1
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
2
|
Saberian M, Abak N. Hydrogel-mediated delivery of platelet-derived exosomes: Innovations in tissue engineering. Heliyon 2024; 10:e24584. [PMID: 38312628 PMCID: PMC10835177 DOI: 10.1016/j.heliyon.2024.e24584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
In this scholarly review, we conduct a thorough examination of the significant role played by platelet-derived exosomes (Plt-Exos) and hydrogels in the fields of tissue engineering and regenerative medicine. Our detailed investigation highlights the central involvement of Plt-Exos in various physiological and pathological processes, underscoring their potential contributions to diverse areas such as wound healing, neural rejuvenation, and cancer progression. Despite the promising therapeutic aspects, the notable variability in the isolation and characterization of pEVs underscores the need for a more rigorous and standardized methodology. Shifting our focus to hydrogels, they have emerged as promising biomaterials relevant to tissue engineering and regenerative medicine. Their unique characteristics, especially their chemical and physical adaptability, along with the modifiability of their biochemical properties, make hydrogels a captivating subject. These exceptional features open avenues for numerous tissue engineering applications, facilitating the delivery of essential growth factors, cytokines, and microRNAs. This analysis explores the innovative integration of Plt-Exos with hydrogels, presenting a novel paradigm in tissue engineering. Through the incorporation of Plt-Exos into hydrogels, there exists an opportunity to enhance tissue regeneration endeavors by combining the bioactive features of Plt-Exos with the restorative capabilities of hydrogel frameworks. In conclusion, the cooperative interaction between platelet-derived exosomes and hydrogels indicates a promising path in tissue engineering and regenerative medicine. Nevertheless, the successful execution of this approach requires a deep understanding of molecular dynamics, coupled with a dedication to refining isolation techniques.
Collapse
Affiliation(s)
- Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Abak
- Hematology and Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Hong X, Luo AC, Doulamis I, Oh N, Im GB, Lin CY, del Nido PJ, Lin RZ, Melero-Martin JM. Photopolymerizable Hydrogel for Enhanced Intramyocardial Vascular Progenitor Cell Delivery and Post-Myocardial Infarction Healing. Adv Healthc Mater 2023; 12:e2301581. [PMID: 37611321 PMCID: PMC10840685 DOI: 10.1002/adhm.202301581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Cell transplantation success for myocardial infarction (MI) treatment is often hindered by low engraftment due to washout effects during myocardial contraction. A clinically viable biomaterial that enhances cell retention can optimize intramyocardial cell delivery. In this study, a therapeutic cell delivery method is developed for MI treatment utilizing a photocrosslinkable gelatin methacryloyl (GelMA) hydrogel. Human vascular progenitor cells, capable of forming functional vasculatures upon transplantation, are combined with an in situ photopolymerization approach and injected into the infarcted zones of mouse hearts. This strategy substantially improves acute cell retention and promotes long-term post-MI cardiac healing, including stabilized cardiac functions, preserved viable myocardium, and reduced cardiac fibrosis. Additionally, engrafted vascular cells polarize recruited bone marrow-derived neutrophils toward a non-inflammatory phenotype via transforming growth factor beta (TGFβ) signaling, fostering a pro-regenerative microenvironment. Neutrophil depletion negates the therapeutic benefits generated by cell delivery in ischemic hearts, highlighting the essential role of non-inflammatory, pro-regenerative neutrophils in cardiac remodeling. In conclusion, this GelMA hydrogel-based intramyocardial vascular cell delivery approach holds promise for enhancing the treatment of acute myocardial infarction.
Collapse
Affiliation(s)
- Xuechong Hong
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ilias Doulamis
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Oh
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Gwang-Bum Im
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Yen Lin
- Department of Lymphoma and Myeloma, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Juan M. Melero-Martin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Huerta CT, Voza FA, Ortiz YY, Liu ZJ, Velazquez OC. Targeted cell delivery of mesenchymal stem cell therapy for cardiovascular disease applications: a review of preclinical advancements. Front Cardiovasc Med 2023; 10:1236345. [PMID: 37600026 PMCID: PMC10436297 DOI: 10.3389/fcvm.2023.1236345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Cardiovascular diseases (CVD) continue to be the leading cause of morbidity and mortality globally and claim the lives of over 17 million people annually. Current management of CVD includes risk factor modification and preventative strategies including dietary and lifestyle changes, smoking cessation, medical management of hypertension and cholesterol lipid levels, and even surgical revascularization procedures if needed. Although these strategies have shown therapeutic efficacy in reducing major adverse cardiovascular events such as heart attack, stroke, symptoms of chronic limb-threatening ischemia (CLTI), and major limb amputation significant compliance by patients and caregivers is required and off-target effects from systemic medications can still result in organ dysfunction. Stem cell therapy holds major potential for CVD applications but is limited by the low quantities of cells that are able to traffic to and engraft at diseased tissue sites. New preclinical investigations have been undertaken to modify mesenchymal stem cells (MSCs) to achieve targeted cell delivery after systemic administration. Although previous reviews have focused broadly on the modification of MSCs for numerous local or intracoronary administration strategies, here we review recent preclinical advances related to overcoming challenges imposed by the high velocity and dynamic flow of the circulatory system to specifically deliver MSCs to ischemic cardiac and peripheral tissue sites. Many of these technologies can also be applied for the targeted delivery of other types of therapeutic cells for treating various diseases.
Collapse
Affiliation(s)
- Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francesca A. Voza
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yulexi Y. Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Chen Y, Pal S, Hu Q. Cell-based Relay Delivery Strategy in Biomedical Applications. Adv Drug Deliv Rev 2023; 198:114871. [PMID: 37196699 DOI: 10.1016/j.addr.2023.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
The relay delivery strategy is a two-step targeting approach based on two distinct modules in which the first step with an initiator is to artificially create a target/environment which can be targeted by the follow-up effector. This relay delivery concept creates opportunities to amplify existing or create new targeted signals through deploying initiators to enhance the accumulation efficiency of the following effector at the disease site. As the "live" medicines, cell-based therapeutics possess inherent tissue/cell homing abilities and favorable feasibility of biological and chemical modifications, endowing them the great potential in specifically interacting with diverse biological environments. All these unique capabilities make cellular products great candidates that can serve as either initiators or effectors for relay delivery strategies. In this review, we survey recent advances in relay delivery strategies with a specific focus on the roles of various cells in developing relay delivery systems.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
6
|
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023; 52:1068-1102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Aryan Saini
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Afton Martin LaMere
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Engineering exosomes by three-dimensional porous scaffold culture of human umbilical cord mesenchymal stem cells promote osteochondral repair. Mater Today Bio 2023; 19:100549. [PMID: 36756208 PMCID: PMC9900437 DOI: 10.1016/j.mtbio.2023.100549] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Improving the poor microenvironment in the joint cavity has potential for treating cartilage injury, and mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos), which can modulate cellular behavior, are becoming a new cell-free therapy for cartilage repair. Here, we used acellular cartilage extracellular matrix (ACECM) to prepare 3D scaffolds and 2D substrates by low-temperature deposition modeling (LDM) and tape casting. We aimed to investigate whether MSC-Exos cultured on scaffolds of different dimensions could improve the poor joint cavity microenvironment caused by cartilage injury and to explore the related mechanisms. In vitro experiments showed that exosomes derived from MSCs cultured on three-dimensional (3D) scaffolds (3D-Exos) had increased efficiency. In short-term animal experiments, compared with exosomes derived from MSCs cultured in a two-dimensional (2D) environment (2D-Exos), 3D-Exos had a stronger ability to regulate the joint cavity microenvironment. Long-term animal studies confirmed the therapeutic efficacy of 3D-Exos over 2D-Exos. Thus, 3D-Exos were applied in the rat knee osteochondral defect model after adsorption in the micropores of the scaffold and combined with subsequent articular cavity injections, and they showed a stronger cartilage repair ability. These findings provide a new strategy for repairing articular cartilage damage. Furthermore, miRNA sequencing indicated that the function of 3D-Exos may be associated with high expression of miRNAs. Thus, our study provides valuable insights for the design of 3D-Exos to promote cartilage regeneration.
Collapse
|
8
|
Hu S, Zhu D, Li Z, Cheng K. Detachable Microneedle Patches Deliver Mesenchymal Stromal Cell Factor-Loaded Nanoparticles for Cardiac Repair. ACS NANO 2022; 16:15935-15945. [PMID: 36148975 DOI: 10.1021/acsnano.2c03060] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intramyocardial injection is a direct and efficient approach to deliver therapeutics to the heart. However, the injected volume must be very limited, and there is injury to the injection site and leakage issues during heart beating. Herein, we developed a detachable therapeutic microneedle (MN) patch, which is comprised of mesenchymal stromal cell-secreted factors (MSCF)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) in MN tips made of elastin-like polypeptide gel, with a resolvable non-cross-linked hyaluronic acid (HA) gel as the MN base. The tips can be firmly inserted into the infarcted myocardium after base removal, and no suture is needed. In isolated neonatal rat cardiac cells, we found that the cellular uptake of MSCF-NP in the cardiomyocytes was higher than in cardiac fibroblasts. MSCF-NP promoted the proliferation of injured cardiomyocytes. In a rat model of myocardial infarction, MN-MSCF-NP treatment reduced cardiomyocyte apoptosis, restored myocardium volume, and reduced fibrosis during the cardiac remodeling process. Our work demonstrated the therapeutic potential of MN to deliver MSCF directly into the myocardium and provides a promising treatment approach for cardiac diseases.
Collapse
Affiliation(s)
- Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
9
|
Luo L, Gong J, Wang Z, Liu Y, Cao J, Qin J, Zuo R, Zhang H, Wang S, Zhao P, Yang D, Zhang M, Wang Y, Zhang J, Zhou Y, Li C, Ni B, Tian Z, Liu M. Injectable cartilage matrix hydrogel loaded with cartilage endplate stem cells engineered to release exosomes for non-invasive treatment of intervertebral disc degeneration. Bioact Mater 2022; 15:29-43. [PMID: 35386360 PMCID: PMC8940768 DOI: 10.1016/j.bioactmat.2021.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/21/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Low back pain, mainly caused by intervertebral disc degeneration (IVDD), is a common health problem; however, current surgical treatments are less than satisfactory. Thus, it is essential to develop novel non-invasive surgical methods for IVDD treatment. Here, we describe a therapeutic strategy to inhibit IVDD by injecting hydrogels modified with the extracellular matrix of costal cartilage (ECM-Gels) that are loaded with cartilage endplate stem cells (CESCs). After loaded with CESCs overexpressing Sphk2 (Lenti-Sphk2-CESCs) and injected near the cartilage endplate (CEP) of rats in vivo, ECM-Gels produced Sphk2-engineered exosomes (Lenti-Sphk2-Exos). These exosomes penetrated the annulus fibrosus (AF) and transported Sphk2 into the nucleus pulposus cells (NPCs). Sphk2 activated the phosphatidylinositol 3-kinase (PI3K)/p-AKT pathway as well as the intracellular autophagy of NPCs, ultimately ameliorating IVDD. This study provides a novel and efficient non-invasive combinational strategy for IVDD treatment using injectable ECM-Gels loaded with CESCs that express Sphk2 with sustained release of functional exosomes.
Collapse
Affiliation(s)
- Liwen Luo
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Immunology, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junfeng Gong
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Corresponding authors. Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaming Cao
- Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, China
| | - Jinghao Qin
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rui Zuo
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongyu Zhang
- Department of Emergency, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Di Yang
- Institute of Immunology, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanqiu Wang
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changqing Li
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Corresponding author. Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
- Corresponding author. , Department of Pathophysiology, College of High Altitude Military Medicine, & Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Military Medical University, Chongqing, 400038, China.
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Corresponding author. Institute of Immunology, Army Medical University, Chongqing, 400038, China.
| | - MingHan Liu
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Corresponding author. Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
10
|
Li Y, Qiu X. Bioelectricity-coupling patches for repairing impaired myocardium. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1787. [PMID: 35233963 DOI: 10.1002/wnan.1787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Cardiac abnormalities, which account for extensive burdens on public health and economy, drive necessary attempts to revolutionize the traditional therapeutic system. Advances in cardiac tissue engineering have expanded a highly efficacious platform to address cardiovascular events, especially cardiac infarction. Current efforts to overcome biocompatible limitations highlight the constructs of a conductive cardiac patch to accelerate the industrial and clinical landscape that is amenable for patient-accurate therapy, regenerative medicine, disease modeling, and drug delivery. With the notion that cardiac tissue synchronically contracts triggered by electrical pulses, the cardiac patches based on conductive materials are developed and treated on the dysfunctional heart. In this review, we systematically summarize distinct conductive materials serving as the most promising alternatives (conductive nanomaterials, conductive polymers, piezoelectric polymers, and ionic electrolytes) to achieve electric signal transmission and engineered cardiac tissues. Existing applications are discussed considering how these patches containing conductive candidates are fabricated into diverse forms with major strategies. Ultimately, we try to define a new concept as a bioelectricity-coupling patch that provides a favorable cardiac micro-environment for cardiac functional activities. Underlying challenges and prospects are presented regarding industrial processing and cardiovascular treatment of conductive patch progress. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Yuedan Li
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Engineered extracellular vesicles and their mimics in cardiovascular diseases. J Control Release 2022; 347:27-43. [PMID: 35508222 DOI: 10.1016/j.jconrel.2022.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Current pharmacological interventions for the CVDs suffer from low bioavailability, low retention rate, poor targeting, drug resistance complicated side effects. Extracellular vesicles (EVs), which are lipid vesicles secreted by cells, play key roles in pathological processes of CVDs. Engineered EVs and EV mimics with superior properties can overcome limitations of traditional medicine, thus emerging as alternative therapeutic options for the CVDs. In this Review, we summarized basic concepts of EVs and EV mimics, highlighted engineering strategies, and lastly discussed applications of engineered EVs and EV mimics against the CVDs. We believe this Review can provide some new insights on engineering EVs and EV mimics and facilitate their application in precise control of CVDs.
Collapse
|
12
|
Zhang X, Liu W. Engineering Injectable Anti‐Inflammatory Hydrogels to Treat Acute Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoping Zhang
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
13
|
Zhang X, Zhang Y, Zhang R, Jiang X, Midgley AC, Liu Q, Kang H, Wu J, Khalique A, Qian M, An D, Huang J, Ou L, Zhao Q, Zhuang J, Yan X, Kong D, Huang X. Biomimetic Design of Artificial Hybrid Nanocells for Boosted Vascular Regeneration in Ischemic Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110352. [PMID: 35107869 DOI: 10.1002/adma.202110352] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Restoration of sufficient blood supply for the treatment of ischemia remains a significant scientific and clinical challenge. Here, a cell-like nanoparticle delivery technology is introduced that is capable of recapitulating multiple cell functions for the spatiotemporal triggering of vascular regeneration. Specifically, a copper-containing protein is successfully prepared using a recombinant protein scaffold based on a de novo design strategy, which facilitates the timely release of nitric oxide and improved accumulation of particles within ischemic tissues. Through closely mimicking physiological cues, the authors demonstrate the benefits of bioactive factors secreted from hypoxic stem cells on promoting angiogenesis. Following this cell-mimicking manner, artificial hybrid nanosized cells (Hynocell) are constructed by integrating the hypoxic stem cell secretome into nanoparticles with surface coatings of cell membranes fused with copper-containing protein. The Hynocell, hybridized with different cell-derived components, provides synergistic effects on targeting ischemic tissues and promoting vascular regeneration in acute hindlimb ischemia and acute myocardial infarction models. This study offers new insights into the utilization of nanotechnology to potentiate the development of cell-free therapeutics.
Collapse
Affiliation(s)
- Xiangyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yue Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300130, China
| | - Xinbang Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Qiqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Helong Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jin Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Anila Khalique
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Di An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jing Huang
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Lailiang Ou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiyun Yan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
- CAS Engineering Laboratory for Nanozymes, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Xinglu Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Comparison of Protective Effects of Shenmai Injections Produced by Medicinal Materials from Different Origins on Cardiomyocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7205476. [PMID: 35341144 PMCID: PMC8956391 DOI: 10.1155/2022/7205476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Shenmai injection is mainly used for the treatment of heart-related diseases, including coronary heart disease, viral myocarditis, chronic cor pulmonale, and shock in Asia. Medicinal materials from different origins produce Shenmai injections for clinical use, and their protective effects on cardiomyocytes may vary with the choice of raw materials. In this study, we compared the protective effects of Shenmai injections produced from different raw materials on cardiomyocytes. Results showed that the protective effects of various Shenmai injections on hypoxia-reoxygenation-induced cardiomyocyte injury were mainly attributed to total ginsenosides extract, with few differences between them. However, the protective effects of different Shenmai injections on doxorubicin and oxidative stress-induced cardiomyocyte injury were significantly different; the protective effects of Shenmai injection with Zhejiang Ophiopogon japonicus as raw material were significantly better than those with Sichuan Ophiopogon japonicus, consistent with our previous research results. Our study reveals the different cardiomyocyte protective effects of Shenmai injections produced by medicinal materials from different origins, laying a scientific foundation for their clinical selection.
Collapse
|
15
|
Kang IS, Kwon K. Potential application of biomimetic exosomes in cardiovascular disease: focused on ischemic heart disease. BMB Rep 2022. [PMID: 34903320 PMCID: PMC8810547 DOI: 10.5483/bmbrep.2022.55.1.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular disease, especially ischemic heart disease, is a major cause of mortality worldwide. Cardiac repair is one of the most promising strategies to address advanced cardiovascular diseases. Despite moderate improvement in heart function via stem cell therapy, there is no evidence of significant improvement in mortality and morbidity beyond standard therapy. The most salutary effect of stem cell therapy are attributed to the paracrine effects and the stem cell-derived exosomes are known as a major contributor. Hence, exosomes are emerging as a promising therapeutic agent and potent biomarkers of cardiovascular disease. Furthermore, they play a role as cellular cargo and facilitate intercellular communication. However, the clinical use of exosomes is hindered by the absence of a standard operating procedures for exosome isolation and characterization, problems related to yield, and heterogeneity. In addition, the successful clinical application of exosomes requires strategies to optimize cargo, improve targeted delivery, and reduce the elimination of exosomes. In this review, we discuss the basic concept of exosomes and stem cell-derived exosomes in cardiovascular disease, and introduce current efforts to overcome the limitations and maximize the benefit of exosomes including engineered biomimetic exosomes.
Collapse
Affiliation(s)
- In Sook Kang
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Kihwan Kwon
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
16
|
Cui T, Wu S, Wei Y, Qin H, Ren J, Qu X. A Topologically Engineered Gold Island for Programmed In Vivo Stem Cell Manipulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tingting Cui
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Si Wu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Yue Wei
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Hongshuang Qin
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
17
|
Chen J, Wang B, Caserto JS, Shariati K, Cao P, Pan Y, Xu Q, Ma M. Sustained Delivery of SARS-CoV-2 RBD Subunit Vaccine Using a High Affinity Injectable Hydrogel Scaffold. Adv Healthc Mater 2022; 11:e2101714. [PMID: 34755476 PMCID: PMC8652948 DOI: 10.1002/adhm.202101714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Indexed: 12/12/2022]
Abstract
The receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein that mediates viral entry into host cells is a good candidate immunogen for vaccine development against coronavirus disease 2019 (COVID-19). Because of its small size, most preclinical and early clinical efforts have focused on multimerizing RBD on various formats of nanoparticles to increase its immunogenicity. Using an easily administered injectable hydrogel scaffold that is rationally designed for enhanced retainment of RBD, an alternative and facile approach for boosting RBD immunogenicity in mice is demonstrated. Prolonged delivery of poly (I:C) adjuvanted RBD by the hydrogel scaffold results in sustained exposure to lymphoid tissues, which elicits serum IgG titers comparable to those induced by three bolus injections, but more long-lasting and polarized toward TH 1-mediated IgG2b. The hydrogel scaffold induces potent germinal center (GC) reactions, correlating with RBD-specific antibody generation and robust type 1 T cell responses. Besides being an enduring RBD reservoir, the hydrogel scaffold becomes a local inflammatory niche for innate immune cell activation. Collectively, the injectable hydrogel scaffold provides a simple, practical, and inexpensive means to enhance the efficacy of RBD-based subunit vaccines against COVID-19 and may be applicable to other circulating and emerging pathogens.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Bo Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Julia S. Caserto
- Robert Frederick Smith School of Chemical and Biomolecular EngineeringCornell UniversityIthacaNY14853USA
| | - Kaavian Shariati
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Peng Cao
- College of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - Yang Pan
- College of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - Qixuan Xu
- College of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - Minglin Ma
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
18
|
Hsu Y, Huang K, Cheng K. Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Adv Biol (Weinh) 2021; 6:e2101133. [PMID: 34939372 DOI: 10.1002/adbi.202101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Heart failure (HF) is one of the leading causes for hospital admissions worldwide. HF patients are classified based on the chronic changes in left ventricular ejection fraction (LVEF) as preserved (LVEF ≥ 50%), reduced (LVEF ≤ 40%), or mid-ranged (40% < LVEF < 50%) HFs. Treatments nowadays can prevent HFrEF progress, whereas only a few of the treatments have been proven to be effective in improving the survival of HFpEF. In this review, numerous mediators involved in the pathogenesis of HF are summarized. The regional upstream signaling and their diagnostic and therapeutic potential are also discussed. Additionally, the recent challenges and development in cardiac regenerative therapy that hold opportunities for future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Yaching Hsu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
19
|
Qu X, Cui T, Wu S, Wei Y, Qin H, Ren J. A Topologically Engineered Gold Island for Programmed In Vivo Stem Cell Manipulation. Angew Chem Int Ed Engl 2021; 61:e202113103. [PMID: 34939267 DOI: 10.1002/anie.202113103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 11/06/2022]
Abstract
E ven a well-designed system can only control stem cell adhesion, release, and differentiation, while other cell manipulations such as in situ labeling and retention in target tissues, are difficult to achieve in the same system. Herein, native ligand cluster-mimicking islands, composed of topologically engineered ligand, anchoring point AuNP, nuclease mimetics Ce IV complexes and magnetic core Fe 3 O 4 , are designed to facilitate comprehensive cell manipulations in a programmable manner. Three islands with different amounts of AuNPs are constructed, which means tunable interligand spacing within a cluster. These nanostructures are chemically coupled to a substrate using DNA tethers. Under tissue-penetrative magnetic field, this integrated system promotes stem cell adhesion, proliferation, mechanosensing, differentiation, detachment, in situ effective magnetic labeling and retention both in vitro and in vivo , offering fascinating opportunities for biomimetic matrix in regenerative medicine.
Collapse
Affiliation(s)
- Xiaogang Qu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, 5625 Renmin Street, 130022, Changchun, CHINA
| | - Tingting Cui
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA
| | - Si Wu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA
| | - Yue Wei
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA
| | - Hongshuang Qin
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA
| | - Jinsong Ren
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, Remnin Street #5625, 130022, Changchun, CHINA
| |
Collapse
|
20
|
Li X, Zhang Y, Ren X, Wang Y, Chen D, Li Q, Huo M, Shi J. Ischemic Microenvironment-Responsive Therapeutics for Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105348. [PMID: 34623714 DOI: 10.1002/adma.202105348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Indexed: 02/05/2023]
Abstract
Cardiovascular diseases caused by ischemia are attracting considerable attention owing to its high morbidity and mortality worldwide. Although numerous agents with cardioprotective benefits have been identified, their clinical outcomes are hampered by their low bioavailability, poor drug solubility, and systemic adverse effects. Advances in nanoscience and nanotechnology provide a new opportunity to effectively deliver drugs for treating ischemia-related diseases. In particular, cardiac ischemia leads to a characteristic pathological environment called an ischemic microenvironment (IME), significantly different from typical cardiac regions. These remarkable differences between ischemic sites and normal tissues have inspired the development of stimuli-responsive systems for the targeted delivery of therapeutic drugs to damaged cardiomyocytes. Recently, many biomaterials with intelligent properties have been developed to enhance the therapeutic benefits of drugs for the treatment of myocardial ischemia. Strategies for stimuli-responsive drug delivery and release based on IME include reactive oxygen species, pH-, hypoxia-, matrix metalloproteinase-, and platelet-inspired targeting strategies. In this review, state-of-the-art IME-responsive biomaterials for the treatment of myocardial ischemia are summarized. Perspectives, limitations, and challenges are also discussed for the further development of innovative and effective approaches to treat ischemic diseases with high effectiveness and biocompatibility.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongxu Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| |
Collapse
|
21
|
Lv S. Research fronts of Chemical Biology. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Over the past decades, researchers have witnessed substantially increasing and ever-growing interests and efforts in Chemical Biology studies, thanks to the development of genome and epi-genome sequencing (revealing potential drug targets), synthetic chemistry (producing new medicines), bioorthogonal chemistry (chemistry in living systems) and high-throughput screening technologies (in vitro cell systems, protein binding assays and phenotypic assays). This report presents literature search results for current research in Chemical Biology, to explore basic principles, summarize recent advances, identify key challenges, and provide suggestions for future research (with a focus on Chemical Biology in the context of human health and diseases). Chemical Biology research can positively contribute to delivering a better understanding of the molecular and cellular mechanisms that accompany pathology underlying diseases, as well as developing improved methods for diagnosis, drug discovery, and therapeutic delivery. While much progress has been made, as shown in this report, there are still further needs and opportunities. For instance, pressing challenges still exist in selecting appropriate targets in biological systems and adopting more rational design strategies for the development of innovative and sustainable diagnostic technologies and medical treatments. Therefore, more than ever, researchers from different disciplines need to collaborate to address the challenges in Chemical Biology.
Collapse
Affiliation(s)
- Shanshan Lv
- State Key Laboratory of Organic-Inorganic Composite Materials , Beijing University of Chemical Technology , Beijing , , China
| |
Collapse
|
22
|
Yuan Z, Huang W. New Developments in Exosomal lncRNAs in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709169. [PMID: 34307511 PMCID: PMC8295603 DOI: 10.3389/fcvm.2021.709169] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs with lengths >200 nt and are involved in the occurrence and development of cardiovascular diseases (CVDs). Exosomes are secreted and produced by various cell types. Exosome contents include various ncRNAs, proteins and lipids. Exosomes are also important mediators of intercellular communication. The proportion of lncRNAs in exosomes is low, but increasing evidence suggests that exosomal lncRNAs play important roles in CVDs. We focused on research progress in exosomal lncRNAs in atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury, cardiac angiogenesis, cardiac aging, rheumatic heart disease, and chronic kidney disease combined with CVD. The potential diagnostic and therapeutic effects of exosomal lncRNAs in CVDs are summarized based on preclinical studies involving animal and cell models and circulating exosomes in clinical patients. Finally, the challenges and possible prospects of exosomes and exosomal lncRNAs in clinical applications related to CVD are discussed.
Collapse
Affiliation(s)
- Zhu Yuan
- Department of Geriatric Cardiology, Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiqiang Huang
- Department of Geriatric Cardiology, Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Li J, Hu S, Zhu D, Huang K, Mei X, López de Juan Abad B, Cheng K. All Roads Lead to Rome (the Heart): Cell Retention and Outcomes From Various Delivery Routes of Cell Therapy Products to the Heart. J Am Heart Assoc 2021; 10:e020402. [PMID: 33821664 PMCID: PMC8174178 DOI: 10.1161/jaha.120.020402] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past decades, numerous preclinical studies and several clinical trials have evidenced the feasibility of cell transplantation in treating heart diseases. Over the years, different delivery routes of cell therapy have emerged and broadened the width of the field. However, a common hurdle is shared by all current delivery routes: low cell retention. A myriad of studies confirm that cell retention plays a crucial role in the success of cell-mediated cardiac repair. It is important for any delivery route to maintain donor cells in the recipient heart for enough time to not only proliferate by themselves, but also to send paracrine signals to surrounding damaged heart cells and repair them. In this review, we first undertake an in-depth study of primary theories of cell loss, including low efficiency in cell injection, "washout" effects, and cell death, and then organize the literature from the past decade that focuses on cell transplantation to the heart using various cell delivery routes, including intracoronary injection, systemic intravenous injection, retrograde coronary venous injection, and intramyocardial injection. In addition to a recapitulation of these approaches, we also clearly evaluate their strengths and weaknesses. Furthermore, we conduct comparative research on the cell retention rate and functional outcomes of these delivery routes. Finally, we extend our discussion to state-of-the-art bioengineering techniques that enhance cell retention, as well as alternative delivery routes, such as intrapericardial delivery. A combination of these novel strategies and more accurate assessment methods will help to address the hurdle of low cell retention and boost the efficacy of cell transplantation to the heart.
Collapse
Affiliation(s)
- Junlang Li
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Shiqi Hu
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Dashuai Zhu
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Ke Huang
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Xuan Mei
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Blanca López de Juan Abad
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Ke Cheng
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| |
Collapse
|
24
|
Zhu D, Cheng K. Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out? Cells 2021; 10:641. [PMID: 33805763 PMCID: PMC7999733 DOI: 10.3390/cells10030641] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death worldwide. Coronary artery occlusion, or myocardial infarction (MI) causes massive loss of cardiomyocytes. The ischemia area is eventually replaced by a fibrotic scar. From the mechanical dysfunctions of the scar in electronic transduction, contraction and compliance, pathological cardiac dilation and heart failure develops. Once end-stage heart failure occurs, the only option is to perform heart transplantation. The sequential changes are termed cardiac remodeling, and are due to the lack of endogenous regenerative actions in the adult human heart. Regenerative medicine and biomedical engineering strategies have been pursued to repair the damaged heart and to restore normal cardiac function. Such strategies include both cellular and acellular products, in combination with biomaterials. In addition, substantial progress has been made to elucidate the molecular and cellular mechanisms underlying heart repair and regeneration. In this review, we summarize and discuss current therapeutic approaches for cardiac repair and provide a perspective on novel strategies that holding potential opportunities for future research and clinical translation.
Collapse
Affiliation(s)
- Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
25
|
Amjad R, Ishtiaq I, Fatima N. Stem cells: a new way of therapy for cardiovascular disorders. Stem Cell Investig 2020; 7:19. [PMID: 33294428 DOI: 10.21037/sci-2019-048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 10/16/2020] [Indexed: 11/06/2022]
Abstract
Cardiovascular disorder affects the overall health of an individual and hence the quality of life. Stem cell therapy involves the use of stem cells widely used to treat different conditions. People having severe cardiovascular disorder can be treated with stem cells by generating heart muscles, stimulating the growth of blood vessels and by the secretion of different growth factors. Different types of stem cells are used for cardiac repair. Adipose stem cells and induced pluripotent stem cells are better options for increasing the survival rate. In this review we will discuss different types of stem cells, their activation pathway, generation, hurdles in transplantation and how to overcome them and their applications.
Collapse
Affiliation(s)
- Rabia Amjad
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Isha Ishtiaq
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Noor Fatima
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| |
Collapse
|
26
|
Mei X, Cheng K. Recent Development in Therapeutic Cardiac Patches. Front Cardiovasc Med 2020; 7:610364. [PMID: 33330673 PMCID: PMC7728668 DOI: 10.3389/fcvm.2020.610364] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
For the past decades, heart diseases remain the leading cause of death worldwide. In the adult mammalian heart, damaged cardiomyocytes will be replaced by non-contractile fibrotic scar tissues due to the poor regenerative ability of heart, causing heart failure subsequently. The development of tissue engineering has launched a new medical innovation for heart regeneration. As one of the most outstanding technology, cardiac patches hold the potential to restore cardiac function clinically. Consisted of two components: therapeutic ingredients and substrate scaffolds, the fabrication of cardiac patches requires both advanced bioactive molecules and biomaterials. In this review, we will present the most state-of-the-art cardiac patches and analysis their compositional details. The therapeutic ingredients will be discussed from cell sources to bioactive molecules. In the meanwhile, the recent advances to obtain scaffold biomaterials will be highlighted, including synthetic and natural materials. Also, we have focused on the challenges and potential strategies to fabricate clinically applicable cardiac patches.
Collapse
Affiliation(s)
- Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
27
|
Van de Walle A, Kolosnjaj-Tabi J, Lalatonne Y, Wilhelm C. Ever-Evolving Identity of Magnetic Nanoparticles within Human Cells: The Interplay of Endosomal Confinement, Degradation, Storage, and Neocrystallization. Acc Chem Res 2020; 53:2212-2224. [PMID: 32935974 DOI: 10.1021/acs.accounts.0c00355] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Considerable knowledge has been acquired in inorganic nanoparticles' synthesis and nanoparticles' potential use in biomedical applications. Among different materials, iron oxide nanoparticles remain unrivaled for several reasons. Not only do they respond to multiple physical stimuli (e.g., magnetism, light) and exert multifunctional therapeutic and diagnostic actions but also they are biocompatible and integrate endogenous iron-related metabolic pathways. With the aim to optimize the use of (magnetic) iron oxide nanoparticles in biomedicine, different biophysical phenomena have been recently identified and studied. Among them, the concept of a "nanoparticle's identity" is of particular importance. Nanoparticles' identities evolve in distinct biological environments and over different periods of time. In this Account, we focus on the remodeling of magnetic nanoparticles' identities following their journey inside cells. For instance, nanoparticles' functions, such as heat generation or magnetic resonance imaging, can be highly impacted by endosomal confinement. Structural degradation of nanoparticles was also evidenced and quantified in cellulo and correlates with the loss of magnetic nanoparticle properties. Remarkably, in human stem cells, the nonmagnetic products of nanoparticles' degradation could be subsequently reassembled into neosynthesized, endogenous magnetic nanoparticles. This stunning occurrence might account for the natural presence of magnetic particles in human organs, especially the brain. However, mechanistic details and the implication of such phenomena in homeostasis and disease have yet to be completely unraveled.This Account aims to assess the short- and long-term transformations of magnetic iron oxide nanoparticles in living cells, particularly focusing on human stem cells. Precisely, we herein overview the multiple and ever-evolving chemical, physical, and biological magnetic nanoparticles' identities and emphasize the remarkable intracellular fate of these nanoparticles.
Collapse
Affiliation(s)
- Aurore Van de Walle
- Laboratoire Matière et Systèmes Complexes, MSC, UMR 7057, CNRS & University of Paris, 75205, Paris, Cedex 13, France
| | - Jelena Kolosnjaj-Tabi
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France
| | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
- Services de Biochimie et Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes, MSC, UMR 7057, CNRS & University of Paris, 75205, Paris, Cedex 13, France
| |
Collapse
|
28
|
Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. Int J Mol Sci 2020; 21:ijms21207701. [PMID: 33080988 PMCID: PMC7589970 DOI: 10.3390/ijms21207701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in Western countries. Post-myocardial infarction heart failure can be considered a degenerative disease where myocyte loss outweighs any regenerative potential. In this scenario, regenerative biology and tissue engineering can provide effective solutions to repair the infarcted failing heart. The main strategies involve the use of stem and progenitor cells to regenerate/repair lost and dysfunctional tissue, administrated as a suspension or encapsulated in specific delivery systems. Several studies demonstrated that effectiveness of direct injection of cardiac stem cells (CSCs) is limited in humans by the hostile cardiac microenvironment and poor cell engraftment; therefore, the use of injectable hydrogel or pre-formed patches have been strongly advocated to obtain a better integration between delivered stem cells and host myocardial tissue. Several approaches were used to refine these types of constructs, trying to obtain an optimized functional scaffold. Despite the promising features of these stem cells’ delivery systems, few have reached the clinical practice. In this review, we summarize the advantages, and the novelty but also the current limitations of engineered patches and injectable hydrogels for tissue regenerative purposes, offering a perspective of how we believe tissue engineering should evolve to obtain the optimal delivery system applicable to the everyday clinical scenario.
Collapse
|
29
|
Yao Z, Xue T, Cai C, Li J, Lu M, Liu X, Jin T, Wu F, Liu S, Fan C. Parathyroid Hormone‐Loaded Microneedle Promotes Tendon Healing Through Activation of mTOR. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhixiao Yao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Tong Xue
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chuandong Cai
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Juehong Li
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Mingkuan Lu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Xudong Liu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Tuo Jin
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fei Wu
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shen Liu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Cunyi Fan
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| |
Collapse
|
30
|
Hu S, Li Z, Lutz H, Huang K, Su T, Cores J, Dinh PUC, Cheng K. Dermal exosomes containing miR-218-5p promote hair regeneration by regulating β-catenin signaling. SCIENCE ADVANCES 2020; 6:eaba1685. [PMID: 32832660 PMCID: PMC7439409 DOI: 10.1126/sciadv.aba1685] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/11/2020] [Indexed: 05/05/2023]
Abstract
The progression in the hair follicle cycle from the telogen to the anagen phase is the key to regulating hair regrowth. Dermal papilla (DP) cells support hair growth and regulate the hair cycle. However, they gradually lose key inductive properties upon culture. DP cells can partially restore their capacity to promote hair regrowth after being subjected to spheroid culture. In this study, results revealed that DP spheroids are effective at inducing the progression of the hair follicle cycle from telogen to anagen compared with just DP cell or minoxidil treatment. Because of the importance of paracrine signaling in this process, secretome and exosomes were isolated from DP cell culture, and their therapeutic efficacies were investigated. We demonstrated that miR-218-5p was notably up-regulated in DP spheroid-derived exosomes. Western blot and immunofluorescence imaging were used to demonstrate that DP spheroid-derived exosomes up-regulated β-catenin, promoting the development of hair follicles.
Collapse
Affiliation(s)
- Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Teng Su
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Jhon Cores
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Phuong-Uyen Cao Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, and North Carolina State University, Raleigh, NC 27606, USA
- Corresponding author.
| |
Collapse
|
31
|
Li C, Rong X, Qin J, Wang S. An improved two-step method for extraction and purification of primary cardiomyocytes from neonatal mice. J Pharmacol Toxicol Methods 2020; 104:106887. [PMID: 32535058 DOI: 10.1016/j.vascn.2020.106887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Primary mouse cardiomyocytes are essential tools for cardiovascular pharmacology research at the cellular and molecular levels, but their low viability and low purity have often caused challenges in previous studies. Hence, we developed an improved two-step method for extraction and purification of primary cardiomyocytes from neonatal mice. METHOD This method consisted of two steps: 1) isolation and pre-digestion of heart tissues from 1- to 3-day-old C57 neonatal mice and 2) extraction and purification of cardiomyocytes. The traditional method of primary mouse cardiomyocyte isolation was used as the control group to assess the extraction efficiency of cardiomyocytes by the two-step method, and the purity and viability of cardiomyocytes were evaluated by immunofluorescence staining and autonomous beating analysis, respectively. RESULTS Compared with the control method, the two-step method enabled acquisition of more cells from mouse hearts (1.28 ± 0.11 × 106vs 0.59 ± 0.15 × 106 cells/heart), and the resulting cells exhibited higher adherence rates and cell purity (93.25 ± 1.69% vs 73.62 ± 9.76%) after 48 h of culture. Moreover, the viability of cardiomyocytes was also evidently higher in the two-step group than in the control group (124.67 ± 10.50 vs 88.50 ± 6.61 beats/min). DISCUSSION Compared with the traditional method, the two-step method exhibited significantly better efficiency in extraction of primary cardiomyocytes and yielded cells with greater purity and viability. The two-step method will likely become a standard method for studies based on primary mouse cardiomyocytes in the future.
Collapse
Affiliation(s)
- Chengbao Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xuli Rong
- Department of Pharmaceutical Institute, Henan University, Kaifeng 475004, China
| | - Jing Qin
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Sheng Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.
| |
Collapse
|
32
|
Park TY, Oh JM, Cho JS, Sim SB, Lee J, Cha HJ. Stem cell-loaded adhesive immiscible liquid for regeneration of myocardial infarction. J Control Release 2020; 321:602-615. [DOI: 10.1016/j.jconrel.2020.02.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
|
33
|
Zhang R, Luo W, Zhang Y, Zhu D, Midgley AC, Song H, Khalique A, Zhang H, Zhuang J, Kong D, Huang X. Particle-based artificial three-dimensional stem cell spheroids for revascularization of ischemic diseases. SCIENCE ADVANCES 2020; 6:eaaz8011. [PMID: 32494716 PMCID: PMC7202876 DOI: 10.1126/sciadv.aaz8011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/14/2020] [Indexed: 05/08/2023]
Abstract
Development of new approaches to biomimetically reconstruct vasculature networks remains challenging in regenerative medicine. We introduce a particle-based artificial stem cell spheroid (ASSP) technology that recapitulates paracrine functions of three-dimensional (3D) SSPs for vasculature regeneration. Specifically, we used a facile method to induce the aggregation of stem cells into 3D spheroids, which benefited from hypoxia microenvironment-driven and enhanced secretion of proangiogenic bioactive factors. Furthermore, we artificially reconstructed 3D spheroids (i.e., ASSP) by integration of SSP-secreted factors into micro-/nanoparticles with cell membrane-derived surface coatings. The easily controllable sizes of the ASSP particles provided superior revascularization effects on the ischemic tissues in hindlimb ischemia models through local administration of ASSP microparticles and in myocardial infarction models via the systemic delivery of ASSP nanoparticles. The strategy offers a promising therapeutic option for ischemic tissue regeneration and addresses issues faced by the bottlenecked development in the delivery of stem cell therapies.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wenya Luo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Dashuai Zhu
- College of Medicine, Nankai University, Tianjin 300071, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Hao Song
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Anila Khalique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Haoqi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhuang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Medicine, Nankai University, Tianjin 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Corresponding author. (X.H.); (D.K.)
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
- Corresponding author. (X.H.); (D.K.)
| |
Collapse
|
34
|
Li J, Hu S, Cheng K. Engineering better stem cell therapies for treating heart diseases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:569. [PMID: 32775370 PMCID: PMC7347786 DOI: 10.21037/atm.2020.03.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For decades, stem cells and their byproducts have shown efficacy in repairing tissues and organs in numerous pre-clinical studies and some clinical trials, providing hope for possible cures for many important diseases. However, the translation of stem cell therapy for heart diseases from bench to bed is still hampered by several limitations. The therapeutic benefits of stem cells are mediated by a combo of mechanisms. In this review, we will provide a brief summary of stem cell therapies for ischemic heart disease. Basically, we will talk about these barriers for the clinical application of stem cell-based therapies, the investigation of mechanisms behind stem-cell based cardiac regeneration and also, what bioengineers can do and have been doing on the translational stage of stem cell therapies for heart repair.
Collapse
Affiliation(s)
- Junlang Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
| |
Collapse
|
35
|
Li Z, Hu S, Huang K, Su T, Cores J, Cheng K. Targeted anti-IL-1β platelet microparticles for cardiac detoxing and repair. SCIENCE ADVANCES 2020; 6:eaay0589. [PMID: 32076644 PMCID: PMC7002120 DOI: 10.1126/sciadv.aay0589] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/22/2019] [Indexed: 05/12/2023]
Abstract
An acute myocardial infarction (AMI) induces a sterile inflammatory response that facilitates further heart injury and promotes adverse cardiac remodeling. Interleukin-1β (IL-1β) plays a central role in the sterile inflammatory response that results from AMI. Thus, IL-1β blockage is a promising strategy for treatment of AMI. However, conventional IL-1β blockers lack targeting specificity. This increases the risk of serious side effects. To address this problem herein, we fabricated platelet microparticles (PMs) armed with anti-IL-1β antibodies to neutralize IL-1β after AMI and to prevent adverse cardiac remodeling. Our results indicate that the infarct-targeting PMs could bind to the injured heart, increasing the number of anti-IL-1β antibodies therein. The anti-IL-1β platelet PMs (IL1-PMs) protect the cardiomyocytes from apoptosis by neutralizing IL-1β and decreasing IL-1β-driven caspase-3 activity. Our findings indicate that IL1-PM is a promising cardiac detoxification agent that removes cytotoxic IL-1β during AMI and induces therapeutic cardiac repair.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Teng Su
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Jhon Cores
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
36
|
Stine SJ, Popowski KD, Su T, Cheng K. Exosome and Biomimetic Nanoparticle Therapies for Cardiac Regenerative Medicine. Curr Stem Cell Res Ther 2020; 15:674-684. [PMID: 32148200 PMCID: PMC7805022 DOI: 10.2174/1574888x15666200309143924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Exosomes and biomimetic nanoparticles have great potential to develop into a wide-scale therapeutic platform within the regenerative medicine industry. Exosomes, a subgroup of EVs with diameter ranging from 30-100 nm, have recently gained attention as an innovative approach for the treatment of various diseases, including heart disease. Their beneficial factors and regenerative properties can be contrasted with various cell types. Various biomimetic nanoparticles have also emerged as a unique platform in regenerative medicine. Biomimetic nanoparticles are a drug delivery platform, which have the ability to contain both biological and fabricated components to improve therapeutic efficiency and targeting. The novelty of these platforms holds promise for future clinical translation upon further investigation. In order for both exosome therapeutics and biomimetic nanoparticles to translate into large-scale clinical treatment, numerous factors must first be considered and improved. Standardization of different protocols, from exosome isolation to storage conditions, must be optimized to ensure batches are pure. Standardization is also important to ensure no variability in this process across studies, thus making it easier to interpret data across different disease models and treatments. Expansion of clinical trials incorporating both biomimetic nanoparticles and exosomes will require a standardization of fabrication and isolation techniques, as well as stricter regulations to ensure reproducibility across various studies and disease models. This review will summarize current research on exosome therapeutics and the application of biomimetic nanoparticles in cardiac regenerative medicine, as well as applications for exosome expansion and delivery on a large clinical scale.
Collapse
Affiliation(s)
- Sydney J. Stine
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
| | - Kristen D. Popowski
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
| | - Teng Su
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
37
|
Lutz H, Hu S, Dinh PU, Cheng K. Cells and cell derivatives as drug carriers for targeted delivery. MEDICINE IN DRUG DISCOVERY 2019; 3:100014. [PMID: 38596257 PMCID: PMC11003759 DOI: 10.1016/j.medidd.2020.100014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For over a century, researchers have focused on how to optimize drug delivery. Systemic administration means that the drug becomes dilute and has the potential to diffuse to all tissues, which is only until the immune system steps in and rapidly clears it from blood circulation. Drug carriers are the solution for amplifying the intended effect and diminishing side effects. With drug carriers, tissue-specific drug delivery and controlled drug release is possible. Thus far, both synthetic and non-synthetic carriers exist. However, due to the numerous limitations of synthetic carriers, science has begun to concentrate on using live cells and cell-derivatives as drug carriers. The most problematic shortcomings of synthetic carriers are their limited biocompatibility and biodegradability. Most synthetic carriers are cytotoxic or induce immune responses. Moreover, synthetic carriers typically depend on passive diffusion and risk phagocytosis, further reducing their impact. On the other hand, live-cell carriers and their derivatives usually have a targeting mechanism and drug release is controlled, increasing the efficiency with which a drug accumulates and acts on a tissue. Still, both types of carriers face similar problems, including achieving high loading capacity, maintaining drug quality, efficiently accumulating in the target tissue, and minimizing side effects. This review aims to elucidate the advantages and disadvantages of each popular cell or cell-derived carrier and to spotlight novel solutions.
Collapse
Affiliation(s)
- Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, United States
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27607, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|