Complexes: Isolated Intermediates and Mechanism. Chemistry 2022; 28:e202200507. [PMID: 35543286 PMCID: PMC9401054 DOI: 10.1002/chem.202200507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/11/2022]
Abstract
We report the first examples of metal-promoted double geminal activation of C(sp3 )-H bonds of the N-CH2 -N moiety in an imidazole-type heterocycle, leading to nickel and palladium N-heterocyclic carbene complexes under mild conditions. Reaction of the new electron-rich diphosphine 1,3-bis((di-tert-butylphosphaneyl)methyl)-2,3-dihydro-1H-benzo[d]imidazole (1) with [PdCl2 (cod)] occurred in a stepwise fashion, first by single C-H bond activation yielding the alkyl pincer complex [PdCl(PCsp 3 H P)] (3) with two trans phosphane donors and a covalent Pd-Csp 3 bond. Activation of the C-H bond of the resulting α-methine Csp 3 H-M group occurred subsequently when 3 was treated with HCl to yield the NHC pincer complex [PdCl(PCNHC P)]Cl (2). Treatment of 1 with [NiBr2 (dme)] also afforded a NHC pincer complex, [NiBr(PCNHC P)]Br (6), but the reactions leading to the double geminal C-H bond activation of the N-CH2 -N group were too fast to allow identification or isolation of an intermediate analogous to 3. The determination of six crystal structures, the isolation of reaction intermediates and DFT calculations provided the basis for suggesting the mechanism of the stepwise transformation of a N-CH2 -N moiety in the N-CNHC -N unit of NHC pincer complexes and explain the key differences observed between the Pd and Ni chemistries.
Collapse
Affiliation(s)
- Fengkai He
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009JiangsuP. R. China) E-mail: s
- Laboratoire de Chimie de CoordinationInstitut de Chimie (UMR 7177 CNRS)Université de Strasbourg4 rue Blaise Pascal67081StrasbourgFrance
| | - Christophe Gourlaouen
- Laboratoire de Chimie QuantiqueInstitut de Chimie (UMR 7177 CNRS)Université de Strasbourg4 rue Blaise Pascal67081StrasbourgFrance
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009JiangsuP. R. China) E-mail: s
| | - Pierre Braunstein
- Laboratoire de Chimie de CoordinationInstitut de Chimie (UMR 7177 CNRS)Université de Strasbourg4 rue Blaise Pascal67081StrasbourgFrance
| |
Collapse
|
47
|
Kanaujiya VK, Tiwari V, Pattanaik K, Sabiah S, Kandasamy J. Synthesis of Glycouronamides by the Transamidation Approach at Room Temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Varsha Tiwari
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | | | | | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
48
|
Zhao Q, Li G, Nareddy P, Jordan F, Lalancette R, Szostak R, Szostak M. Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on N–C(X) Resonance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qun Zhao
- Rutgers University: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | - Guangchen Li
- Rutgers University: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | - Pradeep Nareddy
- Rutgers University: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | - Frank Jordan
- Rutgers University System: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | - Roger Lalancette
- Rutgers University System: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | - Roman Szostak
- Uniwersytet Wroclawski Wydzial Chemii Chemistry UNITED STATES
| | - Michal Szostak
- Rutgers University Department of Chemistry 73 Warren St. 07102 Newark UNITED STATES
| |
Collapse
|
49
|
Spectral, crystallographic, theoretical, and catalytic activity studies of the PdII complexes in different coordination modes of benzoylthiourea ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Hu Z, Wang Y, Ma P, Wu X, Wang J. Nickel(0)-Catalyzed Decarbonylative Cross-Coupling of Aromatic Esters with Arylboronic Acids via Chelation Assistance. ACS OMEGA 2022; 7:21537-21545. [PMID: 35785273 PMCID: PMC9245102 DOI: 10.1021/acsomega.2c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
10-Arylbenzo[h]quinolines were synthesized by cross-coupling of ethyl benzo[h]quinoline-10-carboxylate with arylboronic acids via group-directed Ni(0) catalyzation. The catalytic system combining Ni(COD)2 (10 mol %) with PCy3 (20 mol %) and t-BuOK (3 equiv) was optimal for the above transformations. A series of arylboronic acids reacted with ethyl benzo[h]quinoline-10-carboxylates for the production of various substituted 10-phenyl[h]quinolines in moderate and good yields under optimized reaction conditions.
Collapse
Affiliation(s)
- Zhenzhu Hu
- Department
of Chemistry, College of Science, Tianjin
University, Tianjin 300350, P. R. China
| | - Yuhang Wang
- Department
of Chemistry, College of Science, Tianjin
University, Tianjin 300350, P. R. China
| | - Peng Ma
- Department
of Chemistry, College of Science, Tianjin
University, Tianjin 300350, P. R. China
| | - Xiaqian Wu
- Department
of Chemistry, College of Science, Tianjin
University, Tianjin 300350, P. R. China
| | - Jianhui Wang
- Department
of Chemistry, College of Science, Tianjin
University, Tianjin 300350, P. R. China
- Institute
of Molecular Plus, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|