1
|
Wang SM, Gao H, Zhang YW, Wang J, Chen HY, Xu JJ. Aggregation-induced color-coded imaging for HOCl detection in living cells with dark-field microscopy. Talanta 2025; 283:127175. [PMID: 39520918 DOI: 10.1016/j.talanta.2024.127175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this work, we develop a nanoprobe for the detection of hypochlorous acid (HOCl), a key reactive oxygen species, utilizing dark-field microscopy (DFM). The nanoprobe is constructed by covalently attaching PEG-SH and an HOCl-sensitive molecule, FD, to gold nanoparticles (GNPs-FD-PEG). This probe detects HOCl by observing a color shift from green to red due to the aggregation of GNPs, which is triggered by HOCl-induced the cleavage of FD molecule. This aggregation occurs primarily due to electrostatic interactions between the differently charged particles following the cleavage. By recording the scattering signal changes of the GNPs-FD-PEG nanoprobe, we have achieved quantitative detection of HOCl, with a linear response range of 0.5-50 μM and a detection limit of 0.16 μM. By integrating the high-resolution capabilities of DFM imaging with the distinct color change due to electrostatic-induced nanoparticle aggregation, the constructed nanoprobe effectively monitors HOCl in live cells.
Collapse
Affiliation(s)
- Shu-Min Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Song T, Lv JZ, Wang B, Li WY, Ge BY, Li YA, Dong YB. A covalent organic framework-based nanoreactor for enhanced chemodynamic therapy through cascaded Fenton-like reactions and nitric oxide delivery. Chem Commun (Camb) 2025; 61:1902-1905. [PMID: 39774600 DOI: 10.1039/d4cc05939e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Herein, we report a nanoscale composite COF material loaded with copper peroxide (CuO2) and nitric oxide (NO) prodrug via a stepwise post-synthetic modification. The obtained CuO2@COF-SNO can undergo a cascade reaction in the tumor microenvironment to generate reactive oxygen and nitrogen species (ROS/RNS) to enhance chemodynamic therapy of the tumor.
Collapse
Affiliation(s)
- Tian Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jin-Zhou Lv
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bao-Yu Ge
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
3
|
Yang L, Hou H, Li J. Frontiers in fluorescence imaging: tools for the in situ sensing of disease biomarkers. J Mater Chem B 2025; 13:1133-1158. [PMID: 39668682 DOI: 10.1039/d4tb01867b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Fluorescence imaging has been recognized as a powerful tool for the real-time detection and specific imaging of biomarkers within living systems, which is crucial for early diagnosis and treatment evaluation of major diseases. Over the years, significant advancements in this field have been achieved, particularly with the development of novel fluorescent probes and advanced imaging technologies such as NIR-II imaging, super-resolution imaging, and 3D imaging. These technologies have enabled deeper tissue penetration, higher image contrast, and more accurate detection of disease-related biomarkers. Despite these advancements, challenges such as improving probe specificity, enhancing imaging depth and resolution, and optimizing signal-to-noise ratios still remain. The emergence of artificial intelligence (AI) has injected new vitality into the designs and performances of fluorescent probes, offering new tools for more precise disease diagnosis. This review will not only discuss chemical modifications of classic fluorophores and in situ visualization of various biomarkers including metal ions, reactive species, and enzymes, but also share some breakthroughs in AI-driven fluorescence imaging, aiming to provide a comprehensive understanding of these advancements. Future prospects of fluorescence imaging for biomarkers including the potential impact of AI in this rapidly evolving field are also highlighted.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing 102209, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Beijing Life Science Academy, Beijing 102209, China.
| |
Collapse
|
4
|
Liu QQ, Zhu ZQ, Lv HY, Huang BY. Developing a vanillin-derived imidazo-pyridin-containing fluorescent probe for imaging cysteine in living pulmonary cells under oxygen supply variation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125107. [PMID: 39260242 DOI: 10.1016/j.saa.2024.125107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
In this work, derived from vanillin and imidazo-pyridin backbone, a fluorescent probe IPV-Cys was developed for imaging the cysteine (Cys) level in living pulmonary cells under oxygen supply variation. By mimicking the oxygen supply variation in both the solution test and cellular imaging, the optical performance and imaging effect of IPV-Cys was investigated. In the solution system, the oxygen supply variation caused no impact on the reporting signals. The fluorescence reporting signal intensity at 490 nm suggested the enhancement along with the increase of the Cys concentration. The advantages of IPV-Cys included relatively high sensitivity, high stability, and high selectivity. On the basis of the low cyto-toxicity, IPV-Cys achieved the monitoring the endogenous Cys level in in living pulmonary cells and the impact of the oxygen supply variation by reporting fluorescence signals. The information here was meaningful for both the pre-clinical diagnosis and surgical techniques.
Collapse
Affiliation(s)
- Qing-Qing Liu
- Department of Anesthesiology, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, 321000, Jinhua, China
| | - Zhong-Quan Zhu
- Department of Anesthesiology, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, 321000, Jinhua, China
| | - Hua-Yan Lv
- Department of Anesthesiology, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, 321000, Jinhua, China
| | - Bao-Yan Huang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine (Pujiang County Peoples Hospital), 322200, Jinhua, China.
| |
Collapse
|
5
|
Barman D, Rajamalli P, Bidkar AP, Sarmah T, Ghosh SS, Zysman-Colman E, Iyer PK. Modulation of Donor in Purely Organic Triplet Harvesting AIE-TADF Photosensitizer for Image-guided Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409533. [PMID: 39780649 DOI: 10.1002/smll.202409533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively. Further, different donor strengths and unique aggregations (H-, J- and X-type packings) greatly influence their color-tunable up-converted luminescence and endow them with superb dispersibility in water. The confocal microscopy-based cellular uptake study confirms the successful internalization of the nano-probes, while BTMCz enables the generation of reactive oxygen species (singlet oxygen) under white-light irradiation, enabling the efficient killing of cancer cells.
Collapse
Affiliation(s)
- Debasish Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pachaiyappan Rajamalli
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Anil Parsram Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Department of Bioscience and Bioengineering IIT Guwahati, Guwahati, Assam, 781039, India
| | - Tapashi Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Bioscience and Bioengineering IIT Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
6
|
Chang G, Weijie Z, Jinying H, Bingzhang Q, Rexiati M, Zebibula A. Research progress of near-infrared fluorescence imaging in accurate theranostics in bladder cancer. Photodiagnosis Photodyn Ther 2025:104480. [PMID: 39798775 DOI: 10.1016/j.pdpdt.2025.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
(BACKGROUND) With the highest 5-year recurrence rate among malignancies, bladder cancer is a relatively common type of cancer that typically originates from the urothelial cells lining the bladder. Additionally, bladder cancer is one of the most financially burdensome neoplasms to medical institutions in terms of management. Hence, prompt identification and accurate handling of bladder cancer are pivotal for enhancing patient prognosis. Optical imaging has experienced remarkable advancements in fundamental medical research owing to its cost-effectiveness and capacity for real-time imaging. The utilization of near-infrared imaging techniques has also become a prominent area of research in recent times. By effectively decreasing the adverse effects of light scattering and tissue autofluorescence, this technique offers a deeper penetration depth, a better signal-to-noise ratio of images, and a clear resolution for imaging. Thus, this article introduces the application of near-infrared fluorescence imaging in diagnosing and treating bladder cancer. Furthermore, the paper delves into the field's obstacles, possibilities, and upcoming prospects. (RESULTS) Near-infrared fluorescence has advantages over white or blue light in theory and in most articles. However, the lack of penetration depth of NIR fluorescence imaging is still a challenge. (CONCLUSION) Despite notable improvements in the depth of near-infrared fluorescence imaging, the penetration of deeper tissues remains a barrier. It is our hope and pursuit that NIR fluorescence imaging technology can achieve good depth and precision in surgery.
Collapse
Affiliation(s)
- Ge Chang
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System.
| | - Zhang Weijie
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System.
| | - Huang Jinying
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System.
| | - Qiao Bingzhang
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System.
| | - Mulati Rexiati
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System; State Key Laboratory of Patho-genesis, Prevention and Treatment of High Incidence Diseases in Central Asia.
| | - Abudureheman Zebibula
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System; State Key Laboratory of Patho-genesis, Prevention and Treatment of High Incidence Diseases in Central Asia.
| |
Collapse
|
7
|
Chen S, Huang W, Huang T, Fang C, Zhao K, Zhang Y, Li H, Wu C. Highly sensitive near-infrared fluorescent probe for monitoring peroxynitrite in nonalcoholic fatty liver disease: Toward early diagnosis and therapeutic evaluation. Talanta 2025; 281:126865. [PMID: 39265422 DOI: 10.1016/j.talanta.2024.126865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) poses a significant global health concern, necessitating precise diagnostic tools and effective treatment strategies. Peroxynitrite (ONOO-), a reactive oxygen species, plays a pivotal role in NAFLD pathogenesis, highlighting its potential as a biomarker for disease diagnosis and therapeutic evaluation. This study reports on the development of a near-infrared (NIR) fluorescent probe, designated DRP-O, for the selective detection of ONOO- with high sensitivity and photostability. DRP-O exhibits rapid response kinetics (within 2 min) and an impressive detection limit of 2.3 nM, enabling real-time monitoring of ONOO- dynamics in living cells. Notably, DRP-O demonstrates excellent photostability under continuous laser irradiation, ensuring reliable long-term monitoring in complex biological systems. We apply DRP-O to visualize endogenous ONOO- in living cells, demonstrating its potential for diagnosing and monitoring NAFLD-related oxidative stress. Furthermore, DRP-O effectively evaluates the efficacy of therapeutic drugs in NAFLD cell models, underscoring its potential utility in drug screening studies. Moreover, we confirm DRP-O to enable selective identification of fatty liver tissues in a mouse model of NAFLD, indicating its potential for the early diagnosis of NAFLD. Collectively, DRP-O represents a valuable tool for studying ONOO- dynamics, evaluating drug efficacy, and diagnosing NAFLD, offering insights into novel therapeutic strategies for this prevalent liver disorder.
Collapse
Affiliation(s)
- Shiying Chen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Wei Huang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Ting Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Cong Fang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Kuicheng Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Cuiyan Wu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
8
|
Zhang P, Su J, Zhen H, Yu T, Wei L, Zheng M, Zeng C, Shu W. Recent design strategies and applications of small molecule fluorescent probes for food detection. Coord Chem Rev 2025; 522:216232. [DOI: 10.1016/j.ccr.2024.216232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Ren X, Sayed ZN, Shi S, Hao J, Gao J, Wu J, Zhang H, Liu Z, Zhang B. Construction of a mitochondrial-targeting near-infrared fluorescent probe for detection of viscosity changes in type 2 diabetes mellitus and nonalcoholic steatohepatitis. Talanta 2024; 286:127470. [PMID: 39733524 DOI: 10.1016/j.talanta.2024.127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The intracellular viscosity plays a pivotal role as a physicochemical factor and an important indicator of organelles performance. Abnormal changes in subcellular viscosity are often associated with cellular malfunction and various diseases. Nonalcoholic steatohepatitis (NASH) is the most common liver disease related with type 2 diabetes mellitus (T2DM), and both are linked to aberrant mitochondrial viscosity. In this study, we styled and screened a novel near-infrared probe termed MT-E, carrying the double bonds as the viscosity response groups, that was employed to image the viscosity changes in HepG2 cells, zebrafish and animal models. MT-E has a superior mitochondrial targeting ability, as well as a large Stokes shift (167 nm). Additionally, utilizing the excellent performance of MT-E, we first monitored the increased viscosity trends in both T2DM mice and NASH mice, suggesting that there is a strong correlation between T2DM and NASH. More groundbreakingly, we have successfully revealed, from fluorescence imaging, the extraordinary potential of Aloin in treating T2DM mice that can effectively reduce viscosity. This is a sign that MT-E may have a steering role in mitochondrial viscosity-associated disorders.
Collapse
Affiliation(s)
- Xiaowen Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zahid Nasim Sayed
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Suntao Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junlei Hao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining, 810007, Qinghai, China
| | - Jia Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining, 810007, Qinghai, China
| | - Haijuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Wang Q, Ji H, Hao Y, Jia D, Ma H, Song C, Qi H, Li Z, Zhang C. Illumination of Hydroxyl Radical Generated in Cells during Ferroptosis, Arabidopsis thaliana, and Mice Using a New Turn-On Near-Infrared Fluorescence Probe. Anal Chem 2024; 96:20189-20196. [PMID: 39671317 DOI: 10.1021/acs.analchem.4c03824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Hydroxyl radical (·OH), taken as the most active and aggressive reactive oxygen species (ROS), plays an important role in cell redox regulation and ferroptosis processes. It is a great challenge to develop methods for highly selective and sensitive detection and imaging of ·OH. A new near-infrared (NIR) fluorescence probe Probe-HMP was designed and synthesized by introducing 3-methylpyrazolone as the specific recognition moiety to the hemicyanine backbone of the NIR fluorophore AXPI-NH2, which formed with the hydrazine group. Probe-HMP exhibited excellent detection performance in vitro, such as instantaneous response, low detection limit of 24 nM, and excellent selectivity without the interference from other ROS. Based on the actions of ·OH promoter phenylmercuric acetate (PMA) and ·OH scavenger 4-hydroxy-TEMPO (Tempol), Probe-HMP was successfully applied to obtain images of endogenous ·OH in HepG2 cells, Arabidopsis thaliana, and mice. The results show that Probe-HMP can stably and efficiently image endogenous ·OH, the fluorescence intensity of the experimental group incubated with PMA was higher than that of the control group incubated with Probe-HMP only, and a significant decrease could be observed in the inhibitor group incubated with Tempol. More importantly, Probe-HMP can achieve the detection of endogenous ·OH in HepG2 cells during ferroptosis by using erastin and deferoxamine mesylate (DFO) to induce or inhibit ferroptosis, revealing that the fluorescence intensity change of Probe-HMP was caused by ·OH generated and ferroptosis is accompanied by significant ·OH generation. The excellent performance of Probe-HMP makes it a promising candidate for exploring the physiological and pathological processes associated with ferroptosis.
Collapse
Affiliation(s)
- Qiuyue Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Haiyang Ji
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dongli Jia
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Hongyu Ma
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Changying Song
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
11
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
12
|
An K, Fan J, Lin B, Han Y. Bodipy-Based highly sensitive hydrogen sulfide fluorescent probe and its fluorescence imaging in cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124911. [PMID: 39096674 DOI: 10.1016/j.saa.2024.124911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Hydrogen sulfide (H2S) is a crucial endogenous gasotransmitter that plays a role in various physiological and pathological processes. Therefore, accurate and rapid monitoring of H2S in organisms is highly significant for understanding the underlying pathological mechanisms and facilitating early diagnosis of related diseases. In this study, we developed a novel fluorescent probe, B-CHO-NO2, based on a bodipy fluorophore, which exhibits excellent sensitivity and selectivity towards H2S. The design of the probe exploits the nucleophilicity of H2S by introducing a formyl group as the ortho-participating moiety, significantly enhancing the reaction rate with H2S. In cellular and zebrafish models, the probe B-CHO-NO2 successfully achieved fluorescence imaging of endogenous and exogenous H2S. The development of probe B-CHO-NO2 provides a powerful tool for biological studies of H2S and diagnosis of related diseases.
Collapse
Affiliation(s)
- Ke An
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaxin Fan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bin Lin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
13
|
Dupouy B, Cotos L, Binder A, Slavikova L, Rottmann M, Mäser P, Jacquemin D, Ganter M, Davioud-Charvet E, Elhabiri M. Click Coupling of Flavylium Dyes with Plasmodione Analogues: Towards New Redox-Sensitive Pro-Fluorophores. Chemistry 2024:e202403691. [PMID: 39654502 DOI: 10.1002/chem.202403691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 12/17/2024]
Abstract
The development of redox-sensitive molecular fluorescent probes for the detection of redox changes in Plasmodium falciparum-parasitized red blood cells remains of interest due to the limitations of current genetically encoded biosensors. This study describes the design, screening and synthesis of new pro-fluorophores based on flavylium azido dyes coupled by CuAAC click chemistry to alkynyl analogues of plasmodione oxide, the key metabolite of the potent redox-active antimalarial plasmodione. The photophysical and electrochemical properties of these probes were evaluated, focusing on their fluorogenic responses. The influence of both the redox status of the quinone and the length of the PEG chain separating the fluorophore from the electrophore on the photophysical properties was investigated. The fluorescence quenching by photoinduced electron transfer is reversible and of high amplitude for probes in oxidized quinone forms and fluorescence is reinstated for reduced hydroquinone forms. Our results demonstrate that shortening the PEG chain has the effect of enhancing the fluorogenic response, likely due to non-covalent interactions between the two chromophores. All these systems were evaluated for their antiparasitic activities and fluorescence imaging suggests the efficacy of the fluorescent flavylium dyes in P. falciparum-parasitized red blood cells, paving the way for future parasite imaging studies to monitor cellular redox processes.
Collapse
Affiliation(s)
- Baptiste Dupouy
- Laboratoire d'Innovation Moléculaire et Applications, UMR 7042, CNRS-Unistra-UHA, ECPM, 25 Rue Becquerel, 67200, Strasbourg, France
| | - Leandro Cotos
- Laboratoire d'Innovation Moléculaire et Applications, UMR 7042, CNRS-Unistra-UHA, ECPM, 25 Rue Becquerel, 67200, Strasbourg, France
| | - Annika Binder
- Heidelberg University, Medical Faculty, Centre for Infectious Diseases, Im Neuenheimer Feld 324/344, 69120, Heidelberg, Germany
| | - Lucie Slavikova
- Laboratoire d'Innovation Moléculaire et Applications, UMR 7042, CNRS-Unistra-UHA, ECPM, 25 Rue Becquerel, 67200, Strasbourg, France
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001, Basel, Switzerland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM, F-44000, Nantes, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Markus Ganter
- Heidelberg University, Medical Faculty, Centre for Infectious Diseases, Im Neuenheimer Feld 324/344, 69120, Heidelberg, Germany
| | - Elisabeth Davioud-Charvet
- Laboratoire d'Innovation Moléculaire et Applications, UMR 7042, CNRS-Unistra-UHA, ECPM, 25 Rue Becquerel, 67200, Strasbourg, France
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications, UMR 7042, CNRS-Unistra-UHA, ECPM, 25 Rue Becquerel, 67200, Strasbourg, France
| |
Collapse
|
14
|
García S, Carmona-Santiago G, Jiménez-Sánchez A. Redefining Molecular Probes for Monitoring Subcellular Environment: A Perspective. Anal Chem 2024; 96:19183-19189. [PMID: 39576991 PMCID: PMC11635757 DOI: 10.1021/acs.analchem.4c05022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
The development of small-molecule fluorescent probes has revolutionized the monitoring of in vivo physicochemical parameters, offering unprecedented insights into biological processes. In this perspective, we critically examine recent advances and trends in the design and application of fluorescent probes for real-time in vivo monitoring of subcellular environments. Traditional concepts such as membrane potential, microviscosity, and micropolarity have been superseded by more biologically relevant parameters like membrane voltage, tension, and hydration, enhancing the accuracy of physiological assessments. This redefinition not only presents an evolved concept with broader applications in monitoring subcellular dynamics but also addresses the unmet needs of subcellular biology more effectively. We also highlight the limitations of commonly used probes in providing specific information about the redox environment, noting their nonspecificity to oxidants and the influence of various chemical interactions. These probes typically rely on free radical mechanisms and require metal catalysts to react with hydrogen peroxide. They include naphthalimide, fluorescein, BODIPY, rhodamine, cyanine cores to cover the UV-vis-near-infrared window. The motif of this perspective is to provide critical insights into trending fluorescent-based systems employed in real-time or in vivo physicochemical-responsive monitoring, thus aiming to inform and inspire further research in creating robust and efficient fluorescent probes for comprehensive in vivo monitoring applications.
Collapse
Affiliation(s)
- Santiago García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| | - Gustavo Carmona-Santiago
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
15
|
Gong J, Wang X, Wu J, Yoon C, Kim Y, Zou J, Mao Z, Kim JS. Diaminonaphthalene Boronic Acid (DANBA): New Approach for Peroxynitrite Sensing Site. Angew Chem Int Ed Engl 2024; 63:e202409295. [PMID: 39150907 DOI: 10.1002/anie.202409295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/18/2024]
Abstract
Selective detection of reactive oxygen species (ROS) is vital for studying their role in brain diseases. Fluorescence probes can distinguish ONOO- species from other ROS; however, their selectivity toward ONOO- species depends on the ONOO- recognition group. Aryl-boronic acids and esters, which are common ONOO- recognition groups, are not selective for ONOO- over H2O2. In this study, we developed a diaminonaphthalene (DAN)-protected boronic acid as a new ONOO- recognition group that selectively reacts with ONOO- over H2O2 and other ROS. Three DAN-protected boronic acid (DANBA)-based fluorophores that emit fluorescence over visible to near-infrared (NIR) regions, Cou-BN, BVP-BN, and HDM-BN, and their aryl-boronic acid-based counterparts (Cou-BO, BVP-BO, and HDM-BO), were developed. The DANBA-based probes exhibited enhanced selectivity toward ONOO- over that of their control group, as well as universality in solution assays and in vitro experiments with PC12 cells. The NIR-emissive HDM-BN was optimized to delineate in vivo ONOO- levels in mouse brains with Parkinson's disease. This DAN-protected boronic acid belongs to a new generation of recognition groups for developing ONOO- probes, and this strategy could be extended to other common hydroxyl-containing dyes to detect ONOO- levels in complex biological systems and processes.
Collapse
Affiliation(s)
- Jiankang Gong
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiaoyu Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jiao Wu
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Changyu Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Yujin Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jingwen Zou
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zhiqiang Mao
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
16
|
Yu F, Wang T, Wang Y, Liu L, Liu T, Yao W, Xiong H, Xiao J, Liu X, Jiang H, Wang X. Peroxynitrite-Responsive Near-Infrared Fluorescent Imaging Guided Synergistic Chemo-Photodynamic Therapy via Biomimetic Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39560990 DOI: 10.1021/acsami.4c07389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Peroxynitrite (ONOO-) plays a crucial role in maintaining cellular redox homeostasis and regulating diffusive processes, cellular transport, and signal transduction. Extensive studies have revealed that increased ONOO- levels during tumor progression are associated with heightened levels of oxidative stress. However, current methods lack noninvasive visualization, immediate reporting, and highly sensitive fluorescence sensing. In light of this, we have designed a biomimetic fluorescent nanoplatform, named Z-C-T@CM, for peroxynitrite-responsive near-infrared fluorescent imaging guided cancer treatment. The nanoplatform comprises tetrakis(4-carboxyphenyl) porphyrin (TCPP) and curcumin (CCM) encapsulated within a zeolitic imidazolate framework-8 (ZIF-8), which is coated with a mouse breast cancer cell membrane for enhanced biocompatibility and targeting, while evading immune clearance. In vitro experimental results demonstrate that the as-prepared nanoplatform exhibits enhanced near-infrared fluorescence emission upon exposure to ONOO-, indicating a significant potential for noninvasive in vivo imaging of ONOO- during tumor progression. Additionally, Z-C-T@CM readily degrades in the tumor microenvironment, releasing TCPP and CCM, enabling a synergistic chemo-photodynamic therapy with near-infrared illumination. Further investigations indicate that Z-C-T@CM efficiently stimulates a tumor immune response and facilitates therapeutic efficiency. Collectively, this work introduces a novel noninvasive strategy for ONOO- detection, shedding new light on the integration of cancer diagnosis and efficient treatment.
Collapse
Affiliation(s)
- Fangfang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Tingya Wang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, PR China
| | - Yihan Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jiang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
17
|
Sun G, Zhang RWY, Chen XY, Chen YH, Zou LH, Zhang J, Li PG, Wang K, Hu ZG. Analysis of optical properties and response mechanism of H 2S fluorescent probe based on rhodamine derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124745. [PMID: 38955071 DOI: 10.1016/j.saa.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
H2S plays a crucial role in numerous physiological and pathological processes. In this project, a new fluorescent probe, SG-H2S, for the detection of H2S, was developed by introducing the recognition group 2,4-dinitrophenyl ether. The combination of rhodamine derivatives can produce both colorimetric reactions and fluorescence reactions. Compared with the current H2S probes, the main advantages of SG-H2S are its wide pH range (5-9), fast response (30 min), and high selectivity in competitive species (including biological mercaptan). The probe SG-H2S has low cytotoxicity and has been successfully applied to imaging in MCF-7 cells, HeLa cells, and BALB/c nude mice. We hope that SG-H2S will provide a vital method for the field of biology.
Collapse
Affiliation(s)
- Guo Sun
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Ren-Wei-Yang Zhang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Yu-Hua Chen
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China
| | - Liang-Hua Zou
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Jian Zhang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| | - Ping-Gui Li
- School of Environmental Engineering, Wuxi Univerisity, Jiangsu 214105, China.
| | - Kai Wang
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| | - Zhi-Gang Hu
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| |
Collapse
|
18
|
Li Z, Liu H, Zhang XB. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. Chem Soc Rev 2024; 53:11207-11227. [PMID: 39363873 DOI: 10.1039/d4cs00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Organic luminophores have been widely utilized in cells and in vivo fluorescence imaging but face extreme challenges, including a low signal-to-noise ratio (SNR) and even false signals, due to non-negligible background signals derived from real-time excitation lasers. To overcome these challenges, in the last decade, functionalized organic long-persistent luminophores have gained much attention. Such luminophores could not only overcome the biological toxicity of inorganic long-persistent luminescent materials (metabolic toxicity and leakage risk of inorganic heavy metals), but also continue to emit long-persistent luminescence after removing the excitation source, thus effectively improving imaging quality. More importantly, organic long-persistent luminophores have good structure tailorability for the construction of activable probes, which is favorable for biosensing. Recently, the development of reactive oxygen species (ROS)-mediated long-persistent (ROSLP) luminophores (especially organic small-molecule ROSLP luminophores) is still in the rising stage. Notably, ROSLP luminophores for in vivo imaging have experienced from two-component separated nano-systems to integrated uni-luminophores, which obtained gradually better designability and biocompatibility. In this review, we summarize the progress and challenges of organic long-persistent luminophores, focusing on their development history, long-persistent luminescence working mechanisms, and biomedical applications. We hope that these insights will help scientists further develop functionalized organic long-persistent luminophores for the biomedical field.
Collapse
Affiliation(s)
- Zhe Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China.
| |
Collapse
|
19
|
Liu C, Qin M, Jiang L, Shan J, Sun Y. Mitochondria-Targetable Cyclometalated Iridium(III) Complex-Based Luminescence Probe for Monitoring and Assessing Treatment Response of Ferroptosis-Mediated Hepatic Ischemia-Reperfusion Injury. Inorg Chem 2024; 63:21627-21636. [PMID: 39473350 DOI: 10.1021/acs.inorgchem.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Ferroptosis plays an essential role in the pathological progression of hepatic ischemia-reperfusion injury (HIRI), which is closely related to iron-dependent lipid peroxidation. Since mitochondria are thought to be the major site of reactive oxygen species (ROS) production and iron storage, monitoring the variations of mitochondrial hypochlorous acid (HClO) (an important member of ROS) has important implications for the assessment of ferroptosis status, as well as the formulation of treatment strategies for HIRI. However, reliable imaging tools for the visualization of mitochondrial HClO and monitoring its dynamic changes in ferroptosis-mediated HIRI are still lacking. Herein, in this work, an HClO-activated near-infrared (NIR) cyclometalated iridium(III) complex-based probe, named NIR-Ir-HClO, was developed for the visual monitoring of the mitochondrial HClO fluxes in ferroptosis-mediated HIRI. The newly prepared probe showed fast response (<30 s), good sensitivity, excellent selectivity, good cell biocompatibility, and satisfactory mitochondrial-targeting performance, making it suitable for accurate monitoring of mitochondrial HClO in living cells. Moreover, visualization of the variations of mitochondrial HClO in ferroptosis-mediated HIRI and monitoring of the treatment response of ferroptosis-mediated HIRI to the ferroptosis inhibitors were achieved for the first time. All these show that probe NIR-Ir-HClO can be utilized as a reliable imaging tool for revealing the pathological mechanism of mitochondrial HClO in ferroptosis-mediated HIRI, as well as for the formulation of new treatment strategies for HIRI.
Collapse
Affiliation(s)
- Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Meichun Qin
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Jiang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jiongchen Shan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
20
|
Zhao B, Liu J, Zhu C, Cheng X. Chitosan-naphthalimide probes for dual channel recognition of HClO and H 2S in cells and their application in photodynamic therapy. Int J Biol Macromol 2024; 281:136517. [PMID: 39426764 DOI: 10.1016/j.ijbiomac.2024.136517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The combination of bio-imaging with photodynamic therapy (PDT) to accomplish theranostics is promising in cancer treatment. Three chitosan-naphthalimide probes were studied in this work. 4-(5-Bromothiophen-2-yl)-1,8-naphthalic anhydride was first synthesized, and then reacted with chitosan to obtain the macromolecules (CS-N-Br). The recognition group thiomorpholine or its derivatives were introduced into CS-N-Br to obtain nano-probes (CS-N-ML, CS-N-BSZ, CS-N-FSQ) eventually. The studies revealed that CS-N-ML and CS-N-FSQ exhibit high selectivity and can specifically recognize HClO and H2S. CS-N-ML and CS-N-FSQ can perform exogenous and endogenous confocal imaging of HClO and H2S in cells also. CS-N-ML's ability to target lysosomes positions indicated it could act as a lysosome-specific probe. It was discovered that the probes generate superoxide anions (O2•-) via a Type I mechanism. This discovery endows the probes with high photosensitizing activity even under hypoxic conditions. There is a positive correlation between the extent of the conjugated system and the photosensitivity of the probes, indicating that an enhanced conjugation leads to increased photosensitivity. Upon light irradiation, the probes generate ROS within HeLa cells. These results suggested that these probes can achieve theranostics for diseases associated with abnormal levels of HClO and H2S.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China; School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Jun Liu
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Caiqiong Zhu
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
21
|
Mishra AP, Kumar R, Harilal S, Nigam M, Datta D, Singh S, Waranuch N, Chittasupho C. Demystifying the management of cancer through smart nano-biomedicine via regulation of reactive oxygen species. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03469-x. [PMID: 39480523 DOI: 10.1007/s00210-024-03469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
Advancements in therapeutic strategies and combinatorial approaches for cancer management have led to the majority of cancers in the initial stages to be regarded as treatable and curable. However, certain high-grade cancers in the initial stages are still regarded as chronic and difficult to manage, requiring novel therapeutic strategies. In this era of targeted and precision therapy, novel strategies for targeted delivery of drug and synergistic therapies, integrating nanotherapeutics, polymeric materials, and modulation of the tumor microenvironment are being developed. One such strategy is the study and utilization of smart-nano biomedicine, which refers to stimuli-responsive polymeric materials integrated with the anti-cancer drug that can modulate the reactive oxygen species (ROS) in the tumor microenvironment or can be ROS responsive for the mitigation as well as management of various cancers. The article explores in detail the ROS, its types, and sources; the antioxidant system, including scavengers and their role in cancer; the ROS-responsive targeted polymeric materials, including synergistic therapies for the treatment of cancer via modulating the ROS in the tumor microenvironment, involving therapeutic strategies promoting cancer cell death; and the current landscape and future prospects.
Collapse
Affiliation(s)
- Abhay Prakash Mishra
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rajesh Kumar
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India.
| | - Seetha Harilal
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal Karnataka, 576104, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
22
|
Charles ID, Wang L, Chen Y, Liu B. Albumin host for supramolecular fluorescence recognition. Chem Commun (Camb) 2024; 60:12474-12486. [PMID: 39324212 DOI: 10.1039/d4cc03711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Synthetic molecular sensors are crucial for real-time monitoring in biological systems and biotechnological applications, where detecting targets amidst potential interferents is essential. This task is particularly challenging in competitive environments that lacking chemically reactive functional groups, common in agricultural, biological, and environmental contexts. Consequently, scientific efforts have focused on developing sensitive and rapid analytical techniques, with fluorescent sensors emerging as prominent tools. Among these, the albumin-based supramolecular fluorescent indicator displacement assay (AS-FIDA) represents a significant advancement. Our research group has extensively contributed to this field, demonstrating the practical utility of various AS-FIDAs. We pioneered the use of albumin (ALB) as a host molecule in these synthetic chemical sensors, marking a notable advancement. AS-FIDA employs ALB as a versatile host molecule with multiple flexible and asymmetrical binding pockets capable of forming complexes with guest dyes, resulting in ALB@dye ensembles tailored for specific analyte recognition. Recent advancements in AS-FIDA have significantly expanded its applications. This review explores recent advances in ALB-based supramolecular sensors and sensor arrays for detecting biologically and environmentally significant molecules, such as pesticides, hormones, biomarkers, reactive species, mycotoxins, drugs, and carcinogens. The versatility of AS-FIDA positions it as a valuable tool in diverse settings, from laboratory research to practical applications in portable devices, smartphone-assisted on-site monitoring, imaging of living cells, and real sample analysis.
Collapse
Affiliation(s)
- Immanuel David Charles
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Lei Wang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Yu Chen
- School of Chemistry and Environmental Engineering, Key laboratory of Resources Environmental and Green Low Carbon Processes in East Guangdong, Hanshan Normal University, Chaozhou 521041, China.
| | - Bin Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
23
|
Spanolios EM, Lewis RE, Caldwell RN, Jilani SZ, Haynes CL. Progress and limitations in reactive oxygen species quantitation. Chem Commun (Camb) 2024; 60:12487-12501. [PMID: 39373601 DOI: 10.1039/d4cc03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Reactive oxygen species (ROS) are a set of oxygen- and nitrogen-containing radicals. They are produced from a wide range of sources. In biological contexts, cellular stress leads to an overproduction of ROS, which can lead to genetic damage and disease development. In industry, ROS are often productively used for water purification or for analyzing the possible toxicity of an industrial process. Because of their ubiquity, detection of ROS has been an analytical goal across a range of fields. To understand complicated systems and origins of ROS production, it is necessary to move from qualitative detection to quantitation. Analytical techniques that combine quantitation, high spatial and temporal resolution, and good specificity represent detection methods that can fill critical gaps in ROS research. Herein, we discuss the continued progress and limitations of fluorescence, electrochemical, and electron paramagnetic resonance detection of ROS over the last ten years, giving suggestions for the future of the field.
Collapse
|
24
|
Iradukunda Y, Kang JY, Zhao XB, Fu XK, Han SQ, Adam KM, Ha W, Shi YP. Glutathione-Conjugated Fluorometric Ratiometric NIR-Silicon Nanoparticles and Its Applications for In Vitro and In Vivo Imaging. ACS APPLIED BIO MATERIALS 2024; 7:6631-6640. [PMID: 39302025 DOI: 10.1021/acsabm.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glutathione (GSH), a tripeptide molecule, is the most abundant nonprotein biothiol in living cells, playing a crucial role in preventing oxidative damage to cellular components and maintaining intracellular redox homeostasis. As a thiol molecule, GSH contains a sulfhydryl (-SH) group that is vital for the body's response to reactive oxygen species (ROS). To confirm whether GSH can be used as a bioindicator or in the early diagnosis of cancers at the cellular level, it is essential to achieve highly selective detection and conjugation of GSH to silicon nanoparticles (SiNPs) under pathological conditions. We are herein excited to report a type of fluorescent ratiometric near-infrared silicon nanoparticle (NIR-SiNP) probe, that is, glutathione peptide conjugated (NIR-SiNPs-GSH), which simultaneously possess small pore sizes at an average of 6.7 nm, an emission of 670 nm, a bioimaging functionality of living cancer cells and animals, and favorable biocompatibility. Taking advantage of these virtues, we further manifest that such resulting NIR-SiNPs, NIR-SiNPs-GSH bioprobes are marvelously worthy for immunofluorescence imaging of cancer cells and living mice. Furthermore, it was shown that DAPI and probes could selectively stain malignant tumor cell nuclei, indicating the possibility for bioimaging and identification of cancer cells and animals. In summary, the suggested NIR-SiNPs-GSH probe has the potential to be a very effective chemical tool for early tumor detection in the future.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Qi Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Khalid Mohammed Adam
- Department of Chemistry, Faculty of Education, University of Kordofan, El Obeid 51111, Sudan
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
25
|
Lv J, Chen F, Zhang C, Kang Y, Yang Y, Zhang C. Role of Peroxynitrite in the Pathogenesis of Parkinson's Disease and Its Fluorescence Imaging-Based Detection. BIOSENSORS 2024; 14:506. [PMID: 39451719 PMCID: PMC11506598 DOI: 10.3390/bios14100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting the lives of millions of people worldwide. Although the mechanism underlying PD pathogenesis is largely undefined, increasing evidence indicates that oxidative and nitrosative stresses play a crucial role in PD occurrence and development. Among them, the role of oxidative stress has been widely acknowledged, but there is relatively less attention given to nitrosative stress, which is mainly derived from peroxynitrite. In the present review, after briefly introducing the background of PD, we discuss the physiopathological function of peroxynitrite and especially highlight how overloaded peroxynitrite is involved in PD pathogenesis. Then, we summarize the currently reported fluorescence imaging-based peroxynitrite detection probes. Moreover, we specifically emphasize the probes that have been applied in PD research. Finally, we propose perspectives on how to develop a more applicable peroxynitrite probe and leverage it for PD theranostics. Conclusively, the present review broadens the knowledge on the pathological role of peroxynitrite in the context of PD and sheds light on how to develop and utilize fluorescence imaging-based strategies for peroxynitrite detection.
Collapse
Affiliation(s)
- Jiye Lv
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Feiyu Chen
- School of Chinese Medicine, Tianjin University of Traditional Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Changchan Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Yubing Kang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Yan Yang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| |
Collapse
|
26
|
Gao H, Sun T, Wang W, Li J, Zhang M, Hou Y, Bai G. Self-Illuminating Copper-Luminol Coordination Polymers for Bioluminescence Imaging of Oxidative Damage. Anal Chem 2024; 96:16434-16442. [PMID: 39363423 DOI: 10.1021/acs.analchem.4c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Timely detection of reactive oxygen species (ROS) accumulated during inflammation is essential for an early disease diagnosis. Compared to fluorescence probes with limited sensitivity and accuracy, chemiluminescence (CL) imaging offers the potential for highly sensitive molecular visualization of ROS by minimizing background interferences. However, the development of bright and easily manufacturable CL probes for ROS imaging remains challenging. In this study, a novel chemiluminescent nanoprobe named Cu-Lum@NPs for ROS imaging in inflammation was synthesized by using a one-step solvothermal method. The Cu-Lum@NPs, which are composed of coordination polymers containing copper ions and luminol (Lum), demonstrate intrinsic peroxidase-like activity that relies on Cu(I) as the catalytic active center to initiate the Fenton reaction. This catalytic process facilitates the decomposition of hydrogen peroxide (H2O2) into hydroxyl radicals (•OH) and superoxide anion radicals (O2•-), leading to the oxidation of Lum and inducing strong luminescence. Cu-Lum@NPs, displaying nanozyme characteristics, were observed to accelerate and enhance the ROS-responsive luminescence (10-1600-fold in solution and over 100-fold in neutrophils) and notably extend persistent luminescence. The Cu-Lum@NPs allowed for CL imaging of endogenous ROS in living cells and animals with an outstanding signal-to-noise ratio exceeding 96 and facilitated oxidative damage luminescence imaging for tissue-specific detection. The study presents Cu-Lum@NPs, a highly sensitive and easily manufacturable chemiluminescent nanoprobe for ROS imaging both in vitro and in vivo, exhibiting enhanced luminescence and prolonged persistence for ROS-related disease detection.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Tong Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Wenshuang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Junjie Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| |
Collapse
|
27
|
Bansal S, Wang B. A critical factor in reactive oxygen species (ROS) studies: the need to understand the chemistry of the solvent used: the case of DMSO. Chem Sci 2024; 15:d4sc05038j. [PMID: 39397818 PMCID: PMC11469295 DOI: 10.1039/d4sc05038j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Reactive oxygen species (ROS) play critical roles in normal physiological processes including cellular signaling and immune responses. Various pathological conditions including infections of various types, inflammation, cancer, and respiratory conditions are associated with elevated levels of ROS. Therefore, there is widespread interest in understanding ROS concentrations under various pathophysiological conditions for diagnostic and therapeutic applications including ROS-triggered drug delivery. However, in determining ROS concentration, there are major concerns of inappropriate use of various methods that lead to erroneous results; this has prompted the publication of a consensus paper in Nature Metabolism by a group of ROS experts stating "Unfortunately, the application and interpretation of these measurements are fraught with challenges and limitations. This can lead to misleading claims." Along this line, we have identified an overlooked factor, which can significantly skew the results and results interpretation: the organic co-solvent. DMSO is one of the most widely used organic co-solvents to dissolve a reagent for bioassays. Herein, we describe the rapid oxidation of DMSO by hypochlorite and how this oxidation impacts results of ROS determination in buffer, cell culture media, cell culture, and cell lysates. We hope to use this one example to draw attention to the convoluted roles that DMSO and possibly other organic co-solvents can play and skew experimental results. We also hope to stimulate additional studies to bring more rigor to studying ROS concentration and biology.
Collapse
Affiliation(s)
- Shubham Bansal
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30301 USA +1-404-413-5544
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30301 USA +1-404-413-5544
| |
Collapse
|
28
|
Ranolia A, Kiran, Priyanka, Kumar Dhaka R, Sindhu J. Real time monitoring of nerve agent mimics: Novel solid state emitter for enhanced precision and reliability. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135508. [PMID: 39182297 DOI: 10.1016/j.jhazmat.2024.135508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Chemical nerve agents are hazardous compounds that terrorists can exploit to pose a significant threat to public safety and national security. The nucleophilic behaviour of these agents enables their interaction with acetyl cholinesterase in the body, leading to paralysis and potentially fatal consequences. Therefore, developing robust and efficient detection methods for these agents is crucial for preventing their misuse. In this manuscript, (E)-12-(1-hydrazineylideneethyl)benzo[f]pyrido[1,2-a]indole-6,11-dione (HBID) is developed as a novel colorimetric and fluorometric probe for the detection of specific chemical nerve agent simulants in both liquid and vapor phase. HBID reacts rapidly with diethyl chlorophosphate (DCP), a common nerve agent simulant, leading to a significant increase in the fluorescence intensity. Under optimized conditions, HBID exhibits high sensitivity, good recyclability, fast response and low limit of detection (0.092 µM). NMR and mass spectral studies suggest that the reaction involves the nucleophilic addition of HBID to DCP, forming a phosphate ester. Additionally, the developed sensor demonstrates viscosity-sensitive AIE phenomena thus greatly expanding its potential applications in biological systems. This sensitivity enables precise detection and visualization of viscosity changes within cellular environments, making the sensor an invaluable tool for studying complex biological processes. The developed probe also detects pH within biologically relevant range (4-6). In practical applications, the probe-treated strips efficiently detected DCP vapor in real time, showing a noticeable fluorescence response. Further, the probe has a strong potential to detect the presence of DCP in the soil samples.
Collapse
Affiliation(s)
- Anju Ranolia
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | - Priyanka
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | | | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India.
| |
Collapse
|
29
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
30
|
Huang H, Zou Z, Peng Y. Theoretical insights into a turn-on fluorescence probe based on naphthalimide for peroxynitrite detection. Heliyon 2024; 10:e37298. [PMID: 39296189 PMCID: PMC11409076 DOI: 10.1016/j.heliyon.2024.e37298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Compared with other reactive oxygen species, peroxynitrite (ONOO-) has diversified reactions and transformations in organisms, and its specific action mechanism is not very clear. The study of reactive oxygen species is of great significance in the field of physiology and pathology. Recently an effective on/off fluorescent probe HCA-OH was designed by Liu et al. through tethering p-aminophenol to 1,8-naphthalimide directly. The probe HCA-OH could release the fluorophore HCA-NH2 with good photostability and high fluorescence quantum yield under oxidation of ONOO- via dearylation process. In this work, the sensing mechanism and spectrum character of probe HCA-OH were studied in detail under quantum chemistry calculation. The electronic structures, reaction sites and fluorescent properties of the probe were theoretically analyzed to benefit us for in-depth understanding the principle of detection on reactive oxygen species (ONOO-) with the fluorescent probe HCA-OH. These theoretical results could inspire the medical research community to design and synthesize highly efficient fluorescent probe for reactive oxygen species detection.
Collapse
Affiliation(s)
- He Huang
- College of Modern Industry of Health Management, Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Zhongfu Zou
- College of Modern Industry of Health Management, Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Yongjin Peng
- College of Modern Industry of Health Management, Jinzhou Medical University, Jinzhou, 121001, PR China
| |
Collapse
|
31
|
Schanne G, Demignot S, Policar C, Delsuc N. Cellular evaluation of superoxide dismutase mimics as catalytic drugs: Challenges and opportunities. Coord Chem Rev 2024; 514:215906. [DOI: 10.1016/j.ccr.2024.215906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Zareen W, Ahmed N, Raza S, Ali Khan M, Shafiq Z. Recent development in dual function fluorescence probes for HOCl and interaction with different bioactive molecules. Talanta 2024; 277:126374. [PMID: 38878514 DOI: 10.1016/j.talanta.2024.126374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Reactive oxygen species (ROS), reactive sulfur species (RSS), metal ions, and nitrogen species (RNS) play important roles in a variety of biological processes, such as a signal transduction, inflammation, and neurodegenerative damage. These species, while essential for certain functions, can also induce stress-related diseases. The interrelation between ROS, RSS, Metal ions and RNS underscores the importance of quantifying their concentrations in live cells, tissues, and organisms. The review emphasizes the use of small-molecule-based fluorescent/chemodosimeter probes to effectively measure and map the species' distribution with high temporal and spatial precision, paying particular attention to in vitro and in vivo environments. These probes are recognized as valuable tools contributing to breakthroughs in modern redox biology. The review specifically addresses the relationship of HOCl/ClO‾ (hypochlorous acid/Hypochlorite) with other reactive species. (Dual sensing probes).
Collapse
Affiliation(s)
- Wajeeha Zareen
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Nadeem Ahmed
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Shahid Raza
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan.
| |
Collapse
|
33
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
34
|
Lai H, Chung CYS. Superoxide-responsive quinone methide precursors (QMP-SOs) to study superoxide biology by proximity labeling and chemoproteomics. RSC Chem Biol 2024; 5:924-937. [PMID: 39211469 PMCID: PMC11352965 DOI: 10.1039/d4cb00111g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Superoxide is a reactive oxygen species (ROS) with complex roles in biological systems. It can contribute to the development of serious diseases, from aging to cancers and neurodegenerative disorders. However, it can also serve as a signaling molecule for important life processes. Monitoring superoxide levels and identifying proteins regulated by superoxide are crucial to enhancing our understanding of this growing field of redox biology and signaling. Given the high reactivity and very short lifetime of superoxide compared to other ROS in biological systems, proteins redox-modified by superoxide should be in close proximity to where superoxide is generated endogenously, i.e. superoxide hotspots. This inspires us to develop superoxide-specific quinone methide-based precursors, QMP-SOs, for proximity labeling of proteins within/near superoxide hotspots to image superoxide and profile proteins associated with superoxide biology by chemoproteomics. QMP-SOs specifically react with superoxide to generate an electrophilic quinone methide intermediate, which subsequently reacts with nucleophilic amino acids to induce a covalent tag on proteins, as revealed by liquid chromatography-mass spectrometry (LC-MS) and shotgun MS experiments. The alkyne handle on the covalent tag enables installation of fluorophores onto the tagged proteins for fluorescence imaging of superoxide in cells under oxidative stress. By establishing a chemoproteomics platform, QMP-SO-TMT, we identify DJ-1 and DLDH as proteins associated with superoxide biology in liver cancer cells treated with menadione. This work should provide insights into the crosstalk between essential cellular events and superoxide redox biology, as well as the design principles of quinone methide-based probes to study redox biology through proximity labeling and chemoproteomics.
Collapse
Affiliation(s)
- Hinyuk Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Clive Yik-Sham Chung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
- Centre for Oncology and Immunology, Hong Kong Science Park Hong Kong SAR China
| |
Collapse
|
35
|
Zheng Y, Zhu L, Ke C, Li Y, Zhou Z, Jiang M, Wang F, He P, Zhou X, Jiang ZX, Chen S. Fluorinated macromolecular amphiphiles as prototypic molecular drones. Proc Natl Acad Sci U S A 2024; 121:e2405877121. [PMID: 39163338 PMCID: PMC11363298 DOI: 10.1073/pnas.2405877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
The advent of drones has revolutionized various aspects of our lives, and in the realm of biological systems, molecular drones hold immense promise as "magic bullets" for major diseases. Herein, we introduce a unique class of fluorinated macromolecular amphiphiles, designed in the shape of jellyfish, serving as exemplary molecular drones for fluorine-19 MRI (19F MRI) and fluorescence imaging (FLI)-guided drug delivery, status reporting, and targeted cancer therapy. Functioning akin to their mechanical counterparts, these biocompatible molecular drones autonomously assemble with hydrophobic drugs to form uniform nanoparticles, facilitating efficient drug delivery into cells. The status of drug delivery can be tracked through aggregation-induced emission (AIE) of FLI and 19F MRI. Furthermore, when loaded with a heptamethine cyanine fluorescent dye IR-780, these molecular drones enable near-infrared (NIR) FL detection of tumors and precise delivery of the photosensitizer. Similarly, when loaded with doxorubicin (DOX), they enable targeted chemotherapy with fluorescence resonance energy transfer (FRET) FL for real-time status updates, resulting in enhanced therapeutic efficacy. Compared to conventional drug delivery systems, molecular drones stand out for their simplicity, precise structure, versatility, and ability to provide instantaneous status updates. This study presents prototype molecular drones capable of executing fundamental drone functions, laying the groundwork for the development of more sophisticated molecular machines with significant biomedical implications.
Collapse
Affiliation(s)
- Yujie Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Lijun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Changsheng Ke
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Zhiwen Zhou
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Mou Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430071, China
| | - Fang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Pei He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
36
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
37
|
Zhang T, Li Z, Qin M, Zhang J, Sun Y, Liu C. Visulization of peroxynitrite variation for accurate diagnosis and assessing treatment response of hepatic fibrosis using a Golgi-targetable ratiometric fluorescent probe. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112950. [PMID: 38851042 DOI: 10.1016/j.jphotobiol.2024.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Hepatic fibrosis (HF) is caused by persistent inflammation, which is closely associated with hepatic oxidative stress. Peroxynitrite (ONOO-) is significantly elevated in HF, which would be regarded as a potential biomarker for the diagnosis of HF. Research has shown that ONOO- in the Golgi apparatus can be overproduced in HF, and it can induce hepatocyte injury by triggering Golgi oxidative stress. Meanwhile, the ONOO- inhibitors could effectively relieve HF by inhibiting Golgi ONOO-, but as yet, no Golgi-targetable fluorescent probe available for diagnosis and assessing treatment response of HF through sensing Golgi ONOO-. To this end, we reported a ratiometric fluorescent probe, Golgi-PER, for diagnosis and assessing treatment response of HF through monitoring the Golgi ONOO-. Golgi-PER displayed satisfactory sensitivity, low detection limit, and exceptional selectivity to ONOO-. Combined with excellent biocompatibility and good Golgi-targeting ability, Golgi-PER was further used for ratiometric monitoring the Golgi ONOO- fluctuations and screening of ONOO- inhibitors from polyphenols in living cells. Meanwhile, using Golgi-PER as a probe, the overexpression of Golgi ONOO- in HF and the treatment response of HF to the screened rosmarinic acid were precisely visualized for the first time. Furthermore, the screened RosA has a remarkable therapeutic effect on HF, which may be a new strategy for HF treatment. These results demonstrated the practicability of Golgi-PER for monitoring the occurrence, development, and personalized treatment response of HF.
Collapse
Affiliation(s)
- Tianao Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Meichun Qin
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Junhuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
38
|
Li Z, Huang P, Wu G, Lin W. Activatable Fluorescent Probe for Studying Drug-Induced Senescence In Vitro and In Vivo. Anal Chem 2024; 96:12189-12196. [PMID: 38975803 DOI: 10.1021/acs.analchem.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Aging represents a significant risk factor for compromised tissue function and the development of chronic diseases in the human body. This process is intricately linked to oxidative stress, with HClO serving as a vital reactive oxygen species (ROS) within biological systems due to its strong oxidative properties. Hence, conducting a thorough examination of HClO in the context of aging is crucial for advancing the field of aging biology. In this work, we successfully developed a fluorescent probe, OPD, tailored specifically for detecting HClO in senescent cells and in vivo. Impressively, OPD exhibited a robust reaction with HClO, showcasing outstanding selectivity, sensitivity, and photostability. Notably, OPD effectively identified HClO in senescent cells for the first time, confirming that DOX- and ROS-induced senescent cells exhibited higher HClO levels compared to uninduced normal cells. Additionally, in vivo imaging of zebrafish demonstrated that d-galactose- and ROS-stimulated senescent zebrafish displayed elevated HClO levels compared to normal zebrafish. Furthermore, when applied to mouse tissues and organs, OPD revealed increased fluorescence in the organs of senescent mice compared to their nonsenescent counterparts. Our findings also illustrated the probe's potential for detecting changes in HClO content pre- and post-aging in living mice. Overall, this probe holds immense promise as a valuable tool for in vivo detection of HClO and for studying aging biology in live organisms.
Collapse
Affiliation(s)
- Zihong Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ping Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Guoliang Wu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
39
|
Gandra UR, Axthelm J, Bellstedt P, Singh A, Schiller A, Mohideen MIH, Mandal AK. 19F NMR Probes: Molecular Logic Material Implications for the Anion Discrimination and Chemodosimetric Approach for Selective Detection of H 2O 2. Anal Chem 2024; 96:11232-11238. [PMID: 38961620 DOI: 10.1021/acs.analchem.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Detection and discrimination of similar solvation energies of bioanalytes are vital in medical and practical applications. Currently, various advanced techniques are equipped to recognize these crucial bioanalytes. Each strategy has its own benefits and limitations. One-dimensional response, lack of discrimination power for anions, and reactive oxygen species (ROS) generally limit the utilized fluorescent probe. Therefore, a cutting-edge, refined method is expected to conquer these limitations. The use of 19F NMR spectroscopy for detecting and discriminating essential analytes in practical applications is an emerging technique. As an alternative strategy, we report two fluorinated boronic acid-appended pyridinium salts 5-F-o-BBBpy (1) and 5-CF3-o-BBBpy (2). Probe (1) acts as a chemosensor for identifying and discriminating inorganic anions with similar solvation energies with strong bidirectional 19F shifts in the lower ppm range. Probe (2) turns as a chemo dosimeter for the selective detection and precise quantification of hydrogen peroxide (H2O2) among other competing ROS. To demonstrate real-life applicability, we successfully quantified H2O2 via probe (2) in different pharmaceutical, dental, and cosmetic samples. We found that tuning the -F/-CF3 moiety to the arene boronic acid enables the π-conjugation, a crucial prerequisite for the discrimination of anions and H2O2. Characteristic 19F NMR fingerprints in the presence of anions revealed a complementary implication (IMP)/not implication (NIMP) logic function. Finally, the 16 distinct binary Boolean operations on two logic values are defined for "functional completeness" using the special property of the IMP gate. Boolean logic's ability to handle information by utilizing characteristic 19F NMR fingerprints has not been seen previously in a single chemical platform for detecting and differentiating such anions.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jörg Axthelm
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Peter Bellstedt
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Akanksha Singh
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alexander Schiller
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - M Infas H Mohideen
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Amal Kumar Mandal
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
40
|
Xiong X, Qiu J, Fu S, Gu B, Zhong C, Zhao L, Gao Y. A dual-response fluorescent probe for norepinephrine and viscosity and its application in depression research. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124270. [PMID: 38608559 DOI: 10.1016/j.saa.2024.124270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Depression is a serious mental disease that causes grievous harm to human health and quality of life. The vesicular exocytosis of noradrenaline (NE), rather than its intrinsic intracellular concentration, is more associated with depression. Based on the reports on exocytosis of NE, it is reasonable to assume that the viscosity of cells has an important effect on the release of NE. Herein, a dual-response fluorescent probe (RHO-DCO-NE) for detecting NE and viscosity was designed and synthesized. The probe can simultaneously detect NE concentration and viscosity level with negligible crosstalk between the two channels. We utilized the probe to study the effect of viscosity changes on the NE release of PC12 and the corticosterone-induced PC12 cells. The experiment data revealed that the decrease in viscosity level can accelerate the release of NE of depression cell models. The finding provides new insight into the study of the pathological mechanisms of depression.
Collapse
Affiliation(s)
- Xinyi Xiong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Jianwen Qiu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Shaofei Fu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Biaofeng Gu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Chunli Zhong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Lan Zhao
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Yong Gao
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
41
|
Chen J, Yang D, Zhu G, Zhang R, Wang B, Chang Z, Dai J, Wu W, Rotenberg MY, Fang Y. Automated and ultrasensitive point-of-care glycoprotein detection using boronate-affinity enhanced organic electrochemical transistor patch. Biosens Bioelectron 2024; 255:116229. [PMID: 38554574 DOI: 10.1016/j.bios.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Abstract
Quantifying trace glycoproteins in biofluids requires ultrasensitive components, but feedback is not available in the current portable platforms of point-of-care (POC) diagnosis technologies. A compact and ultrasensitive bioelectrochemical patch was based on boronate-affinity amplified organic electrochemical transistors (BAAOECTs) for POC use was developed to overcome this dilemma. Benefit from the cascading signal enhancement deriving from boronate-affinity targeting multiple regions of glycoprotein and OECTs' inherent signal amplification capability, the BAAOECTs achieved a detection limit of 300 aM within 25 min, displaying about 3 orders of magnitude improvement in sensitivity compared with the commercial electrochemical luminescence (ECL) kit. By using a microfluidic chip, a microcontroller module, and a wireless sensing system, the testing workflows of the above patch was automated, allowing for running the sample-to-answer pipeline even in a resource-limited environment. The reliability of such portable biosensing platform is well recognized in clinical diagnostic applications of heart failure. Overall, the remarkable enhanced sensitivity and automated workflow of BAAOECTs biosensing platform provide a prospective and generalized design policy for expanding the POC diagnosis capabilities of glycoproteins.
Collapse
Affiliation(s)
- Jing Chen
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Deqi Yang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Guoqi Zhu
- Tongji Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Ru Zhang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Bingfang Wang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Jing Dai
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yin Fang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, PR China.
| |
Collapse
|
42
|
Yang P, Tang AL, Tan S, Wang GY, Huang HY, Niu W, Liu ST, Ge MH, Yang LL, Gao F, Zhou X, Liu LW, Yang S. Recent progress and outlooks in rhodamine-based fluorescent probes for detection and imaging of reactive oxygen, nitrogen, and sulfur species. Talanta 2024; 274:126004. [PMID: 38564824 DOI: 10.1016/j.talanta.2024.126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.
Collapse
Affiliation(s)
- Ping Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - A-Ling Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shuai Tan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Guang-Ye Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hou-Yun Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Niu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shi-Tao Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Mei-Hong Ge
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Lin-Lin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Feng Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
43
|
Gao Y, Zhang W, Song B, Meng X, Yuan J. A novel iridium(III) complex-based ratiometric luminescence probe for monitoring hydrogen sulfide in living cells and zebrafish. Talanta 2024; 274:125982. [PMID: 38554483 DOI: 10.1016/j.talanta.2024.125982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Hydrogen sulfide exhibits crucial functions in many biological and physiological processes. The abnormal levels of H2S have been revealed to be associated with numerous human diseases. The majority of existing fluorescent probes toward H2S may still need to be improved in terms of single output signal, water solubility, biotoxicity and photostability. The construction of a ratiometric fluorescent probe based on metal complex is one effective strategy for avoiding the mentioned problems for precisely detecting H2S. Herein, we report an iridium(III) complex-based ratiometric luminescence probe (Ir-PNBD), which is designed by coupling the 7-nitro-2,1,3-benzoxadiazoles (NBD) to one of the bipyridine ligands of Ir (III) complex luminophore through a piperazition moiety. Ir-PNBD owns high selectivity and sensitivity toward H2S, and an excellent ability to target mitochondria. Moreover, Ir-PNBD was further successfully utilized to visualize exogenous and endogenous H2S in HeLa cells and zebrafish. Our work offers new opportunities to gain deeper insights into the construction of transition metal complex-based ratiometric luminescent probes and expands their applications in biomedical imaging and disease diagnosis.
Collapse
Affiliation(s)
- Yetong Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiangyu Meng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian, 116600, China.
| |
Collapse
|
44
|
Dangabar Shadrack A, Garba A, Samuel Ndidi U, Aminu S, Muhammad A. Isometamidium chloride alters redox status, down-regulates p53 and PARP1 genes while modulating at proteomic level in Drosophila melanogaster. Drug Chem Toxicol 2024; 47:416-426. [PMID: 36883353 DOI: 10.1080/01480545.2023.2186314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
As trypanocide, several side effects have been reported in the use of Isometamidium chloride. This study was therefore, designed to evaluate its ability to induce oxidative stress and DNA damage using D. melanogaster as a model organism. The LC50 of the drug was determined by exposing the flies (1-3 days old of both genders) to six different concentrations (1 mg, 10 mg, 20 mg, 40 mg, 50 mg and 100 mg per 10 g of diet) of the drug for a period of seven days. The effect of the drug on survival (28 days), climbing behavior, redox status, oxidative DNA lesion, expression of p53 and PARP1 (Poly-ADP-Ribose Polymerase-1) genes after five days exposure of flies to 4.49 mg, 8.97 mg, 17.94 mg and 35.88 mg per 10 g diet was evaluated. The interaction of the drug in silico with p53 and PARP1 proteins was also evaluated. The result showed the LC50 of isometamidium chloride to be 35.88 mg per 10 g diet for seven days. Twenty-eight (28) days of exposure to isometamidium chloride showed a decreased percentage survival in a time and concentration-dependent manner. Isometamidium chloride significantly (p < 0.05) reduced climbing ability, total thiol level, Glutathione-S-transferase, and Catalase activity. The level of H2O2 was significantly (p < 0.05) increased. The result also showed significant (p < 0.05) reduction in the relative mRNA levels of p53 and PARP1 genes. The in silico molecular docking of isometamidium with p53 and PARP1 proteins showed high binding energy of -9.4 Kcal/mol and -9.2 Kcal/mol respectively. The results suggest that isometamidium chloride could be cytotoxic and a potential inhibitor of p53 and PARP1 proteins.
Collapse
Affiliation(s)
- Apollos Dangabar Shadrack
- Department of Food Technology and Home Economics, National Agricultural Extension Research and Liaison Services, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Auwalu Garba
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Uche Samuel Ndidi
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
- Center for Biomedical Research, Tuskegee University, Tuskegee, AL, USA
| |
Collapse
|
45
|
Luo H, Tian L, Zhang Y, Wu Y, Li B, Liu J. Recent advances in molecular and nanoparticle probes for fluorescent bioanalysis. NANO RESEARCH 2024; 17:6443-6474. [DOI: 10.1007/s12274-024-6659-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 01/06/2025]
|
46
|
Wei X, Xu C, Cheng P, Hu Y, Liu J, Xu M, Huang J, Zhang Y, Pu K. Leveraging Long-Distance Singlet-Oxygen Transfer for Bienzyme-Locked Afterglow Imaging of Intratumoral Granule Enzymes. J Am Chem Soc 2024; 146:17393-17403. [PMID: 38860693 DOI: 10.1021/jacs.4c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Dual-locked activatable optical probes, leveraging the orthogonal effects of two biomarkers, hold great promise for the specific imaging of biological processes. However, their design approaches are limited to a short-distance energy or charge transfer mechanism, while the signal readout relies on fluorescence, which inevitably suffers from tissue autofluorescence. Herein, we report a long-distance singlet oxygen transfer approach to develop a bienzyme-locked activatable afterglow probe (BAAP) that emits long-lasting self-luminescence without real-time light excitation for the dynamic imaging of an intratumoral granule enzyme. Composed of an immuno-biomarker-activatable singlet oxygen (1O2) donor and a cancer-biomarker-activatable 1O2 acceptor, BAAP is initially nonafterglow. Only in the presence of both immune and cancer biomarkers can 1O2 be generated by the activated donor and subsequently diffuse toward the activated acceptor, resulting in bright near-infrared afterglow with a high signal-to-background ratio and specificity toward an intratumoral granule enzyme. Thus, BAAP allows for real-time tracking of tumor-infiltrating cytotoxic T lymphocytes, enabling the evaluation of cancer immunotherapy and the differentiation of tumor from local inflammation with superb sensitivity and specificity, which are unachievable by single-locked probes. Thus, this study not only presents the first dual-locked afterglow probe but also proposes a new design way toward dual-locked probes via reactive oxygen species transfer processes.
Collapse
Affiliation(s)
- Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
47
|
Kondengadan SM, Wang B. Quantitative Factors Introduced in the Feasibility Analysis of Reactive Oxygen Species (ROS)-Sensitive Triggers. Angew Chem Int Ed Engl 2024; 63:e202403880. [PMID: 38630918 PMCID: PMC11192588 DOI: 10.1002/anie.202403880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Reactive oxygen species (ROS) are critical for cellular signaling. Various pathophysiological conditions are also associated with elevated levels of ROS. Hence, ROS-sensitive triggers have been extensively used for selective payload delivery. Such applications are predicated on two key functions: (1) a sufficient magnitude of concentration difference for the interested ROS between normal tissue/cells and intended sites and (2) appropriate reaction kinetics to ensure a sufficient level of selectivity for payload release. Further, ROS refers to a group of species with varying reactivity, which should not be viewed as a uniform group. In this review, we critically analyze data on the concentrations of different ROS species under various pathophysiological conditions and examine how reaction kinetics affect the success of ROS-sensitive linker chemistry. Further, we discuss different ROS linker chemistry in the context of their applications in drug delivery and imaging. This review brings new insights into research in ROS-triggered delivery, highlights factors to consider in maximizing the chance for success and discusses pitfalls to avoid.
Collapse
Affiliation(s)
- Shameer M. Kondengadan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
48
|
Wang YR, Qiao FQ, Tan YW, Hu JL, Zhang AH, Liang T, Liu XY, Song HR, Kang YF. A fluorescence probe with targeted mitochondria for detecting hydrogen peroxide in vitro and in diabetic mice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3831-3838. [PMID: 38828794 DOI: 10.1039/d4ay00653d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We designed and prepared probe W-1 for the detection of H2O2. W-1 showed excellent selectivity for H2O2 and was accompanied by colorimetric signal changes. The excellent linear relationship between fluorescence intensity and H2O2 concentration (0-100 μM) provided favorable conditions for its quantitative detection. In addition, the combination of portable test strips with a smartphone platform provided great convenience for on-site visual detection of H2O2. Moreover, W-1 possessed targeting mitochondria property and could be applied to image the exogenous and endogenous H2O2 in cells to distinguish normal cells and cancer cells. Lastly, W-1 was used for monitoring the H2O2 fluctuation of the diabetic process in mice, and the results showed an increase in H2O2 levels in diabetes. Therefore, the probe provided a tool for understanding the pathological and physiological mechanisms of diabetes by imaging H2O2.
Collapse
Affiliation(s)
- Yi-Ru Wang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Fu-Qiang Qiao
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Yu-Wei Tan
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Jia-Ling Hu
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Ai-Hong Zhang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Ting Liang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Xu-Ying Liu
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Hong-Ru Song
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Yan-Fei Kang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| |
Collapse
|
49
|
Zhong ZJ, Ling J, Yao ZP, Liu LF, Zheng JY, Xin GZ. Targeted Quantification of Glutathione/Arginine Redox Metabolism Based on a Novel Paired Mass Spectrometry Probe Approach for the Functional Assessment of Redox Status. Anal Chem 2024; 96:9885-9893. [PMID: 38848670 DOI: 10.1021/acs.analchem.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Glutathione (GSH) redox control and arginine metabolism are critical in regulating the physiological response to injury and oxidative stress. Quantification assessment of the GSH/arginine redox metabolism supports monitoring metabolic pathway shifts during pathological processes and their linkages to redox regulation. However, assessing the redox status of organisms with complex matrices is challenging, and single redox molecule analysis may not be accurate for interrogating the redox status in cells and in vivo. Herein, guided by a paired derivatization strategy, we present a new ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based approach for the functional assessment of biological redox status. Two structurally analogous probes, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and newly synthesized 2-methyl-6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (MeAQC), were set for paired derivatization. The developed approach was successfully applied to LPS-stimulated RAW 264.7 cells and HDM-induced asthma mice to obtain quantitative information on GSH/arginine redox metabolism. The results suggest that the redox status was remarkably altered upon LPS and HDM stimulation. We expect that this approach will be of good use in a clinical biomarker assay and potential drug screening associated with redox metabolism, oxidative damage, and redox signaling.
Collapse
Affiliation(s)
- Zhu-Jun Zhong
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Ling
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Centre for Chinese Medicine Innovation, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
50
|
Xi Y, Bai S, Tian Y, Lv Y, Ji L, Li W, He G, Yang L. Golgi-targeted NIR fluorescent probe with large stokes shift for real-time monitoring of nitric oxide in depression model. Bioorg Chem 2024; 148:107476. [PMID: 38788368 DOI: 10.1016/j.bioorg.2024.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Depression is a debilitating mental illness that poses a serious threat to human health. Nitric Oxide (NO), as an important gasotransmitter, is closely associated with the pathogenesis of depressive disorders. Effective monitoring of NO fluctuation is beneficial for the diagnosis of depression and therapy assessment of antidepressants. Currently, there is a lack of effective methods for rapidly and sensitively identifying NO and elucidating its relationship with depression diseases. Herein, we developed a NIR dye TJ730-based fluorescent probe TJ730-Golgi-NO incorporating benzenesulfonamide as a Golgi-targeted moiety and the thiosemicarbazide group for NO detection. The probe exhibited turn-on fluorescence ability and a large Stokes shift of 158 nm, which shows high sensitivity, selectivity, and rapid response (<1 min) for NO detection. TJ730-Golgi-NO could detect exogenous and endogenous NO in cells stimulated by Glu and LPS, and target Golgi apparatus. Moreover, we disclose a significant increase of NO in the depression model and a weak fluorescence evidenced in the fluoxetine-treated depression mice. This study provides a competent tool for studying the function of NO and helping improve the effective treatment of depression diseases.
Collapse
Affiliation(s)
- Yanbei Xi
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Shiqiong Bai
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Yuan Tian
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Yanan Lv
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Liguo Ji
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Wenqiang Li
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Guangjie He
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Linlin Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| |
Collapse
|