1
|
Yuan GC, Gao FL, Liu KW, Li M, Lin Y, Ye KY. Batch and Continuous-Flow Electrochemical Geminal Difluorination of Indeno[1,2- c]furans. Org Lett 2024; 26:6059-6064. [PMID: 38968416 DOI: 10.1021/acs.orglett.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
An electrochemical gem-difluorination of indeno[1,2-c]furans using commercially available and easy-to-use triethylamine trihydrofluoride as both the electrolyte and fluorinating agent was developed. Remarkably, different reaction pathways of indeno[1,2-c]furans, i.e., paired electrolysis and net oxidation, are operative in a batch reactor and a continuous-flow microreactor to afford the corresponding gem-difluorinated indanones and indenones, respectively.
Collapse
Affiliation(s)
- Guo-Cai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fang-Ling Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kang-Wei Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minggang Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuqi Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Atkins AP, Dean AC, Lennox AJJ. Benzylic C(sp 3)-H fluorination. Beilstein J Org Chem 2024; 20:1527-1547. [PMID: 39015617 PMCID: PMC11250007 DOI: 10.3762/bjoc.20.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The selective fluorination of C(sp3)-H bonds is an attractive target, particularly for pharmaceutical and agrochemical applications. Consequently, over recent years much attention has been focused on C(sp3)-H fluorination, and several methods that are selective for benzylic C-H bonds have been reported. These protocols operate via several distinct mechanistic pathways and involve a variety of fluorine sources with distinct reactivity profiles. This review aims to give context to these transformations and strategies, highlighting the different tactics to achieve fluorination of benzylic C-H bonds.
Collapse
Affiliation(s)
| | - Alice C Dean
- University of Bristol, School of Chemistry, Bristol, BS8 1TS, U.K.
| | | |
Collapse
|
3
|
Yamamoto H, Hattori M, Ito K, Shikano M, Yoshii K. Fluoride-Based Deep Eutectic Solvents with Amide Dual-Hydrogen-Bond Donors. J Phys Chem Lett 2024; 15:6249-6255. [PMID: 38842330 DOI: 10.1021/acs.jpclett.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Developing F--containing electrolytes is crucial for electrochemical and chemical fluorination. However, balancing the F- concentration and electrochemical stability of the electrolytes remains a challenge. In this study, fluoride-based deep eutectic solvents (F-DESs) were obtained by using amide hydrogen-bond donors (HBDs) containing dual N-H bonds. The obtained F-DES, [TMA]F·3.5[1,3-DMU], was prepared by facilely mixing solid compounds of tetramethylammonium fluoride ([TMA]F) and 1,3-dimethylurea (1,3-DMU), resulting in a high F- concentration (2.6 mol dm-3) and a wide electrochemical window (3.1 V) at room temperature. The electrochemical window was much wider than that of [TMA]F·3.5[EG] (EG, ethylene glycol) as another F-DES with an alcohol HBD (1.9 V). Moreover, [TMA]F·3.5[1,3-DMU] exhibited an ionic conductivity that was 2 orders of magnitude higher than that of [TMA]F·3.5[1,3-DMTU] (1,3-DMTU, 1,3-dimethylthiourea) around room temperature because of the bifurcated hydrogen bonds between the dual N-H bonds of 1,3-DMU and one F-. Thus, [TMA]F·3.5[1,3-DMU] was demonstrated to be applicable to electrochemical fluorination.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Mineyuki Hattori
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kenji Ito
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masahiro Shikano
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
- Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiikedai, Koriyama, Fukushima 963-0298, Japan
| | - Kazuki Yoshii
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
4
|
Xiao W, Wang J, Ye J, Wang H, Wu J, Ye S. Electrochemical Synthesis of Spirolactones from α-Tetralone Derivatives with Methanol as a C1 Source. Org Lett 2024; 26:5016-5020. [PMID: 38825794 DOI: 10.1021/acs.orglett.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Spirolactones are widely found in pharmaceuticals and bioactive natural products. However, efficient and environmentally friendly approaches to accessing spirolactones are still highly desirable. Herein, a novel electrochemical synthesis of spirolactones from α-tetralone derivatives with methanol as a C1 source is described. This electrochemical reaction exhibits a high efficiency and good functional group tolerance.
Collapse
Affiliation(s)
- Wei Xiao
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jianyan Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jiamin Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Hongyan Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| |
Collapse
|
5
|
Xue M, Pan T, Shao Z, Wang W, Li H, Zhao L, Zhou X, Zhang Y. Sustainable Electrochemical Benzylic C-H Oxidation Using MeOH as an Oxygen Source. CHEMSUSCHEM 2024; 17:e202400028. [PMID: 38225209 DOI: 10.1002/cssc.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
New methods and strategies for the direct oxidation of benzylic C-H bonds are highly desirable, owing to the importance of ketone motifs in significant organic transformations and the synthesis of valuable molecules, including pharmaceuticals, pesticides, and fine chemicals. Herein, we describe an electrochemical benzylic C-H oxidation strategy for the synthesis of ketones using MeOH as an oxygen source. Inexpensive and safe KBr serves as both an electrolyte and a bromide radical precursor in the reaction. This transformation also offers several advantages such as mild conditions, broad functional group tolerance, and operational simplicity. Mechanistic investigations by control experiments, radical scavenging experiments, electron paramagnetic resonance (EPR), kinetic studies, cyclic voltammetry (CV), and in-situ Fourier transform infrared (FTIR) spectroscopy support a pathway involving the formation and transformation of benzyl methyl ether via hydrogen atom transfer (HAT) and single-electron transfer (SET). The practical application of our strategy is highlighted by the successful synthesis of five pharmaceuticals, namely lenperone, melperone, diphenhydramine, cinnarizine, and flunarizine.
Collapse
Affiliation(s)
- Meng Xue
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Tao Pan
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Zhichao Shao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Wenxuan Wang
- School of Ecology and Environment, Ningxia University, 489 Helan Mountain West Road, Yinchuan, 750021, China
| | - Hu Li
- School of Ecology and Environment, Ningxia University, 489 Helan Mountain West Road, Yinchuan, 750021, China
| | - Lixing Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuexia Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
6
|
Schüll A, Grothe L, Rodrigo E, Erhard T, Waldvogel SR. Electrochemical Synthesis of S-Aryl Dibenzothiophenium Triflates as Precursors for Selective Nucleophilic Aromatic (Radio)fluorination. Org Lett 2024; 26:2790-2794. [PMID: 37805940 DOI: 10.1021/acs.orglett.3c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A novel electrosynthetic approach to aryl dibenzothiophenium salts, including the direct intramolecular formation of a C-S bond in a metal-free, electrochemical key step under ambient conditions, is reported. The broad applicability of this method is demonstrated with 14 examples, including nitrogen-containing heterocycles in isolated yields up to 72%. The resulting sulfonium salts can be used as precursors for fluorine labeling to give [18F]fluoroarenes as found in PET tracer ligands.
Collapse
Affiliation(s)
- Aaron Schüll
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Lisa Grothe
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Eduardo Rodrigo
- Medicinal Chemistry & Screening Biology, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany
| | - Thomas Erhard
- Medicinal Chemistry & Screening Biology, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Kiaku C, Martinage D, Sicim Y, Leech MC, Walsh JM, Poole DL, Mason J, Goodall ICA, Devo P, Lam K. eFluorination of Activated Alcohols Using Collidinium Tetrafluoroborate. Org Lett 2024; 26:2697-2701. [PMID: 37204455 DOI: 10.1021/acs.orglett.3c00976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tertiary C-F bonds are important structural designs; however, they suffer from challenging synthesis. Current methodologies use corrosive amine-HF salts or expensive and hazardous catalysts and reagents. Our group recently introduced collidinium tetrafluoroborate as an efficient fluorinating agent for anodic decarboxyfluorination reactions. Nevertheless, tertiary carboxylic acids are less readily available and more challenging to prepare than their alcohol analogues. Herein we report a practical, mild, and cheap electrochemical method to achieve deoxyfluorination of hindered carbon centers.
Collapse
Affiliation(s)
- Cyrille Kiaku
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Dorian Martinage
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Yasemin Sicim
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Matthew C Leech
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Jamie M Walsh
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Darren L Poole
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, Hertfordshire, U.K
| | - Joseph Mason
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, Hertfordshire, U.K
| | - Iain C A Goodall
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Perry Devo
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Kevin Lam
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| |
Collapse
|
8
|
Zheng YT, Xu HC. Electrochemical Azidocyanation of Alkenes. Angew Chem Int Ed Engl 2024; 63:e202313273. [PMID: 37906439 DOI: 10.1002/anie.202313273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
The difunctionalization of alkenes-a process that installs two functional groups in a single operation and transforms chemical feedstocks into value-added products-is one of the most appealing synthetic methods in contemporary chemistry. However, the introduction of two distinct functional groups via two readily accessible nucleophiles remains a formidable challenge. Existing intermolecular alkene azidocyanation methods, which primarily focus on aryl alkenes and rely on stoichiometric chemical oxidants. We report herein an unprecedented electrochemical strategy for alkene azidocyanation that is compatible with both alkyl and aryl alkenes. This is achieved by harnessing the finely-tuned anodic electron transfer and the strategic selection of copper/ligand complexes. The reactions of aryl alkenes were rendered enantioselective by employing a chiral ligand. Crucially, the mild conditions and well-regulated electrochemical process assure exceptional tolerance for various functional groups and substrate compatibility with both terminal and internal alkyl alkenes.
Collapse
Affiliation(s)
- Yun-Tao Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
9
|
Atkins AP, Chaturvedi AK, Tate JA, Lennox AJJ. Pulsed electrolysis: enhancing primary benzylic C(sp 3)-H nucleophilic fluorination. Org Chem Front 2024; 11:802-808. [PMID: 38298566 PMCID: PMC10825853 DOI: 10.1039/d3qo01865b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/09/2023] [Indexed: 02/02/2024]
Abstract
Electrosynthesis is an efficient and powerful tool for the generation of elusive reactive intermediates. The application of alternative electrolysis waveforms provides a new level of control for dynamic redox environments. Herein, we demonstrate that pulsed electrolysis provides a favourable environment for the generation and fluorination of highly unstable primary benzylic cations from C(sp3)-H bonds. By introduction of a toff period, we propose this waveform modulates the electrical double layer to improve mass transport and limit over-oxidation.
Collapse
Affiliation(s)
- Alexander P Atkins
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Atul K Chaturvedi
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Joseph A Tate
- Jealott's Hill International Research Centre, Syngenta Jealott's Hill Bracknell RG426EY UK
| | - Alastair J J Lennox
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| |
Collapse
|
10
|
Wen L, Zou Z, Zhou N, Sun C, Xie P, Feng P. Electrochemical Fluorination Functionalization of gem-Difluoroalkenes with CsF as a Fluorine Source: Access to Fluoroalkyl Building Blocks. Org Lett 2024; 26:241-246. [PMID: 38156980 DOI: 10.1021/acs.orglett.3c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Using easily handled CsF as a fluorine source, an electrochemically metal-free protocol for chemo- and regioselective synthesis of various types of long-chain perfluoroalkyl aromatics with gem-difluoroalkene as a substrate and an alcohol or azole as an additional nucleophile was developed. The eletrochemical transformation could tolerate several functional groups, such as halogens, cyanos, benzyls, and heterocycles, and is amenable to gram-scale. The application of this electrochemical method in radiofluorination was also tested.
Collapse
Affiliation(s)
- Linzi Wen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Ziyan Zou
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Naifu Zhou
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chengbo Sun
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Peixu Xie
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Yu J, Liu T, Sun W, Zhang Y. Electrochemical Decarboxylative Elimination of Carboxylic Acids to Alkenes. Org Lett 2023; 25:7816-7821. [PMID: 37870311 DOI: 10.1021/acs.orglett.3c02997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An electrochemical strategy for the decarboxylative elimination of carboxylic acids to alkenes at room temperature has been developed. This mild and oxidant-free method provides a green alternative to traditional thermal decarboxylation reactions. Structurally diverse aliphatic carboxylic acids, including biologically active drugs, underwent smooth conversion to the corresponding alkenes in good to excellent yields.
Collapse
Affiliation(s)
- Jiage Yu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Teng Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Wanhao Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100871, P. R. China
| | - Yunfei Zhang
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
12
|
Lee TC, Tong Y, Fu WC. Advances in Continuous Flow Fluorination Reactions. Chem Asian J 2023; 18:e202300723. [PMID: 37707985 DOI: 10.1002/asia.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Fluorination reactions are important in constructing organofluorine motifs, which contribute to favorable biological properties in pharmaceuticals and agrochemicals. However, fluorination reagents and reactions are associated with various problems, such as their hazardous nature, high exothermicity, and poor selectivity and scalability. Continuous flow has emerged as a transformative technology to provide many advantages relative to batch syntheses. This review article summarizes recent continuous flow techniques that address the limitations and challenges of fluorination reactions. Approaches based on different flow techniques are discussed, including gas-liquid reactions, packed-bed reactors, in-line purifications, streamlined multistep synthesis, large-scale reactions well as flow photoredox- and electrocatalysis.
Collapse
Affiliation(s)
- Tsz Chun Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yi Tong
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Wai Chung Fu
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Fuchigami T. Spiers Memorial Lecture: Old but new organic electrosynthesis: history and recent remarkable developments. Faraday Discuss 2023; 247:9-33. [PMID: 37622750 DOI: 10.1039/d3fd00129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Organic electrosynthesis has a long history. However, this chemistry is still new. Recently, we have seen its second renaissance with organic electrosynthesis being considered a typical green chemistry process. Therefore, a number of novel electrosynthetic methodologies have recently been developed. However, there are still many problems to be solved from a green and sustainable viewpoint. After an explanation of the historical survey of organic electrosynthesis, this paper focuses on recent remarkable developments in new electrosynthetic methodologies, such as novel electrodes, recyclable nonvolatile electrolytic solvents and recyclable supporting electrolytes, as well as new types of electrolytic flow cells. Furthermore, novel types of organic electrosynthetic reactions will be mentioned.
Collapse
Affiliation(s)
- Toshio Fuchigami
- Department of Electronic Chemistry, Tokyo Institute of Technology, Japan.
| |
Collapse
|
14
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
15
|
Kuzmin J, Röckl J, Schwarz N, Djossou J, Ahumada G, Ahlquist M, Lundberg H. Electroreductive Desulfurative Transformations with Thioethers as Alkyl Radical Precursors. Angew Chem Int Ed Engl 2023; 62:e202304272. [PMID: 37342889 DOI: 10.1002/anie.202304272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
Thioethers are highly prevalent functional groups in organic compounds of natural and synthetic origin but remain remarkably underexplored as starting materials in desulfurative transformations. As such, new synthetic methods are highly desirable to unlock the potential of the compound class. In this vein, electrochemistry is an ideal tool to enable new reactivity and selectivity under mild conditions. Herein, we demonstrate the efficient use of aryl alkyl thioethers as alkyl radical precursors in electroreductive transformations, along with mechanistic details. The transformations proceed with complete selectivity for C(sp3 )-S bond cleavage, orthogonal to that of established transition metal-catalyzed two-electron routes. We showcase a hydrodesulfurization protocol with broad functional group tolerance, the first example of desulfurative C(sp3 )-C(sp3 ) bond formation in Giese-type cross-coupling and the first protocol for electrocarboxylation of synthetic relevance with thioethers as starting materials. Finally, the compound class is shown to outcompete their well-established sulfone analogues as alkyl radical precursors, demonstrating their synthetic potential for future desulfurative transformations in a one-electron manifold.
Collapse
Affiliation(s)
- Julius Kuzmin
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Johannes Röckl
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Nils Schwarz
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Jonas Djossou
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Guillermo Ahumada
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mårten Ahlquist
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| |
Collapse
|
16
|
Liu C, Yu J, Bao L, Zhang G, Zou X, Zheng B, Li Y, Zhang Y. Electricity-Promoted Friedel-Crafts Acylation of Biarylcarboxylic Acids. J Org Chem 2023; 88:3794-3801. [PMID: 36861957 DOI: 10.1021/acs.joc.2c03071] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
An electricity-promoted method for Friedel-Crafts acylation of biarylcarboxylic acids is described in this research. Various fluorenones can be accessed in up to 99% yields. During the acylation, electricity plays an essential role, which might motivate the chemical equilibrium by consuming the generated TFA. This study is predicted to provide an avenue to realize Friedel-Crafts acylation in a more environmentally friendly process.
Collapse
Affiliation(s)
- Chen Liu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jiage Yu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Liang Bao
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Gaoyuan Zhang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Xinyue Zou
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Bing Zheng
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yiyi Li
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yunfei Zhang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
17
|
Leech MC, Nagornîi D, Walsh JM, Kiaku C, Poole DL, Mason J, Goodall ICA, Devo P, Lam K. eFluorination Using Cheap and Readily Available Tetrafluoroborate Salts. Org Lett 2023; 25:1353-1358. [PMID: 36856464 DOI: 10.1021/acs.orglett.2c04305] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A practical electrochemical method for the rapid, safer, and mild synthesis of tertiary hindered alkyl fluorides from carboxylic acids has been developed without the need for hydrofluoric acid salts or non-glass reactors. In this anodic fluorination, collidinium tetrafluoroborate acts as both the supporting electrolyte and fluoride donor. A wide range of functional groups has been shown to be compatible, and the possibility of scale-up using flow electrochemistry has also been demonstrated.
Collapse
Affiliation(s)
- Matthew C Leech
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Dmitrii Nagornîi
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Jamie M Walsh
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Cyrille Kiaku
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Darren L Poole
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Joseph Mason
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Iain C A Goodall
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Perry Devo
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Kevin Lam
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
18
|
Holt E, Wang M, Harry SA, He C, Wang Y, Henriquez N, Xiang MR, Zhu A, Ghorbani F, Lectka T. An Electrochemical Approach to Directed Fluorination. J Org Chem 2023; 88:2557-2560. [PMID: 36702475 DOI: 10.1021/acs.joc.2c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electrosynthesis has made a revival in the field of organic chemistry and, in particular, radical-mediated reactions. Herein, we report a simple directed, electrochemical C-H fluorination method. Employing a dabconium mediator, commercially available Selectfluor, and RVC electrodes, we provide a range of steroid-based substrates with competent regioselective directing groups, including enones, ketones, and hydroxy groups, as well as never reported before lactams, imides, lactones, and esters.
Collapse
Affiliation(s)
- Eric Holt
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Muyuan Wang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Stefan Andrew Harry
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Chengkun He
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Yuang Wang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Nicolas Henriquez
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Michael Richard Xiang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Andrea Zhu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Fereshte Ghorbani
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
19
|
Hintz H, Bower J, Tang J, LaLama M, Sevov C, Zhang S. Copper-Catalyzed Electrochemical C-H Fluorination. CHEM CATALYSIS 2023; 3:100491. [PMID: 36743279 PMCID: PMC9894310 DOI: 10.1016/j.checat.2022.100491] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the systematic development of an electrooxidative methodology that translates stoichiometric C-H fluorination reactivity of an isolable CuIII fluoride complex into a catalytic process. The critical challenges of electrocatalysis with a highly reactive CuIII species were addressed by the judicious selection of electrolyte, F- source, and sacrificial electron acceptor. Catalyst-controlled C-H fluorination occurs with a preference for hydridic C-H bonds with high bond dissociation energies over weaker but less hydridic C-H bonds. The selectivity is driven by an oxidative asynchronous proton-coupled elelctron transfer (PCET) at an electrophilic CuIII-F complex. We further demonstrate that the asynchronicity factor of hydrogen atom transfer η can be used as a guideline to rationalize the selectivity of C-H fluorination.
Collapse
Affiliation(s)
- Heather Hintz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jamey Bower
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jinghua Tang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Matthew LaLama
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Christo Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
20
|
Li Y, Wang H, Wang Z, Alhumade H, Huang Z, Lei A. Electrochemical radical-mediated selective C(sp 3)-S bond activation. Chem Sci 2023; 14:372-378. [PMID: 36687345 PMCID: PMC9811493 DOI: 10.1039/d2sc05507d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Selective C(sp3)-S bond breaking and transformation remains a particularly important, yet challenging goal in synthetic chemistry. Over the past few decades, transition metal-catalyzed cross-coupling reactions through the cleavage of C(sp3)-S bonds provided a powerful platform for the construction of target molecules. In contrast, the selective activation of widespread C(sp3)-S bonds is rarely studied and remains underdeveloped, even under relatively harsh conditions. Herein, a radical-mediated electrochemical strategy capable of selectively activating C(sp3)-S bonds is disclosed, offering an unprecedented method for the synthesis of valuable disulfides from widespread thioethers. Importantly, compared with conventional transition-metal catalyzed C-S bond breaking protocols, this method features mild, catalyst- and oxidant-free reaction conditions, as well excellent chemoselectivity towards C(sp3)-S bonds. Preliminary mechanistic studies reveal that sulfur radical species are involved in the reaction pathway and play an essential role in controlling the site-selectivity.
Collapse
Affiliation(s)
- Yongli Li
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan UniversityWuhan430072HubeiP. R. China
| | - Huamin Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan UniversityWuhan430072HubeiP. R. China
| | - Zhuning Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan UniversityWuhan430072HubeiP. R. China
| | - Hesham Alhumade
- Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz UniversityJeddah 21589Saudi Arabia,K. A. CARE Energy Research and Innovation Center, King Abdulaziz UniversityJeddah 21589Saudi Arabia
| | - Zhiliang Huang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan UniversityWuhan430072HubeiP. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan UniversityWuhan430072HubeiP. R. China,Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz UniversityJeddah 21589Saudi Arabia
| |
Collapse
|
21
|
Li N, Wang Y, Gu S, Hu C, Yang Q, Jin Z, Ouyang WT, Qiao J, He WM. Visible-light-initiated external photocatalyst-free synthesis of α,α-difluoro-β-ketoamides from 4-aminocoumarins. Org Biomol Chem 2023; 21:370-374. [PMID: 36515252 DOI: 10.1039/d2ob01914k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A concise and efficient ring-opening difluorination strategy was developed for the synthesis of highly functionalized hydroxy-containing α,α-difluoro-β-ketoamides from the one-pot multicomponent reaction of 4-aminocoumarins, NFSI, and water in dimethyl carbonate (DMC) as a green solvent. The reactions were smoothly achieved under visible light irradiation in air at room temperature without the addition of any other external photocatalysts. With this protocol, various α,α-difluoro-β-ketoamides were successfully synthesized under mild conditions (25 examples, 73-91% yields). This transition-metal-free synthetic procedure shows good functional group compatibility and attractive practical potential for large-scale synthesis.
Collapse
Affiliation(s)
- Ningbo Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Gu
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Chuqian Hu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qian Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhaohui Jin
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
| | - Jie Qiao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
22
|
Choi I, Trenerry MJ, Lee KS, King N, Berry JF, Schomaker JM. Divergent C-H Amidations and Imidations by Tuning Electrochemical Reaction Potentials. CHEMSUSCHEM 2022; 15:e202201662. [PMID: 36166327 DOI: 10.1002/cssc.202201662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical C-H functionalizations are attractive transformations, as they are capable of avoiding the use of transition metals, pre-oxidized precursors, or suprastoichiometric amounts of terminal oxidants. Herein an electrochemically tunable method was developed that enabled the divergent formation of cyclic amines or imines by applying different reaction potentials. Detailed cyclic voltammetry analyses, coupled with chronopotentiometry experiments, were carried out to provide insight into the mechanism, while atom economy was assessed through a paired electrolysis. Selective C-H amidations and imidations were achieved to afford five- to seven-membered sulfonamide motifs that could be employed for late-stage modifications.
Collapse
Affiliation(s)
- Isaac Choi
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
- Present address, Department of Chemistry, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28644, Republic of Korea
| | - Michael J Trenerry
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Ken S Lee
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Nicholas King
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| |
Collapse
|
23
|
Stangier M, Scheremetjew A, Ackermann L. Chemo- and Site-Selective Electro-Oxidative Alkane Fluorination by C(sp 3 )-H Cleavage. Chemistry 2022; 28:e202201654. [PMID: 35844078 PMCID: PMC9804291 DOI: 10.1002/chem.202201654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 01/05/2023]
Abstract
Electrochemical fluorinations of C(sp3 )-H bonds with a nucleophilic fluoride source have been accomplished in a chemo- and site-selective fashion, avoiding the use of electrophilic F+ sources and stoichiometric oxidants. The introduced metal-free strategy exhibits high functional group tolerance, setting the stage for late-stage fluorinations of biorelevant motifs. The synthetic utility of the C(sp3 )-H fluorination was reflected by subsequent one-pot arylation of the generated benzylic fluorides.
Collapse
Affiliation(s)
- Maximilian Stangier
- Institut für Organische und Biomolekulare Chemie Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare Chemie Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
24
|
Matsumoto K, Hayashi Y, Hamasaki K, Matsuse M, Suzuki H, Nishiwaki K, Kawashita N. Electrogenerated base-promoted cyclopropanation using alkyl 2-chloroacetates. Beilstein J Org Chem 2022; 18:1116-1122. [PMID: 36105721 PMCID: PMC9443391 DOI: 10.3762/bjoc.18.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
The electrochemical reduction conditions of the reaction of alkyl 2-chloroacetates in Bu4NBr/DMF using a divided cell equipped with Pt electrodes to produce the corresponding cyclopropane derivatives in moderate yields were discovered. The reaction conditions were optimized, the scope and limitations, as well as scale-up reactions were investigated. The presented method for the electrochemical production of cyclopropane derivatives is an environmentally friendly and easy to perform synthetic procedure.
Collapse
Affiliation(s)
- Kouichi Matsumoto
- Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Yuta Hayashi
- Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kengo Hamasaki
- Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Mizuki Matsuse
- Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Hiyono Suzuki
- Department of Chemistry, School of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Keiji Nishiwaki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Norihito Kawashita
- Department of Life Science, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
25
|
Okamoto K, Shida N, Morizumi H, Kitano Y, Chiba K. Oxidation Potential Gap (ΔE ox ): The Hidden Parameter in Redox Chemistry. Angew Chem Int Ed Engl 2022; 61:e202206064. [PMID: 35610179 DOI: 10.1002/anie.202206064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/27/2022]
Abstract
Oxidative biaryl coupling of aryls with different electronic features generally fails. However, this has not been systematically studied via theoretical analysis, and thus, the crucial factor governing coupling efficiency remains unclear. Herein, we propose that the "oxidation potential gap (ΔEox )" is a key parameter in predicting the efficiency of an intramolecular oxidative coupling reaction, with ΔEox defined as a difference in the oxidation potentials of the relevant aromatic rings. Our experimental and computational analyses revealed that the efficiency of an aromatic intramolecular coupling reaction correlates with the activation energy (ΔE≠ ) of C-C bond formation of the radical cation intermediates. Furthermore, ΔE≠ correlates with ΔEox . Therefore, we demonstrate the tuning of ΔEox by attaching cleavable extra electron-donating/-withdrawing groups, enabling the rational synthesis of a phenanthridone skeleton using aromatic rings with an electronic gap.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.,Department of Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Naoki Shida
- Department of Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Haruka Morizumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
26
|
Iwase S, Inagi S, Fuchigami T. Cathodic generation of reactive (phenylthio)difluoromethyl species and its reactions: mechanistic aspects and synthetic applications. Beilstein J Org Chem 2022; 18:872-880. [PMID: 35957754 PMCID: PMC9344543 DOI: 10.3762/bjoc.18.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
The cathodic reduction of bromodifluoromethyl phenyl sulfide (1) using o-phthalonitrile as a mediator generated the (phenylthio)difluoromethyl radical, which reacted with α-methylstyrene and 1,1-diphenylethylene to provide the corresponding adducts in moderate and high yields, respectively. In contrast, chemical reduction of 1 with SmI2 resulted in much lower product yields. The detailed reaction mechanism was clarified based on the cathodic reduction of 1 in the presence of deuterated acetonitrile, CD3CN.
Collapse
Affiliation(s)
- Sadanobu Iwase
- Department of Electronic Chemistry, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Toshio Fuchigami
- Department of Electronic Chemistry, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| |
Collapse
|
27
|
Berger M, Lenhard MS, Waldvogel SR. Para-Fluorination of Anilides Using Electrochemically Generated Hypervalent Iodoarenes. Chemistry 2022; 28:e202201029. [PMID: 35510825 PMCID: PMC9401020 DOI: 10.1002/chem.202201029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/23/2022]
Abstract
The para-selective fluorination reaction of anilides using electrochemically generated hypervalent ArIF2 is reported, with Et3 N ⋅ 5HF serving as fluoride source and as supporting electrolyte. This electrochemical reaction is characterized by a simple set-up, easy scalability and affords a broad variety of fluorinated anilides from easily accessible anilides in good yields up to 86 %.
Collapse
Affiliation(s)
- Michael Berger
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Marola S. Lenhard
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
28
|
Tan Z, Xiang F, Xu K, Zeng C. Electrochemical Organoselenium-Catalyzed Intermolecular Hydroazolylation of Alkenes with Low Catalyst Loadings. Org Lett 2022; 24:5345-5350. [PMID: 35852836 DOI: 10.1021/acs.orglett.2c01983] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The organoselenium-catalyzed amination of alkenes is a promising way to construct functionalized amines. However, the use of chemical oxidants and the unavoidable formation of allylic amine or enamine are the two main limitations of these methodologies. Against this background, we herein report an electro-selenocatalytic regime for the hydroazolylation of alkenes with azoles under external oxidant-free conditions with low catalyst loadings. Moreover, this protocol enables the generation of amines without vinyl substituents.
Collapse
Affiliation(s)
- Zhoumei Tan
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Fang Xiang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
29
|
Long H, Chen TS, Song J, Zhu S, Xu HC. Electrochemical aromatic C-H hydroxylation in continuous flow. Nat Commun 2022; 13:3945. [PMID: 35803941 PMCID: PMC9270493 DOI: 10.1038/s41467-022-31634-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The direct hydroxylation of arene C-H bonds is a highly sought-after transformation but remains an unsolved challenge due to the difficulty in efficient and regioselective C-H oxygenation and high reactivity of the phenolic products leading to overoxidation. Herein we report electrochemical C-H hydroxylation of arenes in continuous flow for the synthesis of phenols. The method is characterized by broad scope (compatible with arenes of diverse electronic properties), mild conditions without any catalysts or chemical oxidants, and excellent scalability as demonstrated by the continuous production of 1 mol (204 grams) of one of the phenol products.
Collapse
Affiliation(s)
- Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, 361005, Xiamen, China
| | - Tian-Sheng Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jinshuai Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Shaobin Zhu
- NanoFCM INC., Xiamen Pioneering Park for Overseas Chinese Scholars, 361006, Xiamen, China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
- Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, 361005, Xiamen, China.
| |
Collapse
|
30
|
Wu F, Liu T, Liao W, Zhou Z, Dai H. Electrophilic Fluorination of Imidazoheterocycles by Selectfluor. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222070234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Cai CY, Zheng YT, Li JF, Xu HC. Cu-Electrocatalytic Diazidation of Alkenes at ppm Catalyst Loading. J Am Chem Soc 2022; 144:11980-11985. [PMID: 35772000 DOI: 10.1021/jacs.2c05126] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 1,2-diamine motif is prevalent in natural products, small-molecule pharmaceuticals, and catalysts for asymmetric synthesis. Transition metal catalyzed alkene diazidation has evolved to be an attractive strategy to access vicinal primary diamines but remains challenging, especially for practical applications, due to the restriction to a certain type of olefins, the frequent use of chemical oxidants, and the requirement for high loadings of metal catalysts (1 mol % or above). Herein we report a scalable Cu-electrocatalytic alkene diazidation reaction with 0.02 mol % (200 ppm) of copper(II) acetylacetonate as the precatalyst without exogenous ligands. In addition to its use of low catalyst loading, the electrocatalytic method is scalable, compatible with a broad range of functional groups, and applicable to the diazidation of α,β-unsaturated carbonyl compounds and mono-, di-, tri-, and tetrasubstituted unactivated alkenes.
Collapse
Affiliation(s)
- Chen-Yan Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yun-Tao Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jing-Fu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
32
|
Nielsen MM, Pedersen CM. Vessel effects in organic chemical reactions; a century-old, overlooked phenomenon. Chem Sci 2022; 13:6181-6196. [PMID: 35733904 PMCID: PMC9159102 DOI: 10.1039/d2sc01125e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 12/01/2022] Open
Abstract
One of the most intriguing aspects of synthetic chemistry is the interplay of numerous dependent and independent variables en route to achieve a successful, high-yielding chemical transformation. The experienced synthetic chemist will probe many of these variables during reaction development and optimization, which will routinely involve investigation of reaction temperature, solvent, stoichiometry, concentration, time, choice of catalyst, addition sequence or quenching conditions just to name some commonly addressed variables. Remarkably, little attention is typically given to the choice of reaction vessel material as the surface of common laboratory borosilicate glassware is, incorrectly, assumed to be chemically inert. When reviewing the scientific literature, careful consideration of the vessel material is typically only given during the use of well-known glass-etching reagents such as HF, which is typically only handled in HF-resistant, polyfluorinated polymer vessels. However, there are examples of chemical transformations that do not involve such reagents but are still clearly influenced by the choice of reaction vessel material. In the following review, we wish to condense the most significant examples of vessel effects during chemical transformations as well as observations of container-dependent stability of certain molecules. While the primary focus is on synthetic organic chemistry, relevant examples from inorganic chemistry, polymerization reactions, atmospheric chemistry and prebiotic chemistry are also covered.
Collapse
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen O Denmark
| | | |
Collapse
|
33
|
Electropolymerization without an electric power supply. Commun Chem 2022; 5:66. [PMID: 36697589 PMCID: PMC9814265 DOI: 10.1038/s42004-022-00682-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 01/28/2023] Open
Abstract
Electrifying synthesis is now a common slogan among synthetic chemists. In addition to the conventional two- or three-electrode systems that use batch-type cells, recent progress in organic electrochemical processes has been significant, including microflow electrochemical reactors, Li-ion battery-like technology, and bipolar electrochemistry. Herein we demonstrate an advanced electrosynthesis method without the application of electric power based on the concept of streaming potential-driven bipolar electrochemistry. As a proof-of-concept study, the electrochemical oxidative polymerization of aromatic monomers successfully yielded the corresponding polymer films on an electrode surface, which acted as an anode under the flow of electrolyte in a microchannel without an electric power supply.
Collapse
|
34
|
Okamoto K, Shida N, Morizumi H, Kitano Y, Chiba K. Oxidation Potential Gap (ΔEox): The Hidden Parameter in Redox Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuhiro Okamoto
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Department of Applied Biological Science JAPAN
| | - Naoki Shida
- Yokohama National University: Yokohama Kokuritsu Daigaku Department of Science and Engineering JAPAN
| | - Haruka Morizumi
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Department of Applied Biological Science JAPAN
| | - Yoshikazu Kitano
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Department of Applied Biological Science JAPAN
| | - Kazuhiro Chiba
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Applied Biological Science 3-5-8 Saiwai-cho, Fuchu 183-8509 Tokyo JAPAN
| |
Collapse
|
35
|
Yan G. Photochemical and Electrochemical Strategies for Hydrodefluorination of Fluorinated Organic Compounds. Chemistry 2022; 28:e202200231. [PMID: 35301767 DOI: 10.1002/chem.202200231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 12/20/2022]
Abstract
Hydrodefluorination (HDF) is a very important fundamental transformation for conversion of the C-F bond into the C-H bond in organic synthesis. In the past decade, much progress has been achieved with HDF through the utility of low-valent metals, transition-metal complexes and main-group Lewis acids. Recently, novel methods have been introduced for this purpose through photo- and electrochemical pathways, which are of great significance, due to their considerable environmental and economical advantages. This Review highlights the HDF of fluorinated organic compounds (FOCs) through photo- and electrochemical strategies, along with mechanistic insights.
Collapse
Affiliation(s)
- Guobing Yan
- Department of Chemistry, College of Jiyang, Zhejiang A&F University, Zhuji, Zhejiang, 311800, P. R. China
| |
Collapse
|
36
|
Huang LL, Lin PP, Li YX, Feng SX, Tu FH, Yang S, Zhao GY, Huang ZS, Wang H, Li Q. Oxidative Fluoroarylation of Benzylidenecyclopropanes with HF·Py and Aryl Iodides via Iodonio-[3,3]-Rearrangement. Org Lett 2022; 24:3389-3394. [PMID: 35486481 DOI: 10.1021/acs.orglett.2c01150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reported herein is an in situ-generated hypervalent iodine-incorporating fluoroarylation of benzylidenecyclopropanes using commercially available HF·Py and aryl iodides as fluorine and aryl sources, respectively. The reaction proceeds via regioselective 1,2-fluoroiodination of a double bond followed by an iodonio-[3,3]-rearrangement of the formed cyclopropyl-I(III) species. The protocol offers facile access to valuable monofluorinated 1,1-bis-benzyl-alkenes with mild reaction conditions and moderate to good yields. The synthetic utility of the products was demonstrated by further transformations. Preliminary mechanistic studies were conducted.
Collapse
Affiliation(s)
- Long-Ling Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Peng-Peng Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yu-Xin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Si-Xin Feng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fang-Hai Tu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Shuang Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gui-Yang Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
37
|
Liu R, Hu J. Synthesis of Aryl Perfluorocyclopropyl Ethers via [2 + 1] Cyclopropanation Using TMSCF 2Br Reagent. Org Lett 2022; 24:3589-3593. [PMID: 35467891 DOI: 10.1021/acs.orglett.2c00958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aryl perfluorocyclopropyl ethers have been synthesized for the first time by [2 + 1] cyclopropanation between aryl trifluorovinyl ethers and a commercially available TMSCF2Br reagent. This cycloaddition reaction between two fluorine-containing reactants proceeds smoothly in toluene at 120 °C in the presence of a catalytic amount of n-Bu4NBr, and the reaction tolerates a variety of functional groups. A wide range of aryl trifluorovinyl ethers, easily accessible from phenols, were successfully transformed to aryl perfluorocyclopropyl ethers.
Collapse
Affiliation(s)
- Ran Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
38
|
Yu Y, Jiang Y, Wu S, Shi Z, Wu J, Yuan Y, Ye K. Electrochemistry enabled selective vicinal fluorosulfenylation and fluorosulfoxidation of alkenes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Munaretto LS, Gallo RDC, Leão LPMO, Jurberg ID. H-F bond insertions into α-diazo carbonyl compounds. Org Biomol Chem 2022; 20:6178-6182. [PMID: 35357390 DOI: 10.1039/d2ob00400c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reaction for H-F bond insertion into α-diazo carbonyl compounds is reported. The protocol describes a simple reaction setup employing commercially available HF·pyr (Olah reagent) as the fluorine source. The method is rapid and practical, and allows access to a broad range of α-fluorinated carbonyl compounds in generally good yields.
Collapse
Affiliation(s)
- Laiéli S Munaretto
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil.
| | - Rafael D C Gallo
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil.
| | - Luiz Paulo M O Leão
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil.
| | - Igor D Jurberg
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
40
|
Tan Z, He X, Xu K, Zeng C. Electrophotocatalytic C-H Functionalization of N-Heteroarenes with Unactivated Alkanes under External Oxidant-Free Conditions. CHEMSUSCHEM 2022; 15:e202102360. [PMID: 34967138 DOI: 10.1002/cssc.202102360] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The Minisci alkylation of N-heteroarenes with unactivated alkanes under external oxidant-free conditions provides an economically attractive route to access alkylated N-heteroarenes but remains underdeveloped. Herein, a new electrophotocatalytic strategy to access alkyl radicals from strong C(sp3 )-H bonds was reported for the following Minisci alkylation reactions in the absence of chemical oxidants. This strategy realized the first example of cerium-catalyzed Minisci alkylation reaction directly from abundant unactivated alkanes with excellent atom economy. It is anticipated that the general design principle would enrich catalytic strategies to explore the functionalizations of strong C(sp3 )-H bonds under external oxidant-free conditions with H2 evolution.
Collapse
Affiliation(s)
- Zhoumei Tan
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Xinrui He
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| |
Collapse
|
41
|
Sakagami H, Takenaka H, Iwai S, Shida N, Villani E, Gotou A, Isogai T, Yamauchi A, Kishikawa Y, Fuchigami T, Tomita I, Inagi S. A Flow Electrochemical Cell with Split Bipolar Electrode for Anodic Oxidation of Organic Compounds. ChemElectroChem 2022. [DOI: 10.1002/celc.202200084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroki Sakagami
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Hiroaki Takenaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Suguru Iwai
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Naoki Shida
- Department of Chemistry and Life Science Yokohama National University 79-5 Tokiwadai, Hodogaya-ku 240-8501 Yokohama Kanagawa Japan
| | - Elena Villani
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Akihiro Gotou
- Daikin Industries Ltd. 1-1 Nishi-Hitotsuya 566-8585 Settsu Osaka Japan
| | - Tomohiro Isogai
- Daikin Industries Ltd. 1-1 Nishi-Hitotsuya 566-8585 Settsu Osaka Japan
| | - Akiyoshi Yamauchi
- Daikin Industries Ltd. 1-1 Nishi-Hitotsuya 566-8585 Settsu Osaka Japan
| | - Yosuke Kishikawa
- Daikin Industries Ltd. 1-1 Nishi-Hitotsuya 566-8585 Settsu Osaka Japan
| | - Toshio Fuchigami
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku 226-8502 Yokohama Kanagawa Japan
- PRESTO Japan Science and Technology Agency (JST) 4-1-8 Honcho 332-0012 Kawaguchi Saitama Japan
| |
Collapse
|
42
|
Qian BY, Zhang W, Lin J, Cao W, Xiao JC. anti-Markovnikov Iodofluorination of Alkenes. Chem Asian J 2022; 17:e202200184. [PMID: 35266316 DOI: 10.1002/asia.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Indexed: 11/10/2022]
Abstract
The fluorination of alkenes with electrophilic N-F type reagents usually occurs through a Markovnikov-type addition, and the anti-Markovnikov-type addition may require the use of a transition metal catalyst or an expensive catalyst. Herein we describe a convenient anti-Markovnikov iodofluorination of alkenes with Selectfluor/ nBu4NI. A wide substrate scope and good functional group tolerance were observed. The process allows for the construction of various C-F bonds, especially tertiary C-F bonds. The remarkable features make this protocol attractive, including convenient operations, simple reaction conditions, and the installation of an iodine atom which provides possibilities for further transformations.
Collapse
Affiliation(s)
- Bai-Yu Qian
- Shanghai University, Department of Chemistry, CHINA
| | - Wei Zhang
- Shanghai University, Department of Chemistry, CHINA
| | - Jinhong Lin
- Shanghai Institute of Organic Chemistry, Key Laboratory of Organofluorine Chemistry, 345 Lingling Road, 200032, Shanghai, CHINA
| | - Weiguo Cao
- Shanghai University, Department of Chemistry, CHINA
| | - Ji-Chang Xiao
- SIOC: Shanghai Institute of Organic Chemistry, Key Laboratory of Organofluorine Chemistry, CHINA
| |
Collapse
|
43
|
Wei W, Scheremetjew A, Ackermann L. Electrooxidative palladium- and enantioselective rhodium-catalyzed [3 + 2] spiroannulations. Chem Sci 2022; 13:2783-2788. [PMID: 35340855 PMCID: PMC8890123 DOI: 10.1039/d1sc07124f] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Despite indisputable progress in the development of electrochemical transformations, electrocatalytic annulations for the synthesis of biologically relevant three-dimensional spirocyclic compounds has as of yet not been accomplished. In sharp contrast, herein, we describe the palladaelectro-catalyzed C-H activation/[3 + 2] spiroannulation of alkynes by 1-aryl-2-naphthols. Likewise, a cationic rhodium(iii) catalyst was shown to enable electrooxidative [3 + 2] spiroannulations via formal C(sp3)-H activations. The versatile spiroannulations featured a broad substrate scope, employing electricity as a green oxidant in lieu of stoichiometric chemical oxidants under mild conditions. An array of spirocyclic enones and diverse spiropyrazolones, bearing all-carbon quaternary stereogenic centers were thereby accessed in a user-friendly undivided cell setup, with molecular hydrogen as the sole byproduct.
Collapse
Affiliation(s)
- Wen Wei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
44
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
45
|
Murtaza A, Qamar MA, Saleem K, Hardwick T, Zia Ul Haq, Shirinfar B, Ahmed N. Renewable Electricity Enables Green Routes to Fine Chemicals and Pharmaceuticals. CHEM REC 2022; 22:e202100296. [PMID: 35103382 DOI: 10.1002/tcr.202100296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/29/2022]
Abstract
Syntheses of chemicals using renewable electricity and when generating high atom economies are considered green and sustainable processes. In the present state of affairs, electrochemical manufacturing of fine chemicals and pharmaceuticals is not as common place as it could be and therefore, merits more attention. There is also a need to turn attention toward the electrochemical synthesis of valuable chemicals from recyclable greenhouse gases that can accelerate the process of circular economy. CO2 emissions are the major contributor to human-induced global warming. CO2 conversion into chemicals is a valuable application of its utilisation and will contribute to circular economy while maintaining environmental sustainability. Herein, we present an overview of electro-carboxylation, including mechanistic aspects, which forms carboxylic acids using molecular carbon dioxide. We also discuss atom economies of electrochemical fluorination, methoxylation and amide formation reactions.
Collapse
Affiliation(s)
- Ayesha Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Awais Qamar
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Kaynat Saleem
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Tomas Hardwick
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zia Ul Haq
- Chemical Engineering department, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
46
|
Lin S, Wang Y, Peng ZH, Li Y, Zhou Z, Ghao H, Yi W. Rh(III)‐Catalysed Switchable and Chemoselective Synthesis of Difluorinated Pyrazolo[1,2‐a]indazolone and Indole Frameworks. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shuang Lin
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Yi Wang
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Zhi-Huan Peng
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Yuanyuan Li
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Zhi Zhou
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Hui Ghao
- Guangzhou Medical University Clinical Pharmacology CHINA
| | - Wei Yi
- Guangzhou Medical University Sciences & the Fifth Affiliated Hospital Xinzao, Panyu District, Guangzhou, 511436, P.R.China 511436 Guangzhou CHINA
| |
Collapse
|
47
|
Zhang C, Zhou Y, Zhao Z, Xue W, Gu L. An electrocatalytic three-component reaction for the synthesis of phosphoroselenoates. Chem Commun (Camb) 2022; 58:13951-13954. [DOI: 10.1039/d2cc05570h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phosphoroselenoates are important organic molecules because they have found widespread applications in many fields.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, 650500, China
| | - Yaqin Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhiheng Zhao
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lijun Gu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
48
|
Wang H, Yu M, Zhang P, Wan H, Cong H, Lei A. Electrochemical dual-oxidation strategy enables access to α-chlorosulfoxides from sulfides. Sci Bull (Beijing) 2022; 67:79-84. [PMID: 36545963 DOI: 10.1016/j.scib.2021.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 01/06/2023]
Abstract
Electrochemistry contributes a strong tool for the manufacture of molecules, addressing intractable challenges in synthetic chemistry by enabling innovative reaction pathways. Herein, a bifunctional reagent, aqueous hydrochloric acid, is used to establish an electrochemical selective dual-oxidation approach that gives access to α-chlorosulfoxides from sulfides. This strategy presents broad substrate scope, high diastereoselectivity, and regioselectivity. The late-stage modification of amino acids and pharmaceutical derivatives further highlights the utility. Furthermore, detailed mechanistic studies reveal that the key success for this selective chemical transformation is the dual-oxidation process at the anode. This electrochemical dual-oxidation strategy may have wide universality; we anticipate diverse applications of this protocol across the many fields of chemistry.
Collapse
Affiliation(s)
- Huamin Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mingming Yu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Panyue Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Wan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Hengjiang Cong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
49
|
Mandal D, Maji S, Pal T, Sinha SK, Maiti D. Recent Advances in Transition-Metal Mediated Trifluoromethylation Reactions. Chem Commun (Camb) 2022; 58:10442-10468. [DOI: 10.1039/d2cc04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine compounds are known for their abundance in more than 20% of pharmaceutical and agrochemical products mainly due to the enhanced lipophilicity, metabolic stability and pharmacokinetic properties of organofluorides. Consequently,...
Collapse
|
50
|
Kong Y, Wei K, Yan G. Radical coupling reactions of hydrazines via photochemical and electrochemical strategies. Org Chem Front 2022. [DOI: 10.1039/d2qo01348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrazines are versatile building blocks in organic synthesis.
Collapse
Affiliation(s)
- Yilin Kong
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Kangning Wei
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Guobing Yan
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|