1
|
Lathion T, Deorukhkar N, Egger C, Nozary H, Piguet C. Molecular Fe(II)-Ln(III) dyads for luminescence reading of spin-state equilibria at the molecular level. Dalton Trans 2024; 53:17756-17765. [PMID: 39311462 PMCID: PMC11418352 DOI: 10.1039/d4dt01868k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Due to the primogenic effect, the valence shells of divalent iron Fe(II) ([Ar]3d6) and trivalent lanthanides Ln(III) ([Xe]4fn) are compact enough to induce spin-state equilibrium for the 3d-block metal and atom-like luminescence for the 4f-block partner in Fe(II)-Ln(III) dyads. In the specific case of homoleptic pseudo-octahedral [Fe(II)N6] units, programming spin crossover (SCO) around room temperature at normal pressure requires the design of unsymmetrical didentate five-membered ring chelating N∩N' ligands, in which a five-membered (benz)imidazole heterocycle (N) is connected to a six-membered pyrimidine heterocycle (N'). Benefiting from the trans influence, the facial isomer fac-[Fe(II)(N∩N')3]2+ is suitable for inducing SCO properties at room temperature in solution. Its connection to luminescent [LnN6O3] chromophores working as non-covalent podates in the triple-stranded [Fe(II)Ln(L10)3]5+ helicates (Ln = Nd, Eu) controls the facial arrangement around Fe(II). The iron-based SCO behaviour of the 3d-4f complex mirrors that programmed in the mononuclear scaffold. Because of the different electronic structures of high-spin and low-spin [Fe(II)N6] units, their associated absorption spectra are different and modulate the luminescence of the appended lanthanide luminophore via intramolecular intermetallic energy transfers. It thus becomes possible to detect the spin state of the Fe(II) center, encoded by an external perturbation (i.e. writing), by lanthanide light emission (i.e. reading) in a single molecule and without disturbance. Shifting from visible emission (Ln = Eu) to the near-infrared domain (Ln = Nd) further transforms a wavy emitted signal intensity into a linear one, a protocol highly desirable for future applications in data storage and thermometry.
Collapse
Affiliation(s)
- Timothée Lathion
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
- CNRS - CBM Rue Charles Sadron CS 80054, 45071 Orleans, Cedex 2, France
| | - Neel Deorukhkar
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Charlotte Egger
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
2
|
Luo Y, Zhou RH, Shao Z, Liu D, Lu HH, Shang MJ, Zhao L, Liu T, Meng YS. Effects of mono- or di-fluoro-substitution on spin crossover behavior in a pair of Schiff base-like Fe II-coordination polymers. Dalton Trans 2024; 53:14692-14700. [PMID: 39157994 DOI: 10.1039/d4dt01103a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Spin crossover (SCO) has long been a hot topic in the field of molecular magnetism owing to its unique bistability character. Rational control of thermal hysteresis and transition temperature (T1/2) is crucial for their practical applications, which rely on precise manipulation of the substituents of SCO coordinating ligands and molecular packing interactions. In this study, we designed two different bridging ligands (2-FDPB: 4,4'-(2-fluoro-1,4-phenylene)dipyridine; 2,3-FDPB: 4,4'-(2,3-difluoro-1,4-phenylene)dipyridine) featuring one and two fluoro substitution on the central benzene ring and applied a Schiff base-like equatorial tetradentate ligand {diethyl(E,E)-2,2'-[4,5-difluoro-1,2-phenyl-bis(iminomethylidyne)]bis(3-oxobutanoate)-(2-)-N,N',O3,O3'} (H2L) to coordinate with the FeII ion. Two FeII-coordination chain polymers [FeII(L)(2,3-FDPB)]·0.25CH2Cl2 (1) and [FeII(L)(2-FDPB)]·0.5CH3OH (2) were obtained. 1 crystallizes in the monoclinic P21/n space group with only one FeII center, while 2 crystallizes in the triclinic P1̄ space group with two independent FeII centers. Unlike the identical 2D layer stacking in 1, 2 exhibited alternating stacking of the extending 2D layers and meshed chains. Magnetic measurements revealed the typical thermally induced spin crossover behavior (SCO): 1 exhibited a 41 K-wide thermal hysteresis with transition temperatures of T1/2↑ = 245 K and T1/2↓ = 204 K, while 2 showed a higher transition temperature (T1/2 = 330 K) with no thermal hysteresis. Magneto-structural correlation studies suggest that the electron-withdrawing effect present in the fluoro substituents does not have a significant impact on the SCO behaviors. Despite the fluoro substituents having a similar atomic radius of hydrogen atoms, variations in the number of these substituents can alter the crystallization behavior of these complexes, which in turn affects the solvents, molecular stacking patterns, and intermolecular interactions, ultimately influencing the SCO behaviors.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Ren-He Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Zhen Shao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Dan Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Han-Han Lu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Meng-Jia Shang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
3
|
Zhang C, Ye C, Yao J, Wu LZ. Spin-related excited-state phenomena in photochemistry. Natl Sci Rev 2024; 11:nwae244. [PMID: 39211835 PMCID: PMC11360185 DOI: 10.1093/nsr/nwae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
The spin of electrons plays a vital role in chemical reactions and processes, and the excited state generated by the absorption of photons shows abundant spin-related phenomena. However, the importance of electron spin in photochemistry studies has been rarely mentioned or summarized. In this review, we briefly introduce the concept of spin photochemistry based on the spin multiplicity of the excited state, which leads to the observation of various spin-related photophysical properties and photochemical reactivities. Then, we focus on the recent advances in terms of light-induced magnetic properties, excited-state magneto-optical effects and spin-dependent photochemical reactions. The review aims to provide a comprehensive overview to utilize the spin multiplicity of the excited state in manipulating the above photophysical and photochemical processes. Finally, we discuss the existing challenges in the emerging field of spin photochemistry and future opportunities such as smart magnetic materials, optical information technology and spin-enhanced photocatalysis.
Collapse
Affiliation(s)
- Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Ai Y, Hu ZB, Weng YR, Peng H, Qi JC, Chen XG, Lv HP, Song XJ, Ye HY, Xiong RG, Liao WQ. A Multiferroic Spin-Crossover Molecular Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407822. [PMID: 39104291 DOI: 10.1002/adma.202407822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Spin-crossover (SCO) ferroelectrics with dual-function switches have attracted great attention for significant magnetoelectric application prospects. However, the multiferroic crystals with SCO features have rarely been reported. Herein, a molecular multiferroic Fe(II) crystalline complex [FeII(C8-F-pbh)2] (1-F, C8-F-pbh = (1Z,N'E)-3-F-4-(octyloxy)-N'-(pyridin-2-ylmethylene)-benzo-hydrazonate) showing the coexistence of ferroelectricity, ferroelasticity, and SCO behavior is presented for the first time. By H/F substitution, the low phase transition temperature (270 K) of the non-fluorinated parent compound is significantly increased to 318 K in 1-F, which exhibits a spatial symmetry breaking 222F2 type ferroelectric phase transition with clear room-temperature ferroelectricity. Besides, 1-F also displays a spin transition between high- and low-spin states, accompanied by the d-orbital breaking within the t2g 4eg 2 and t2g 6eg° configuration change of octahedrally coordinated FeII center. Moreover, the 222F2 type ferroelectric phase transition is also a ferroelastic one, verified by the ferroelectric domains reversal and the evolution of ferroelastic domains. To the knowledge, 1-F is the first multiferroic SCO molecular crystal. This unprecedented finding sheds light on the exploration of molecular multistability materials for future smart devices.
Collapse
Affiliation(s)
- Yong Ai
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhao-Bo Hu
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 330000, P. R. China
| | - Yan-Ran Weng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Jun-Chao Qi
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 330000, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
5
|
Deorukhkar N, Egger C, Rosspeintner A, Piguet C. Unravelling Kinetics of Intramolecular Nd III → Fe II Energy Transfer in Spin Crossover Single Molecules: Dotting the i's and Crossing the t's. J Am Chem Soc 2024; 146:19386-19396. [PMID: 38953864 DOI: 10.1021/jacs.4c05546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Compared with the ripple of visible EuIII-based emission intensity induced by appended [FeIIN6] spin crossover (SCO) units, as detected in the triple-stranded [EuFe(L1)3]5+ helicate, the lanthanide-based luminescent detection of FeII spin-state equilibria could be improved significantly if the luminophore emission is shifted toward the near-infrared (NIR) domain. Replacing EuIII with NdIII in [NdFe(L1)3]5+ (i) maintains the favorable SCO properties in acetonitrile [critical temperature T1/2 = 322(2) K], (ii) saturates nonradiative vibrational relaxation processes in the 233-333 K range, and (iii) boosts the crucial intramolecular NdIII → FeII energy transfer rate processes, which are sensitive to the spin state of the FeII metallic center. Consequently, the steady-state NIR Nd(4F3/2 → 4IJ) emission of the luminophore is amplified and linearly correlated with the low-spin-[FeIIN6] and high-spin-[FeIIN6] mole fractions controlled by the SCO equilibrium. This paves the way for a straightforward and direct NIR luminescent reading/sensing of the FeII spin state in single molecules.
Collapse
Affiliation(s)
- Neel Deorukhkar
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Charlotte Egger
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
6
|
Kaushik K, Sarkar A, Kamilya S, Li Y, Dechambenoit P, Rouzières M, Mehta S, Mondal A. Light-Induced, Structural Matrix Guided Stepwise Spin-State Switching in 3d-5d Molecular Assembly. Inorg Chem 2024; 63:7604-7612. [PMID: 38556753 DOI: 10.1021/acs.inorgchem.3c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
A new iron(II) molecular complex {[W(CN)8][Fe(bik*)3]2}BF4·7H2O·1.5CH3OH (1.7H2O·1.5CH3OH) was synthesized using a versatile octacyanotungstate(V) building block and N-donor bidentate ligand (bik* = bis(1-ethyl-1H-imidazol-2-yl)ketone) and detailed characterizations were carried out. The crystal structure of 1.7H2O·1.5CH3OH is composed of an ionic salt from one anionic [W(CN)8]3- unit, two isolated cationic [Fe(bik*)3]2+ units, and one BF4- counteranion in the asymmetric unit. Magnetic studies of 1.7H2O·1.5CH3OH display interesting two-step reversible thermo-induced spin-state switching and the partially desolvated form 1.7H2O shows a photomagnetic effect at low temperatures. Additionally, the physical properties of 1.7H2O·1.5CH3OH were compared with the monomeric unit of {[Fe(bik*)3]2}·4ReO4·H2O (2.H2O) and detailed photophysical investigations were also performed to study the effect of a structural matrix {[W(CN)8]3- and ReO4- unit} on the spin-state switching properties of the [Fe(bik*)3]2+ unit in both systems (1.7H2O·1.5CH3OH and 2.H2O).
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Archita Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris, cedex 5, France
| | - Pierre Dechambenoit
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| |
Collapse
|
7
|
Jeong AR, Park SR, Shin JW, Kim J, Tokunaga R, Hayami S, Min KS. Mononuclear Fe(III) complexes with 2,4-dichloro-6-((quinoline-8-ylimino)methyl)phenolate: synthesis, structure, and magnetic behavior. Dalton Trans 2024; 53:6809-6817. [PMID: 38545959 DOI: 10.1039/d3dt04385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Three Fe(III)-based coordination complexes [Fe(dqmp)2](NO3)·H2O (1), [Fe(dqmp)2](BF4)·2CH3COCH3 (2), and [Fe(dqmp)2](ClO4) (3) were synthesized from Fe(NO3)3·9H2O/Fe(ClO4)3·xH2O, NaBF4, and 2,4-dichloro-6-((quinoline-8-ylimino)methyl)phenol (Hdqmp) in methanol/acetone and characterized. The structures of complexes 1-3 were determined via single-crystal X-ray crystallography at 100 K and room temperature, and their magnetic properties in the solid and solution forms were investigated. All complexes showed meridional structures with two tridentate dqmp- ligands coordinated with Fe(III) cations. In the solid state, complex 1 showed an abrupt and complete spin crossover at 225 K, whereas complexes 2 and 3 exhibited an incomplete spin crossover at 135 and 150 K, respectively. In a dimethylformamide solution, the complexes showed counterion-dependent spin transitions. In contrast to the solid state, in solution, complex 1 did not exhibit complete spin crossover. However, complexes 2 and 3 showed more complete spin transitions in solutions than in the solid state. The relaxation times, T1 and T2, for 1 and 2 were determined and both increased with temperature from 220 to 380 K. The T1 of 1 was larger than that of 2 at 380 K, and the T1 values were larger than the T2 values.
Collapse
Affiliation(s)
- Ah Rim Jeong
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Si Ra Park
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jong Won Shin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jihyun Kim
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ryuya Tokunaga
- Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kil Sik Min
- Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Huang YY, He Y, Liu Y, Fu JH, Liu XL, Wu XT, Sheng TL. Fine-tuning of thermally induced SCO behaviors of trinuclear cyanido-bridged complexes by regulating the electron donating ability of C CN-terminal fragments. Dalton Trans 2024; 53:3777-3784. [PMID: 38305017 DOI: 10.1039/d3dt04226j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
To achieve fine regulation of FeII SCO behavior, a series of trinuclear cyanido-bridged complexes trans-[CpMen(dppe)MII(CN)]2[Fe1II(abpt)2](OTf)2 (1-4) (1, M = Fe2 and n = 1; 2, M = Fe2 and n = 4; 3, M = Fe2 and n = 5; 4, M = Ru and n = 5; CpMen = alkyl cyclopentadienyl with n = 1, 4, 5; dppe = 1,2-bis-(diphenylphosphino)ethane; abpt = 4-amino-3,5-bis-(pyridin-2-yl)-1,2,4-triazole and OTf = CF3SO3-) were synthesized and fully characterized by using elemental analysis, X-ray crystallography, magnetic measurements, variable-temperature IR spectroscopy and Mössbauer spectroscopy. It is worth mentioning that different from many mononuclear Fe(abpt)2X2 (X = NCS, NCSe, N(CN)2, C(CN)3, (NC)2CC(OCH3)C(CN)2, (NC)2CC(OC2H5)C(CN)2, C16SO3 and Cl) complexes with more than one polymorph, only one polycrystalline form was found in complexes 1-4. Moreover, the thermally induced SCO behaviors of these four complexes are independent of intermolecular π-π interactions. The electron-donating ability of the CCN-terminal fragment of CpMen(dppe)MIICN can be flexibly regulated by changing the methyl number (n) of the cyclopentadiene ligand or metal ion type (MII). These investigations indicate that the electron-donating ability of the CCN-terminal fragment has an influence on the SCO behavior of Fe1II. The spin transition temperature (T1/2) of the complexes decreases with the increase of the electron-donating ability of the fragment CpMen(dppe)MII. This study provides a new strategy to predict and precisely regulate the behaviors of SCO complexes.
Collapse
Affiliation(s)
- Ying-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hui Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
9
|
Deorukhkar N, Egger C, Guénée L, Besnard C, Piguet C. Detecting Fe(II) Spin-Crossover by Modulation of Appended Eu(III) Luminescence in a Single Molecule. J Am Chem Soc 2024; 146:308-318. [PMID: 37877700 DOI: 10.1021/jacs.3c09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Multifunctionality in spin-crossover (SCO) devices is limited to macroscopic or nanoscopic materials because of the need for long-range effects for inducing favorable cooperativity, efficient energy migration processes, and detectable magnetization transfer. The difficult reproducibility, control, and rational design of doped materials offer some place to SCO processes, modulating the optical properties of neighboring luminescent probes in single molecules. We report here on the combination of a [FeN6] chromophore, the SCO temperature and absorption spectra of which have been tuned to induce unprecedented room-temperature modulation of Eu(III)-based line-like luminescence in the molecular triple-helical [EuFe(L2)3]5+ complex in solution.
Collapse
Affiliation(s)
- Neel Deorukhkar
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Charlotte Egger
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet. CH-1211 Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet. CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
10
|
Feng J, Wang X, Wang L, Kfoury J, Oláh J, Zhang S, Zou L, Guo Y, Xue S. Naphthalimide-Tagged Iron(II) Spin Crossover Complex with Synergy of Ratiometric Fluorescence for Thermosensing. Inorg Chem 2024; 63:108-116. [PMID: 38113189 DOI: 10.1021/acs.inorgchem.3c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Spin crossover (SCO) materials that possess switchable and cooperative fluorescence have long focused interest in photonic sensor devices to monitor the variations in the physicochemical parameters of the external environment. However, the lack of quantified cooperativity for the SCO transition operating in isolated molecules is detrimental to short-term technological applications. In this study, a pretwisted energy D-A system combining the deep-blue naphthalimide fluorophore (donor) and the FeN6 SCO chromophore (switchable acceptor) has been developed with the formula of Fe(naph-abpt)2(NCS)2·2DMF (1), where naph-abpt is N-[3,5-di(pyridin-2-yl)-4H-1,2,4-triazol-4-yl]-1,8-naphthalimide. Dual emission from the naphthalimide function based on its vibronic structure exhibits a different synergy effect with SCO, providing a new platform for ratiometric fluorescence thermosensing. Theoretical calculations and optical experimental results demonstrate an excellent correlation between luminescence intensity ratio signals and magnetic data of spin transition, promising a high sensitivity of the optical activity of the ligand to the spin state of the active iron(II) ions, with the maximum relative sensitivity as 0.7% K-1 around T1/2.
Collapse
Affiliation(s)
- Junchuang Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoqin Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Joseph Kfoury
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary
| | - Shishen Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lifei Zou
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Science, Chifeng University, Chifeng 024000, China
| | - Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
11
|
Deng YF, Wang YN, Zhao XH, Zhang YZ. Exploring a prototype for cooperative structural phase transition in cobalt(II) spin crossover compounds. Dalton Trans 2024; 53:699-705. [PMID: 38078541 DOI: 10.1039/d3dt03529h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The creation of magnetically switchable materials that concurrently incorporate spin crossover (SCO) and a structural phase transition (SPT) presents a significant challenge in materials science. In this study, we prepared four structurally related cobalt(II)-based SCO compounds: two one-dimensional (1D) chains of {[(enbzp)Co(μ-L)](ClO4)2·sol}n (L = bpee, sol = 2MeOH·H2O, 1; L = bpea, sol = none, 2; enbzp = N,N'-(ethane-1,2-diyl)bis(1-phenyl-1-(pyridin-2-yl)methanimine); bpee = 1,2-bis(4-pyridyl)ethylene; and bpea = 1,2-bis(4-pyridyl)ethane) and their discrete segments, [{(enbzp)Co}2(μ-L)](ClO4)4·2MeOH (L = bpee, 3; L = bpea, 4). In all of these complexes, each Co(II) center is equatorially chelated by the planar tetradentate ligand enbzp and connected to a chain or dinuclear structure through bpee or bpea ligands along its axial direction. All of the complexes, including their desolvated phases, displayed overall incomplete and gradual SCO properties. Interestingly, the desolvated phase of 1 exhibited an additional non-spin magnetic transition characterized by wide room-temperature hysteresis (>40 K), which was reversible and rate-dependent, showcasing the synergy between SCO and SPT manifested through slow kinetics. We discuss the possible reasons for the distinct features and our findings demonstrate that the combination of a rigid polymeric framework with flexible substituents holds promise for achieving synergy between SCO and SPT.
Collapse
Affiliation(s)
- Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Yi-Nuo Wang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Xin-Hua Zhao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
12
|
Yang G, Wu SG, Ruan ZY, Chen YC, Xie KP, Ni ZP, Tong ML. Single-Crystal Transformation Engineering the Spin Change of Metal-Organic Frameworks via Cluster Deconstruction. Angew Chem Int Ed Engl 2023; 62:e202312685. [PMID: 37779343 DOI: 10.1002/anie.202312685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Spin crossover (SCO) materials with new architectures will expand and enrich the research in the SCO field. Here, we report two metal-organic frameworks (MOFs) containing tetradentate organic ligands and hexatopic linkers [Ag8 X8 (CN)6 ]6- (X=Br and I), which represents the first SCO MOF with clusters as building blocks. The silver halide cluster can be further removed after reacting with lithium tetracyanoquinodimethan (LiTCNQ). Such post-synthetic modification (PSM) is realized via single-crystal to single-crystal (SCSC) transformation from urk to nbo topology. Accordingly, the spin state and fluorescence properties are greatly modified by cluster deconstruction. Therefore, these achievements will provide new ideas for the design of new SCO systems and the development of PSM methods.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
13
|
Yang J, You ML, Liu S, Deng YF, Chang XY, Holmes SM, Zhang YZ. Cyanide-Bridged Rope-like Chains Based on Trigonal-Bipyramidal [Fe 2Cu 3] Subunits. Inorg Chem 2023; 62:17530-17536. [PMID: 37801447 DOI: 10.1021/acs.inorgchem.3c02986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Extending a selected cyanometalate block into a higher dimensional framework continues to present intriguing challenges in the fields of chemistry and material science. Here, we prepared two rope-like chain compounds of {[(Tp*Me)Fe(CN)3]2Cu2X2(L)}·sol (1, X = Cl, L = (MeCN)0.5(H2O/MeOH)0.5, sol = 2MeCN·1.5H2O; 2, X = Br, L = MeOH, sol = 2MeCN·0.75H2O; Tp*Me = tris(3, 4, 5-trimethylpyrazole)borate) in which the cyanide-bridged trigonal-bipyramidal [Fe2Cu3] subunits were linked with the adjacent ones via two vertex Cu(II) centers, providing a new cyanometallate chain archetype. Direct current magnetic study revealed the presence of ferromagnetic couplings between Fe(III) and Cu(II) ions and uniaxial anisotropy due to a favorable alignment of the anisotropic tricyanoiron(III) units. Moreover, compound 1 exhibits single-chain magnet behavior with an appreciable energy barrier of 72 K, while 2 behaves as a metamagnet, likely caused by the subtle changes in the interchain interactions.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Mao-Lin You
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Stephen M Holmes
- Department of Chemistry and Biochemistry and Centre for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
14
|
Su SQ, Wu SQ, Kanegawa S, Yamamoto K, Sato O. Control of electronic polarization via charge ordering and electron transfer: electronic ferroelectrics and electronic pyroelectrics. Chem Sci 2023; 14:10631-10643. [PMID: 37829034 PMCID: PMC10566498 DOI: 10.1039/d3sc03432a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
Ferroelectric, pyroelectric, and piezoelectric compounds whose electric polarization properties can be controlled by external stimuli such as electric field, temperature, and pressure have various applications, including ferroelectric memory materials, sensors, and thermal energy-conversion devices. Numerous polarization switching compounds, particularly molecular ferroelectrics and pyroelectrics, have been developed. In these materials, the polarization switching usually proceeds via ion displacement and reorientation of polar molecules, which are responsible for the change in ionic polarization and orientational polarization, respectively. Recently, the development of electronic ferroelectrics, in which the mechanism of polarization change is charge ordering and electron transfer, has attracted great attention. In this article, representative examples of electronic ferroelectrics are summarized, including (TMTTF)2X (TMTTF = tetramethyl-tetrathiafulvalene, X = anion), α-(BEDT-TTF)2I3 (BEDT-TTF = bis(ethylenedithio)-tetrathiafulvalene), TTF-CA (TTF = tetrathiafulvalene, CA = p-chloranil), and [(n-C3H7)4N][FeIIIFeII(dto)3] (dto = 1,2-dithiooxalate = C2O2S2). Furthermore, polarization switching materials using directional electron transfer in nonferroelectrics, the so-called electronic pyroelectrics, such as [(Cr(SS-cth))(Co(RR-cth))(μ-dhbq)](PF6)3 (dhbq = deprotonated 2,5-dihydroxy-1,4-benzoquinone, cth = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraaza-cyclotetradecane), are introduced. Future prospects are also discussed, particularly the development of new properties in polarization switching through the manipulation of electronic polarization in electronic ferroelectrics and electronic pyroelectrics by taking advantage of the inherent properties of electrons.
Collapse
Affiliation(s)
- Sheng-Qun Su
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kaoru Yamamoto
- Department of Applied Physics, Okayama University of Science Okayama 700-0005 Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
15
|
Xu FX, Zhou YT, Zhang CC, Zhang XY, Wei HY, Wang XY. Syntheses, Structures, and Magnetic Properties of Three Cyano-Bridged Fe II-Mo III Single-Molecule Magnets. Inorg Chem 2023; 62:15465-15478. [PMID: 37699414 DOI: 10.1021/acs.inorgchem.3c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Three new cyano-bridged FeII-MoIII complexes assembled from the [MoIII(CN)7]4- unit, FeII ions, and three pentadentate N3O2 ligands, namely {[Fe2H3(dapab)2][Mo(CN)6]}n·2H2O·3.5MeCN (1), [Fe(H2dapb)(H2O)][Fe(Hdapb)(H2O)][Mo(CN)6]·4H2O·3MeCN (2), and [Fe(H2dapba)(H2O)]2[Mo(CN)7]·6H2O (3) (H2dapab = 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone), H2dapb = 2,6-diacetylpyridine bis(benzoylhydrazone), H2dapba = 2,6-diacetylpyridine bis(4-aminobenzoylhydrazone)), have been synthesized and characterized. Single-crystal structure analyses suggest that complex 1 contains a one-dimensional (1D) chain structure where two FeII ions are bridged by the in situ generated [MoIII(CN)6]3- unit through two trans-cyanide groups into trinuclear Fe2IIMoIII clusters that are further linked by the amino of the ligand into an infinite chain. Complexes 2 and 3 are cyano-bridged Fe2IIMoIII trinuclear clusters with two FeII ions connected by the [MoIII(CN)6]3- and [MoIII(CN)7]4- units, respectively. Direct current magnetic studies confirmed the ferromagnetic interactions between the cyano-bridged FeII and MoIII centers and significant easy-axis magnetic anisotropy for all three complexes. Furthermore, complexes 1-3 exhibit slow magnetic relaxation under a zero dc field, with relaxation barriers of 42.3, 21.6, and 14.4 K, respectively, making them the first examples of cyano-bridged FeII-MoIII single-molecule magnets.
Collapse
Affiliation(s)
- Fang-Xue Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Ting Zhou
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Cheng Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yu Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Yang SL, Zhang X, Wang Q, Wu C, Liu H, Jiang D, Lavendomme R, Zhang D, Gao EQ. Confinement inside MOFs Enables Guest-Modulated Spin Crossover of Otherwise Low-Spin Coordination Cages. JACS AU 2023; 3:2183-2191. [PMID: 37654592 PMCID: PMC10466325 DOI: 10.1021/jacsau.3c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Confinement of discrete coordination cages within nanoporous lattices is an intriguing strategy to gain unusual properties and functions. We demonstrate here that the confinement of coordination cages within metal-organic frameworks (MOFs) allows the spin state of the cages to be regulated through multilevel host-guest interactions. In particular, the confined in situ self-assembly of an anionic FeII4L6 nanocage within the mesoporous cationic framework of MIL-101 leads to the ionic MOF with an unusual hierarchical host-guest structure. While the nanocage in solution and in the solid state has been known to be invariantly diamagnetic with low-spin FeII, FeII4L6@MIL-101 exhibits spin-crossover (SCO) behavior in response to temperature and release/uptake of water guest within the MOF. The distinct color change concomitant with water-induced SCO enables the use of the material for highly selective colorimetric sensing of humidity. Moreover, the spin state and the SCO behavior can be modulated also by inclusion of a guest into the hydrophobic cavity of the confined cage. This is an essential demonstration of the phenomenon that the confinement within porous solids enables an SCO-inactive cage to show modulable SCO behaviors, opening perspectives for developing functional supramolecular materials through hierarchical host-guest structures.
Collapse
Affiliation(s)
- Shuai-Liang Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
| | - Xiang Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
| | - Qing Wang
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P. R. China
| | - Chao Wu
- Department
of EEE, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Haiming Liu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P. R. China
| | - Dongmei Jiang
- Engineering
Research Center for Nanophotonics and Advanced Instrument, School
of Physics and Electronic Science, East
China Normal University, Shanghai 200241, P. R. China
| | - Roy Lavendomme
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Dawei Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
- Institute
of Eco-Chongming, Shanghai 202162, P. R. China
| | - En-Qing Gao
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
- Institute
of Eco-Chongming, Shanghai 202162, P. R. China
| |
Collapse
|
17
|
Rabelo R, Toma L, Moliner N, Julve M, Lloret F, Inclán M, García-España E, Pasán J, Ruiz-García R, Cano J. pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet. Chem Sci 2023; 14:8850-8859. [PMID: 37621442 PMCID: PMC10445472 DOI: 10.1039/d3sc02777e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The ability of mononuclear first-row transition metal complexes as dynamic molecular systems to perform selective functions under the control of an external stimulus that appropriately tunes their properties may greatly impact several domains of molecular nanoscience and nanotechnology. This study focuses on two mononuclear octahedral cobalt(ii) complexes of formula {[CoII(HL)2][CoII(HL)L]}(ClO4)3·9H2O (1) and [CoIIL2]·5H2O (2) [HL = 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine], isolated as a mixed protonated/hemiprotonated cationic salt or a deprotonated neutral species. This pair of pH isomers constitutes a remarkable example of a dynamic molecular system exhibiting reversible changes in luminescence, redox, and magnetic (spin crossover and spin dynamics) properties as a result of ligand deprotonation, either in solution or solid state. In this last case, the thermal-assisted spin transition coexists with the field-induced magnetisation blockage of "faster" or "slower" relaxing low-spin CoII ions in 1 or 2, respectively. In addition, pH-reversible control of the acid-base equilibrium among dicationic protonated, cationic hemiprotonated, and neutral deprotonated forms in solution enhances luminescence in the UV region. Besides, the reversibility of the one-electron oxidation of the paramagnetic low-spin CoII into the diamagnetic low-spin CoIII ion is partially lost and completely restored by pH decreasing and increasing. The fine-tuning of the optical, redox, and magnetic properties in this novel class of pH-responsive, spin crossover molecular nanomagnets offers fascinating possibilities for advanced multifunctional and multiresponsive magnetic devices for molecular spintronics and quantum computing such as pH-effect spin quantum transformers.
Collapse
Affiliation(s)
- Renato Rabelo
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
- Instituto de Química, Universidade Federal de Goiás 74690-900 Goiânia Brazil
| | - Luminita Toma
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Nicolás Moliner
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Miguel Julve
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Francesc Lloret
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Mario Inclán
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
- Escuela Superior de Ingeniería, Ciencia y Tecnología, Universidad Internacional de Valencia - VIU Valencia Spain
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Jorge Pasán
- Departamento de Química, Facultad de Ciencias, Laboratorio de Materiales para Análisis Químico (MAT4LL), Universidad de La Laguna 38200 Tenerife Spain
| | - Rafael Ruiz-García
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Joan Cano
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| |
Collapse
|
18
|
Omar S, Irran E, Wiedemann D, Baabe D, Grohmann A. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2023-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Abstract
4-(2,6-Di(2H-indazol-2-yl)pyridin-4-yl)benzoic acid (1) and 10-(2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)anthracene-9-carboxylic acid (2) were required for adsorption studies on Ag(111), with a view to subsequent iron(II) complexation and formation of well-ordered spin-responsive self-assembled monolayers. While the generation of these compounds has remained elusive, several intermediates and by-products were obtained, potentially useful as dipyrazolylpyridine-related derivatives and for metal ion coordination. 3,5-Dichloro-2,6-diindazolylpyridine-4-amine, which forms as a mixture of regioisomers, was synthesised, the mixture separated, and the components characterised (3,5-dichloro-2,6-di(2H-indazol-2-yl)pyridin-4-amine; 3,5-dichloro-2-(1H-indazol-1-yl)-6-(2H-indazol-2-yl)pyridin-4-amine; 3,5-dichloro-2,6-di(1H-indazol-1-yl)pyridin-4-amine). Their iron(II) complexes have been prepared and fully characterised, including single crystal X-ray structure determination. The complexes are instructive examples of the influence of ligand design (“steric jamming”) on the spin-crossover (SCO) activity of FeII centres. Bulky substitution, which entails twisted ligand conformation, increases intramolecular crowding. This prevents contraction of the metal coordination sphere, which would be a prerequisite for thermally inducible SCO. Mössbauer spectroscopy has revealed that the complexes remain predominantly high-spin (HS) between 20 and 200 K, and that a mixture of conformational HS isomers is present in the microcrystalline solid.
Collapse
Affiliation(s)
- Suhad Omar
- Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin , Germany
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin , Germany
| | - Dennis Wiedemann
- Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin , Germany
- GfBU-Consult Gesellschaft für Umwelt- und Managementberatung mbH , Mahlsdorfer Straße 61b, 15366 Hoppegarten , Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig , Hagenring 30, 38106 Braunschweig , Germany
| | - Andreas Grohmann
- Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin , Germany
| |
Collapse
|
19
|
Meng L, Deng YF, Holmes SM, Zhang YZ. Thermo- and photo-induced electron transfer in a series of [Fe 2Co 2] capsules. Dalton Trans 2023; 52:1616-1622. [PMID: 36648100 DOI: 10.1039/d2dt03328c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, a family of [Fe2Co2] molecular capsules that display tunable electron transfer-coupled spin transition (ETCST) behavior were reported via a smart approach through Schiff-base condensation of aldehyde-functionalized 2,2-bipyridines (bpyCHO) and 1,7-heptanediamine (H2N(CH2)7NH2). Here, three more capsule complexes {[(TpR)Fe(CN)3]2[Co(bpyCN(CH2)nNCbpy)]2[ClO4]2}·n(solvent) (1, TpR = Tp*, n = 5, sol = 8DMF; 2, TpR = TpMe, n = 9, sol = 5MeCN; and 3, TpR = Tp*, n = 11, sol = 5MeCN), where Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate and TpMe = hydridotris(3-methylpyrazol-1-yl)borate are reported, demonstrating a successful extension of such an approach with other alkyldiamines of different lengths. Combined X-ray crystallographic, infrared spectroscopic and magnetic studies reveal incomplete electron transfer with either changing temperature or upon light exposure.
Collapse
Affiliation(s)
- Lingyi Meng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Stephen M Holmes
- Department of Chemistry and Biochemistry and Centre for Nanoscience, University of Missouri-St Louis, St Louis, Missouri 63121, USA.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| |
Collapse
|
20
|
Huang XD, Ma XF, Shang T, Zhang YQ, Zheng LM. Photocontrollable Magnetism and Photoluminescence in a Binuclear Dysprosium Anthracene Complex. Inorg Chem 2023; 62:1864-1874. [PMID: 35830693 DOI: 10.1021/acs.inorgchem.2c01210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
By incorporating photoreactive anthracene moieties into binuclear Dy2O2 motifs, we obtain two new compounds with the formulas [Dy2(SCN)4(L)2(dmpma)4] (1) and [Dy2(SCN)4(L)2(dmpma)2(CH3CN)2] (2), where HL is 4-methyl-2,6-dimethoxyphenol and dmpma is dimethylphosphonomethylanthracene. Compound 1 contains face-to-face π-π interacted anthracene groups that meet the Schmidt rule for a [4 + 4] photocycloaddition reaction, while stacking of the anthracene groups in compound 2 does not meet the Schmidt rule. Compound 1 undergoes a reversible single-crystal-to-single-crystal structural transformation upon UV-light irradiation and thermal annealing, forming a one-dimensional coordination polymer of [Dy2(SCN)4(L)2(dmpma)2(dmpma2)]n (1UV). The process is concomitant with changes in the magnetic dynamics and photoluminescent properties. The spin-reversal energy barrier is significantly increased from 1 (55.9 K) to 1UV (116 K), and the emission color is changed from bright yellow for 1 to weak blue for 1UV. This is the first binuclear lanthanide complex that exhibits synergistic photocontrollable magnetic dynamics and photoluminescence. Ab initio calculations are conducted to understand the magnetostructural relationships of compounds 1, 1UV, and 2.
Collapse
Affiliation(s)
- Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiu-Fang Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Tao Shang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
21
|
Kumar P, Bala I, De R, Kumar Pal S, Venkataramani S. Light Modulated Reversible "On-Off" Transformation of Arylazoheteroarene Based Discotics in Nematic Organization. Chemistry 2023; 29:e202202876. [PMID: 36205928 DOI: 10.1002/chem.202202876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 11/23/2022]
Abstract
Three benzene-1,3,5-tricarboxamide (BTA) core-based molecular systems appended with phenylazo-3,5-dimethylisoxazole photoswitches at the peripheral position through variable-length alkoxy chains have been designed and synthesized. The supramolecular interactions of the mesogens provided discotic nematic liquid crystalline assembly as confirmed by polarized optical microscopy (POM) and X-ray diffraction (XRD) studies. Spectroscopic studies confirmed the reversible photoswitching and excellent thermal stability of the photoswitched states in solution phase and thin film. Also, atomic force microscopic (AFM) and POM investigations demonstrated the morphological changes in the self-assembly induced by the photoirradiation as monitored by the changes in the height profiles and optical appearance of the textures, respectively. Remarkably, the liquid crystalline discotic molecules showed reversible "on and off states" controlled by light at ambient temperature.
Collapse
Affiliation(s)
- Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli, 140306, Punjab, India
| | - Indu Bala
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli, 140306, Punjab, India
| | - Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli, 140306, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli, 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli, 140306, Punjab, India
| |
Collapse
|
22
|
Wang J, Kong M, Song XJ, Jing Y, Zhao Y, Song Y. Synergetic Spin-Crossover and Luminescent Properties in a Multifunctional 2D Iron(II) Coordination Polymer. Inorg Chem 2022; 61:20923-20930. [PMID: 36510686 DOI: 10.1021/acs.inorgchem.2c03350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We designed and synthesized a strong fluorescent tetradentate pyridine ligand, 3,6,11,12-tetra(pyridin-4-yl)dibenzo[a,c]phenazine (TPDP), by covalently grafting pyridyl to fluorescent dye dbpz, which can react with the Fe(NCX)2 (X = S and Se) unit, obtaining two new 2D [4 × 4] square-grid compounds, namely, {FeII(TPDP)2(SCN)2·CHCl3·4CH3OH}n (1) and {[FeII(TPDP)2(SeCN)2]·CH2Cl2·4CH3OH}n (2). Both of them show expected one-step spin-crossover (SCO) properties, and complex 2vacuum exhibits a combination of the SCO phenomenon and fluorescence in a synergetic way. The energy transfer mechanism of 2vacuum is verified by the theoretical calculations and experimental results. This study provides an effective strategy to synthesize large conjugated fluorescent ligands using dyes to further form SCO-luminescent bifunctional materials.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Ming Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Xiao-Jiao Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China.,Key Laboratory of National Forestry and Grassland Administration on Wildlife Evidence Technology, School of Criminal Science and Technology, Nanjing Forest Police College, Nanjing210023, P. R. China
| | - Yu Jing
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| |
Collapse
|
23
|
Meng L, Deng YF, Liu J, Liu YJ, Zhang YZ. Tuning the electron transfer events in a series of cyanide-bridged [Fe 2Co 2] squares according to different electron donors. Dalton Trans 2022; 51:15669-15674. [PMID: 36172797 DOI: 10.1039/d2dt02416k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been recognized that both the ligand fields and intermolecular interactions may greatly impact the electron-transfer-coupled spin transition (ETCST) events in switchable magnetic materials; however, the engineering of these factors within a given system is still challenging. In this article, we chose the 4,4'-substituent 2,2'-bipyridine derivatives as chelating ligands according to their increasing electron-donating strength and incremental potential for forming hydrogen bonds (bpyCHO,CH3(L1) < bpyCH2OH,CH3 (L2) < bpyCH2OH,CH2OH (L3)), and prepared three new [Fe2Co2] complexes, {[(Tp*)Fe(CN)3Co(L)2]2[ClO4]2}·Sol (1, L = L1, Sol = 4MeCN·2H2O; 2, L = L2, Sol = 3MeCN; 3, L = L3, Sol = 4MeOH; Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate). X-ray crystallography studies revealed that all the complexes share similar cyanide-bridged [Fe2Co2] square compositions except for the different substituted groups of L ligands, which led to the clearly evidenced intercluster hydrogen bonds between the neighbouring hydroxyl groups in 2 and 3. As a result, 1 remained in the paramagnetic [FeIII,LS2CoII,HS2] state over the whole temperature range, while 2 and 3 showed complete ETCST behaviour with the transition temperatures (T1/2) being 221 and 294 K, respectively.
Collapse
Affiliation(s)
- Lingyi Meng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| |
Collapse
|
24
|
Jabri AY, Mohajeri A. Photo-induced reversible nitric oxide capture by Fe-M(CO 2H) 4 (M = Co, Ni, Cu) as a building block of mixed-metal BTC-based MOFs. Phys Chem Chem Phys 2022; 24:22859-22870. [PMID: 36124552 DOI: 10.1039/d2cp02337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks incorporating mixed-metal sites (MM-MOFs) have emerged as promising candidates in the development of sensing platforms for the detection of paramagnetic species. In this context, the present study explores the photo-induced switching behavior of mixed-metal Fe-M (M = Co, Ni, Cu) formate (Fe-M(CO2H)4), as an experimentally feasible strategy for the reversible capture of nitric oxide (NO). Using Fe-M(CO2H)4 as a building block of synthesized MOFs based on BTC (benzene-1,3,5-tricarboxylic acid), molecular simulations of NO adsorption on Fe-M(CO2H)4 were conducted to provide a template for evaluating the behavior of BTC-based MOFs towards NO. Accordingly, the relationship between the magnetic properties and adsorption behaviors of Fe-M(CO2H)4 towards NO gas molecules was evaluated before and after photoexcitation. We show that the photo-induced effect on the magnetic properties of Fe-M(CO2H)4 changes the interaction strength between NO and the Fe-M(CO2H)4 systems. NO chemisorption over Fe-Ni(CO2H)4 indicates that nickel-doped Fe-BTC MOFs can be efficiently applied for capturing purposes. Moreover, our calculations show a switching behavior between physisorption and chemisorption of the NO molecules over Fe-Co(CO2H)4, occurring through magnetic modulation under UV-Vis irradiation. As far as we know, this is the first study that proposes light-controlled reversible NO capture using MOFs. The present study provides a promising platform for reversible NO capture using MM-MOF-incorporated BTC building blocks.
Collapse
Affiliation(s)
- Azadeh Yeganeh Jabri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran.
| | - Afshan Mohajeri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran.
| |
Collapse
|
25
|
Gao ZN, Feng DX, Wang Y, Li FH, Sun HY, Hu JX, Wang GM. Large Room Temperature Magnetization Enhancement in a Copper-Based Photoactive Metal–Organic Framework. Inorg Chem 2022; 61:15812-15816. [DOI: 10.1021/acs.inorgchem.2c02687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhen-Ni Gao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Dong-Xue Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Fang-Hui Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Hui-Yu Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
26
|
Wu J, Wang GL, Zhu Z, Zhao C, Li XL, Zhang YQ, Tang J. Terminal-fluoride-coordinated air-stable chiral dysprosium single-molecule magnets. Chem Commun (Camb) 2022; 58:7638-7641. [PMID: 35723250 DOI: 10.1039/d2cc02570a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Terminal fluoride ligands generate strong magnetic anisotropy in air-stable chiral dysprosium enantiomers supported by a bulky equatorial macrocycle, exhibiting a typical zero-field single-molecule magnet behaviour.
Collapse
Affiliation(s)
- Jinjiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guo-Lu Wang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
27
|
Li Q, Wei W, Xue Z, Mu Y, Pan J, Hu J, Wang G. Achieving an electron transfer photochromic complex for switchable white-light emission. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Ghosh S, Bagchi S, Kamilya S, Mehta S, Sarkar D, Herchel R, Mondal A. Impact of counter anions on spin-state switching of manganese(III) complexes containing an azobenzene ligand. Dalton Trans 2022; 51:7681-7694. [PMID: 35521740 DOI: 10.1039/d2dt00660j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four mononuclear manganese(III) complexes coordinated with photo-active hexadentate azobenzene ligands, [Mn(5azo-sal2-323)](X) (X = Cl, 1; X = BF4, 2; X = ClO4, 3; X = PF6, 4), were prepared. The impact of various counter anions on the stabilization and switching of the spin state of the manganese(III) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, and spectroelectrochemical studies, along with theoretical calculations. All four complexes consisted of an isostructural monocationic distorted octahedral MnN4O2 coordination environment offered by the hexadentate ligand and Cl-, BF4-, ClO4-, and PF6- as counter anions respectively. Complex 1 with a spherical Cl- counter anion showed a reversible and gradual spin-state switching between low-spin (LS) (S = 1) and high-spin (HS) (S = 2) states above 400 K, where non-covalent cation-anion interactions played a significant role in stabilizing the LS state. While, irrespective of the shape of the counter anion, complexes 2-4 remained in the HS state throughout the measured temperature range of 300-2 K, where strong π-π interaction between the azobenzene motifs among cationic units played a substantial role in stabilizing the HS state. Furthermore, magnetic data analyses revealed significantly large zero-field splitting in the S = 1 state for 1 (D = 19.4 cm-1, E/D = 0.008) in comparison with that in the S = 2 state for 2-4 (D = 3.99-4.97 cm-1, E/D = 0.002-0.195). Spectroelectrochemical investigations revealed the quasi-reversible reduction and oxidation of the manganese(III) center to manganese(II) and manganese(IV), respectively. A detailed theoretical calculation at the DFT and CASSCF level of theory was carried out to better understand the magneto-structural correlation.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sukanya Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Debopam Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46 Olomouc, Czech Republic
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
29
|
Achieving large thermal hysteresis in an anthracene-based manganese(II) complex via photo-induced electron transfer. Nat Commun 2022; 13:2646. [PMID: 35551184 PMCID: PMC9098415 DOI: 10.1038/s41467-022-30425-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Achieving magnetic bistability with large thermal hysteresis is still a formidable challenge in material science. Here we synthesize a series of isostructural chain complexes using 9,10-anthracene dicarboxylic acid as a photoactive component. The electron transfer photochromic Mn2+ and Zn2+ compounds with photogenerated diradicals are confirmed by structures, optical spectra, magnetic analyses, and density functional theory calculations. For the Mn2+ analog, light irradiation changes the spin topology from a single Mn2+ ion to a radical-Mn2+ single chain, further inducing magnetic bistability with a remarkably wide thermal hysteresis of 177 K. Structural analysis of light irradiated crystals at 300 and 50 K reveals that the rotation of the anthracene rings changes the Mn1–O2–C8 angle and coordination geometries of the Mn2+ center, resulting in magnetic bistability with this wide thermal hysteresis. This work provides a strategy for constructing molecular magnets with large thermal hysteresis via electron transfer photochromism. Achieving magnetic bistability with large thermal hysteresis is still a challenge in material science. Here, the authors report a Mn(II) chain complex that enables light-induced magnetic bistability with a 177 K thermal hysteresis loop.
Collapse
|
30
|
Ali A, Bhowmik S, Barman SK, Mukhopadhyay N, Glüer Nee Schiewer CE, Lloret F, Meyer F, Mukherjee R. Iron(III) Complexes of a Hexadentate Thioether-Appended 2-Aminophenol Ligand: Redox-Driven Spin State Switchover. Inorg Chem 2022; 61:5292-5308. [PMID: 35312298 DOI: 10.1021/acs.inorgchem.1c03992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A green complex [Fe(L3)] (1), supported by the deprotonated form of a hexadentate noninnocent redox-active thioether-appended 2-aminophenolate ligand (H4L3 = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino(diphenyldithio)ethane), has been synthesized and structurally characterized at 100(2) K and 298(2) K. In CH2Cl2, 1 displays two oxidative and a reductive one-electron redox processes at E1/2 values of -0.52 and 0.20 V, and -0.85 V versus the Fc+/Fc redox couple, respectively. The one-electron oxidized 1+ and one-electron reduced 1- forms, isolated as a blackish-blue solid 1(PF6)·CH2Cl2 (2) and a gray solid [Co(η5-C5H5)2]1·DMF (3), have been structurally characterized at 100(2) K. Structural parameters at 100 K of the ligand backbone and metrical oxidation state values unambiguously establish the electronic states as [FeIII{(LAPO,N)2-}{(LISQO,N)•-}{(LS,S)0}] (1) (two tridentate halves are electronically asymmetric-ligand mixed-valency), [FeIII{(LISQO,N)•-}{(LISQO,N)•-}{(LS,S)0}]+ (1+), and [FeIII{(LAPO,N)2-}{(LAPO,N)2-}{(LS,S)0}]- (1-) [dianionic 2-amidophenolate(2-) (LAPO,N)2- and monoanionic 2-iminobenzosemiquinonate(1-) π-radical (Srad = 1/2) (LISQ)•- redox level]. Mössbauer spectral data of 1 at 295, 200, and 80 K reveal that it has a major low-spin (ls)-Fe(III) and a minor ls-Fe(II) component (redox isomers), and at 7 K, the major component exists exclusively. Thus, in 1, the occurrence of a thermally driven valence-tautomeric (VT) equilibrium (asymmetric) [FeIII{(LAPO,N)2-}{(LISQO,N)•-}{(LS,S)0}] ⇌ (symmetric) [FeII{(LISQO,N)•-}{(LISQO,N)•-}{(LS,S)0}] (80-295 K) is implicated. Mössbauer spectral parameters unequivocally establish that 1+ is a ls-Fe(III) complex. In contrast, the monoanion 1- contains a high-spin (hs)-Fe(III) center (SFe = 5/2), as is deduced from its Mössbauer and EPR spectra. Complexes 1-3 possess total spin ground states St = 0, 1/2, and 5/2, respectively, based on 1H NMR and EPR spectra, the variable-temperature (2-300 K) magnetic behavior of 2, and the μeff value of 3 at 300 K. Broken-symmetry density functional theory (DFT) calculations at the B3LYP-level of theory reveal that the unpaired electron in 1+/2 is due to the (LISQ)•- redox level [ls-Fe(III) (SFe = 1/2) is strongly antiferromagnetically coupled to one of the (LISQ)•- radicals (Srad = 1/2)], and 1-/3 is a hs-Fe(III) complex, supported by (L3)4- with two-halves in the (LAP)2- redox level. Complex 1 can have either a symmetric or asymmetric electronic state. As per DFT calculation, the former state is stabilized by -3.9 kcal/mol over the latter (DFT usually stabilizes electronically symmetric structure). Time-dependent (TD)-DFT calculations shed light on the origin of observed UV-vis-NIR spectral absorptions for 1-3 and corroborate the results of spectroelectrochemical experiments (300-1100 nm) on 1 (CH2Cl2; 298 K). Variable-temperature (218-298 K; CH2Cl2) absorption spectral (400-1000 nm) studies on 1 justify the presence of VT equilibrium in the solution-state.
Collapse
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saumitra Bhowmik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia, Polígono de la Coma, s/n, Paterna, València 46980, Spain
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | |
Collapse
|
31
|
Sun XP, Tang Z, Li J, Ma P, Yao ZS, Wang J, Niu J, Tao J. Discovery of Kinetic Effect in a Valence Tautomeric Cobalt-Dioxolene Complex. Inorg Chem 2022; 61:4240-4245. [PMID: 35234459 DOI: 10.1021/acs.inorgchem.1c03898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two isostructural valence tautomeric (VT) complexes with different critical temperatures were prepared and fully investigated through a series of magnetic, structural, spectral, and differential scanning calorimetry evidence. The kinetic effect in the VT complex was observed for the first time through scan-rate-dependent studies and further validated by annealing tests.
Collapse
Affiliation(s)
- Xiao-Peng Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zheng Tang
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| | - Jiajia Li
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jun Tao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
32
|
Liu JH, Guo XQ, Wang ZC, Cai LX, Zhou LP, Tian CB, Sun QF. Cation modulated spin state and near room temperature transition within a family of compounds containing the same [FeL 2] 2- center. Dalton Trans 2022; 51:3894-3901. [PMID: 35167636 DOI: 10.1039/d1dt04254h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin-crossover (SCO) active compounds have received much attention due to their potential application in molecular devices. Herein, a family of solvent-free FeII compounds, formulated as (A)2[FeL2], (H2L = pyridine-2,6-bi-tetrazolate, A = (Me)4N+1, Et2NH2+2, iPr2NH2+3 and iPrNH3+4), were synthesized and characterized. Single-crystal X-ray diffraction studies reveal that 1-4 are all supramolecular frameworks containing the same [FeL2]2- center, which is arranged into two packing modes via inter-molecular interactions, that is, a 3D architecture in 1 and 1D chain in 2-4. The spin states of 1-4 at different temperatures are assigned on the basis of the single-crystal X-ray diffraction data. Solid state magnetic investigations indicate that 1 and 4 exhibit a low spin state (below 350 K) and high spin state (2-400 K), respectively. 2 and 3 display clear SCO behavior in the measured temperature, but with different profiles and critical temperatures. 2 undergoes a complete gradual SCO with a critical temperature of T1/2 = 260 K. 3 has an abrupt near room temperature transition between T1/2 cooling = 278 K and T1/2 warming = 286, centered at 282 K (9 °C). This study reveals the importance of organic cations in the modulation of SCO behavior and offers a new insight for the design of SCO compounds with near room temperature spin transitions.
Collapse
Affiliation(s)
- Jia-Hui Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zi-Cheng Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chong-Bin Tian
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
33
|
Zeng M, Ji SY, Wu XR, Zhang YQ, Liu CM, Kou HZ. Magnetooptical Properties of Lanthanide(III) Metal-Organic Frameworks Based on an Iridium(III) Metalloligand. Inorg Chem 2022; 61:3097-3102. [PMID: 35147023 DOI: 10.1021/acs.inorgchem.1c03322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integrating magnetic and optical properties into a metal-organic framework (MOF) remains a great challenge. Herein, we have reasonably constructed two 3D magnetooptical MOFs by incorporating a [IrIII(ppy)2(bpy)]+-based fluorescent metalloligand and magnetic LnIII centers. The alternating arrangements of Δ- or Λ-[IrIII(ppy)2(bpy)]+ endow these MOFs with enhanced optical properties. Moreover, the use of DyIII leads to field-induced slow magnetic relaxation. This work provides an effective strategy for the preparation of magnetooptical bifunctional MOFs.
Collapse
Affiliation(s)
- Min Zeng
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shi-Yang Ji
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xue-Ru Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
34
|
Xue S, Solre GFB, Wang X, Wang L, Guo Y. Vapor-triggered reversible crystal transformation of a nickel-based magnetic molecular switch. Chem Commun (Camb) 2022; 58:1954-1957. [PMID: 35043804 DOI: 10.1039/d1cc06076g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vapor-triggered crystal-to-crystal transformation between a discrete trinuclear complex [Ni3(sih)2(py)8] and a two-dimensional (2D) coordination polymer [Ni3(sih)2(py)2]n·2DMF·2H2O was demonstrated. It provides an example of a solid-state coordination-induced spin state switch behavior attributed to the structural phase transition triggered by solvent signal. The reversible nature can be detected by both optical (spectral) and magnetic responses in cycles.
Collapse
Affiliation(s)
- Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Gideon F B Solre
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiaoqin Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Liang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
35
|
Han SD, Hu JX, Wang GM. Recent advances in crystalline hybrid photochromic materials driven by electron transfer. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214304] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Fan K, Bao S, Yu Z, Huang X, Liu Y, Kurmoo M, Zheng L. Engineering Heteronuclear Arrays from
Ir
III
‐Metalloligand
and
Co
II
Showing Coexistence of Slow Magnetization Relaxation and Photoluminescence. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kun Fan
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| | - Song‐Song Bao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| | - Zi‐Wen Yu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| | - Xin‐Da Huang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| | - Yu‐Jie Liu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| | - Mohamedally Kurmoo
- Institut de Chimie Université de Strasbourg CNRS‐UMR7177 4 rue Blaise Pascal Strasbourg Cedex 67007 France
| | - Li‐Min Zheng
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
37
|
Liu Q, Yao NT, Sun HY, Hu JX, Meng YS, Liu T. Light actuated single-chain magnet with magnetic coercivity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyanide-bridged {Fe2Co}-based coordination polymer was synthesized. It showed photo-induced slow relaxation of magnetization and a coercive field of 400 Oe.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
38
|
Liang HC, Pan Y, Zhu HL, Meng YS, Liu CH, Liu T, Zhu YY. The substituent effect on the spin-crossover behaviour in a series of mononuclear Fe( ii) complexes from thio-pybox ligands. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00208f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The correlation of the SCO temperature and substituent electronegativity of ligands is observed and discussed for a family of [Fe(thio-pybox)2]2+ complexes.
Collapse
Affiliation(s)
- Hai-Chao Liang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yao Pan
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hai-Lang Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
39
|
You M, Nguyen GT, Shao D, Wang T, Chang X, Ungur L, Zhang YZ. Manipulating the spin crossover behaviour in a series of cyanide-bridged {FeIII2FeII2} molecular squares through NCE- co-ligands. Dalton Trans 2022; 51:5596-5602. [DOI: 10.1039/d2dt00058j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manipulating the transition temperature (T1/2) of spin-crossover (SCO) complexes capable of fulfilling practical criteria through different synthetic strategies is one of the main focuses in the field of molecular magnetism....
Collapse
|
40
|
Tiunova AV, Kazakova AV, Korchagin DV, Shilov GV, Zakharov KV, Vasiliev AN, Yagubskii EB. The effect of fluorine substituents on the crystal structure and spin crossover behavior of the cation [Mn III(3,5-diHal-sal 2323)] + complex family with BPh 4 anions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02872g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of fluorine substituents on the structure and magnetic behavior of [Mn(R′,R′′-sal2323)]BPh4 complexes was studied and compared it with that of chlorine and bromine substituents.
Collapse
Affiliation(s)
- A. V. Tiunova
- Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, MD, Russia
| | - A. V. Kazakova
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, MD, Russia
| | - D. V. Korchagin
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, MD, Russia
| | - G. V. Shilov
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, MD, Russia
| | - K. V. Zakharov
- Lomonosov Moscow State University, 119991 Moscow, Russia
| | - A. N. Vasiliev
- Lomonosov Moscow State University, 119991 Moscow, Russia
- National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - E. B. Yagubskii
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, MD, Russia
| |
Collapse
|
41
|
Xie KP, Ruan ZY, Chen XX, Yang J, Wu SG, Ni ZP, Tong ML. Light-induced hidden multistability in a spin crossover metal-organic framework. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pursuit of spin crossover (SCO) materials with photo-switchable multistability is driven by the fascinating perspectives toward light-response switches and opto-magnetic memory devices. Herein, we report a 3D Hofmann-type metal...
Collapse
|
42
|
Manipulating Selective Metal‐to‐Metal Electron Transfer to Achieve Multi‐Phase Transitions in an Asymmetric [Fe2Co]‐Assembled Mixed‐Valence Chain. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Meng YS, Yao NT, Zhao L, Yi C, Liu Q, Li YM, Oshio H, Liu T. Manipulating Selective Metal-to-Metal Electron Transfer to Achieve Multi-Phase Transitions in an Asymmetric [Fe2Co]-Assembled Mixed-Valence Chain. Angew Chem Int Ed Engl 2021; 61:e202115367. [PMID: 34971479 DOI: 10.1002/anie.202115367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/08/2022]
Abstract
Manipulation of multi-functions in molecular materials is promising for future switching and memory devices, although is currently difficult. Herein, we assembled the asymmetric {Fe2Co} unit into a cyanide-bridged mixed-valence chain {[(Tp)Fe(CN)3]2Co(BIT)}·2CH3OH (1) (Tp = hydrotris(pyrazolyl)borate and BIT = 3,4-bis-(1H-imidazol-1-yl)thiophen), which showed reversible multi-phase transitions accompanied by the photo-switchable single-chain magnet property and dielectric anomalies. Variable temperature X-ray structural studies revealed thermo-and photo-induced selective electron transfer (ET) between the Co and one of the Fe ions. Alternating-current magnetic susceptibility studies revealed that 1 displayed on and off of the single-chain magnet behavior by alternating 946-nm and 532-nm light irradiations. A substantial anomaly in dielectric constant was discovered during the electron transfer process, which is uncommon in similar ET complexes. These findings illustrate that 1 provided a new platform for multi-phase transitions and multi-switches adjusted by selective metal-to-metal ET.
Collapse
Affiliation(s)
- Yin-Shan Meng
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, 2 Linggong Rd., Dalian, 116024, China., 116024, Dalian, CHINA
| | - Nian-Tao Yao
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Liang Zhao
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Cheng Yi
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Qiang Liu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Ya-Ming Li
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Hiroki Oshio
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Tao Liu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| |
Collapse
|
44
|
Hu JX, Zhang Q, Xia B, Liu T, Pang J, Bu XH. Photo Switchable Two-step Photochromism in a Series of Ln-Phosphonate(Ln=Dy, Gd, Tb, Y) Dinuclear Complexes. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1373-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Alexandru MG, Visinescu D, Cula B, Shova S, Rabelo R, Moliner N, Lloret F, Cano J, Julve M. A rare isostructural series of 3d-4f cyanido-bridged heterometallic squares obtained by assembling [Fe III{HB(pz) 3}(CN) 3] - and Ln III ions: synthesis, X-ray structure and cryomagnetic study. Dalton Trans 2021; 50:14640-14652. [PMID: 34581372 DOI: 10.1039/d1dt02512k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of cyanido-bridged {FeIIILnIII}2 neutral molecular squares of general formula [Fe{HB(pz)3}(CN)(μ-CN)2Ln(NO3)2(pyim)(Ph3PO)]2·2CH3CN [Ln = Ce (1), Pr (2), Nd (3), Gd (4), Tb (5), Dy (6) and Er (7); {HB(pz)3}- = hydrotris(pyrazolyl)borate, pyim = 2-(1H-imidazol-2-yl)pyridine and Ph3PO = triphenylphosphine oxide] were obtained by reacting the low-spin [Fe{HB(pz)3}(CN)3]- species with the preformed [LnIII(pyim)(NO3)2(pyim)(Ph3PO)]+ complex anions (generated in situ by mixing the nitrate salt of each Ln(III) ion with pyim and Ph3PO molecules). Single-crystal X-ray diffraction studies show that 1-7 are isostructural compounds that crystallize in the triclinic P1̄ space group. Their crystal structures consist of centrosymmetric cyanido-bridged {FeIIILnIII}2 molecular squares where two [Fe{HB(pz)3}(CN)3]- units adopt bis-monodentate coordination modes towards two [LnIII(pyim)(NO3)2(pyim)(Ph3PO)]+ moieties. The cis-oriented convergent sites from both low-spin FeIII and LnIII fragments form a quasi square-shaped molecule in which the 3d and 4f ions alternatively occupy the corners of the square. Both FeIII ions show a distorted octahedral surrounding (C3v symmetry), whereas the LnIII ions exhibit a distorted muffin-like geometry (Cs symmetry) in 1-7. The intramolecular FeIII⋯LnIII distances across the two cyanido-bridges range from ca. 5.48/5.46 up to ca. 5.58/5.61 Å. The molecular squares in 1-7 are interlinked through hydrogen bonds, weak π⋯π stacking and very weak C-H⋯π type interactions into three-dimensional supramolecular networks. The analysis of the solid-state direct-current (dc) magnetic susceptibility data of 1-7 in the temperature range 1.9-300 K reveals the occurrence of weak intra- and intermolecular antiferromagnetic interactions. The small intramolecular antiferromagnetic couplings in 4 compare well with those previously reported for parent systems. Although the coexistence of the spin-orbit coupling (SOC) of the low-spin iron(III) and lanthanide(III) ions in the remaining compounds together with the ligand field effects mask the visualization and make difficult the evaluation of the possible magnetic interactions in them, we were able to do it through a SOC model applied on exact or effective Hamiltonians. Frequency-dependent alternating current magnetic susceptibility signals in the temperature range 2.0-9.0 K under zero and non-zero static fields were observed for 5-7 which indicate slow magnetic relaxation (SMM) behavior. The usual absence of χ''M maxima moved us to estimate their energy barriers through ln(χ''M/ χ'M) vs. 1/T plots, obtaining values from 25 to 40 cm-1.
Collapse
Affiliation(s)
- Maria-Gabriela Alexandru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Diana Visinescu
- Coordination and Supramolecular Chemistry Laboratory, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania.
| | - Beatrice Cula
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Sergiu Shova
- "Petru Poni" Institute of Macromolecular Chemistry, Ro, an Academy, mani, Aleea Grigore Ghica Vodă 41-A, RO-700487 Iasi, Romania
| | - Renato Rabelo
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Nicolás Moliner
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Joan Cano
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Miguel Julve
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| |
Collapse
|
46
|
Guo Z, You M, Deng YF, Liu Q, Meng YS, Pikramenou Z, Zhang YZ. An azido-bridged [FeII4] grid-like molecule showing spin crossover behaviour. Dalton Trans 2021; 50:14303-14308. [PMID: 34554167 DOI: 10.1039/d1dt01908b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The supramolecular self-assembly synthetic strategy provides a valid tool to obtain polynuclear Fe(II) complexes having effective communication between the metal centres and distinct spin crossover behaviour. Despite the great success in constructing various magnetic molecules, progress has not been made in SCO complexes based on azido bridges. In this article, the coordination-driven supramolecular assembly based on 3,6-substituted pyridazine and azide is presented to afford two Fe(II) grid-like complexes: [(L)4FeII4(N3)4][BPh4]4·sol (1, L = 3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine and 2, L = 3,6-di(pyridin-2-yl)pyridazine). The substitution of pyridinyl groups in 2 instead of pyrazolyl ones in 1 led to the only example exhibiting spin-crossover behaviour (T1/2 = 230 K) among the azido-bridged complexes. In addition, a temperature-dependent photoluminescence study of 2 demonstrates a visible synergetic effect between the SCO event and the luminescence.
Collapse
Affiliation(s)
- Zhilin Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China. .,School of Chemistry, The University of Birmingham, Edgbaston B15 2TT, UK.
| | - Maolin You
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China. .,Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd, Dalian 116024, P. R. China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd, Dalian 116024, P. R. China
| | - Zoe Pikramenou
- School of Chemistry, The University of Birmingham, Edgbaston B15 2TT, UK.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| |
Collapse
|
47
|
Lu YL, Lan WL, Shi W, Jin QH, Cheng P. Photo-induced variation of magnetism in coordination polymers with ligand-based electron transfer. Dalton Trans 2021; 50:13124-13137. [PMID: 34581367 DOI: 10.1039/d1dt01963e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-induced variation of magnetism from ligand-based electron transfer has been extensively studied because of its potential applications in magneto-optical memory devices, light-responsive switches, and high-density information storage materials. In this review, we discussed the progress in the photo-induced variation of magnetism in coordination polymers with ligand-to-metal charge transfer (LMCT), ligand-to-ligand charge transfer (LLCT) and internal ligand charge transfer (ILCT), which provides fundamentals for the rational design of multi-functional materials. We also discussed the design and synthetic strategy of such molecule-based materials and gave views on the current challenges and growth trends in this field.
Collapse
Affiliation(s)
- Yan-Lei Lu
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Wen-Long Lan
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Shi
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Peng Cheng
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
48
|
Meng L, Deng YF, Zhang YZ. Anion-Dependent Electron Transfer in the Cyanide-Bridged [Fe 2Co 2] Capsules. Inorg Chem 2021; 60:14330-14335. [PMID: 34491733 DOI: 10.1021/acs.inorgchem.1c01952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A family of molecular capsules, {[(Tp*)Fe(CN)3Co(bpyC═N(CH2)7N═Cbpy)]2[X]2}·sol (1, X = ClO4, sol = 6DMF; 2, X = PF6, sol = 6DMF; 3, X = OTf, sol = 6DMF; 4, X = BPh4, sol = 2DMF; Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate; bpy = 2,2'-bipyridine), were prepared via the Schiff-base condensation of the aldehyde-substituted bpy (bpyCHO) and 1,7-diaminoheptane (H2N(CH2)7NH2). All the complexes contain the same cyanide-bridged cationic square cores ([Fe2Co2]2+), which are encapsuled by the flexible alkyl chains. Variable-temperature single-crystal X-ray diffraction, FT-IR spectra, and magnetic studies reveal the abrupt and complete, thermo- and photo-induced electron-transfer-coupled spin transition for 1-3, while the pure high-spin phase for 4. Such distinct behavior is attributed to the effective long-range cooperative interactions mediated by the intercluster π-π couplings in 1-3, which, however, are significantly blocked in 4 due to the steric effect of interstitial BPh4- anions. Furthermore, the shift in the thermally induced transition temperatures of 254 K for 1, 233 K for 2, and 187 K for 3, respectively, is likely correlated to the variable H···O and H···F interactions between the solvent molecules, anions, and the bipyridine ligands of the [Fe2Co2] squares, suggesting the significant anion-dependent effect in such a system.
Collapse
Affiliation(s)
- Lingyi Meng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
49
|
Guo Y, Rotaru A, Müller-Bunz H, Morgan GG, Zhang S, Xue S, Garcia Y. Auxiliary alkyl chain modulated spin crossover behaviour of [Fe(H 2Bpz 2) 2(C n-bipy)] complexes. Dalton Trans 2021; 50:12835-12842. [PMID: 34309614 DOI: 10.1039/d1dt01787j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new alkyl chain substituted complexes [Fe(H2Bpz2)2(Cn-bipy)] (pz = pyrazolyl, Cn-bipy = bipyridine alkyl chain diester, n = 3 (3), 4 (4) and 5 (5)) show versatile spin state switching behaviour with different "tail" lengths as revealed by structural and magnetic analyses. The most striking phenomenon is observed for 5 which undergoes an abrupt spin transition accompanied by thermal hysteresis of ca. 10 K, which is attributed to crystal packing effects derived from the competition between ππ and C-HO interactions. Interestingly, each of the complexes exhibits similar gradual and complete spin crossover in methanol solution with a transition temperature around 249 K, as deduced from temperature-dependent UV-vis spectroscopy. This highlights the differences between the solid state (ligand field; crystal packing) and solution (ligand field; solvation) effects on spin crossover. This work demonstrates that the length of the complex's alkyl chain substituents on the complex can have a large impact on the transition temperature and profile of solid state spin crossover, offering a potential path to the fabrication of soft matter spin crossover materials.
Collapse
Affiliation(s)
- Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China. and Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, Louvain-la-Neuve 1348, Belgium.
| | - Aurelian Rotaru
- Department of Electrical Engineering and Computer Science & MANSiD Research Center, "Stefan cel Mare" University, University Street, 13, Suceava 720229, Romania
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Grace G Morgan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shishen Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China. and Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, Louvain-la-Neuve 1348, Belgium.
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, Louvain-la-Neuve 1348, Belgium.
| |
Collapse
|
50
|
Li M, Ren G, Yang W, Wang F, Ma N, Fan X, Pan Q. Modulation of High-Spin Co(II) in Li/Co-MOFs as Efficient Fenton-like Catalysts. Inorg Chem 2021; 60:12405-12412. [PMID: 34296855 DOI: 10.1021/acs.inorgchem.1c01632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing high-performance catalysts toward the Fenton reaction is important for environmental protection and sustainable development, yet it is still challenging. The high-spin states of first-row transition metal atoms with tetrahedral coordination provide a flexible electronic environment to activate the catalyst and elevate its catalytic activity. As a type of material with adjustable structures, metal-organic frameworks (MOFs) are excellent candidate catalysts as they can accurately regulate the coordination configurations of metal ions. In this paper, we investigate and summarize the direct formation of bimetallic carboxylate Li/Co-MOFs with tetrahedral coordination metal centers in a mixed H2O/polar organic solvent system. The induction of Li(I) ions is manifested in the generation of hydroxides during the dissociation of the Co(II) solvation structure to trigger the tetrahedral coordination behavior of Co(II). These Li/Co-MOFs containing high-spin Co(II) centers can serve as highly efficient Fenton-like catalysts for organics. This study provides a promising strategy for rational design of MOF-based catalysts with high-spin metal centers for application in environment governance.
Collapse
Affiliation(s)
- Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Science, Hainan University, Haikou 570228, China
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Guojian Ren
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Science, Hainan University, Haikou 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Science, Hainan University, Haikou 570228, China
| | - Fuxiang Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Science, Hainan University, Haikou 570228, China
| | - Nana Ma
- College of Chemistry and Chemical Engineering, Henan Normal University, XinXiang 453007, China
| | - Xiaolei Fan
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Science, Hainan University, Haikou 570228, China
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|