1
|
Hartmann FSF, Grégoire M, Renzi F, Delvigne F. Single cell technologies for monitoring protein secretion heterogeneity. Trends Biotechnol 2024; 42:1144-1160. [PMID: 38480024 DOI: 10.1016/j.tibtech.2024.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 09/07/2024]
Abstract
Cell-to-cell heterogeneity presents challenges across various fields, from biomedicine to bioproduction, where precise cellular responses are vital. While single cell technologies have significantly enhanced our understanding of population heterogeneity, the predominant focus has been on monitoring intracellular compounds. Recognizing the added complexity introduced by the secretion system, in this review, we first provide a systematic overview of the distinct steps necessary for driving protein secretion. We discuss the various sources of noise acting from the synthesized preprotein to the secretory protein released based on a Gram-positive cellular system as a model. We next explore the applicability of single cell technologies for monitoring protein secretion throughout these functional stages. We also emphasize the importance of applying these single cell technologies for monitoring protein secretion during bioproduction.
Collapse
Affiliation(s)
- Fabian Stefan Franz Hartmann
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mélanie Grégoire
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Francesco Renzi
- Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
2
|
van der Loh M, Schiffmann M, Polack M, Wink K, Belder D. Coupling of droplet-on-demand microfluidcs with ESI/MS to study single-cell catalysis. RSC Adv 2024; 14:25337-25346. [PMID: 39139235 PMCID: PMC11320962 DOI: 10.1039/d4ra04835k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Droplet microfluidics provides an efficient method for analysing reactions within the range of nanoliters to picoliters. However, the sensitive, label-free and versatile detection with ESI/MS poses some difficulties. One challenge is the difficult association of droplets with the MS signal in high-throughput droplet analysis. Hence, a droplet-on-demand system for the generation of a few droplets can address this and other problems such as surfactant concentration or cross-contamination. Accordingly, the system has been further developed for online coupling with ESI/MS. To achieve this, we developed a setup enabling on-demand droplet generation by hydrodynamic gating, with downstream microscopic droplet detection and MS analysis. This facilitated the incorporation of 1-9 yeast cells into individual 1-5 nL droplets and the monitoring of yeast-catalysed transformation from ketoester to ethyl-3-hydroxybutyrate by MS. With our method a mean production rate of 0.035 ± 0.017 fmol per cell per h was observed with a detection limit of 0.30 μM. In conclusion, our droplet-on-demand method is a versatile and advantageous tool for cell encapsulation in droplets, droplet imaging and reaction detection using ESI/MS.
Collapse
Affiliation(s)
- Marie van der Loh
- Institute of Analytical Chemistry, Leipzig University Linnéstraße 3 04103 Leipzig Germany
| | - Marie Schiffmann
- Institute of Analytical Chemistry, Leipzig University Linnéstraße 3 04103 Leipzig Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University Linnéstraße 3 04103 Leipzig Germany
| | - Konstantin Wink
- Institute of Analytical Chemistry, Leipzig University Linnéstraße 3 04103 Leipzig Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University Linnéstraße 3 04103 Leipzig Germany
| |
Collapse
|
3
|
Guo Z, Zhao Y, Jin Z, Chang Y, Wang X, Guo G, Zhao Y. Monolithic 3D nanoelectrospray emitters based on a continuous fluid-assisted etching strategy for glass droplet microfluidic chip-mass spectrometry. Chem Sci 2024; 15:7781-7788. [PMID: 38784731 PMCID: PMC11110156 DOI: 10.1039/d4sc01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Glass microfluidic chips are suitable for coupling with mass spectrometry (MS) due to their flexible design, optical transparency and resistance to organic reagents. However, due to the high hardness and brittleness of glass, there is a lack of simple and feasible technology to manufacture a monolithic nanospray ionization (nESI) emitter on a glass microchip, which hinders its coupling with mass spectrometry. Here, a continuous fluid-assisted etching strategy is proposed to fabricate monolithic three-dimensional (3D) nESI emitters integrated into glass microchips. A continuous fluid of methanol is adopted to protect the inner wall of the channels and the bonding interface of the glass microfluidic chip from being wet-etched, forming sharp 3D nESI emitters. The fabricated 3D nESI emitter can form a stable electrospray plume, resulting in consistent nESI detection of acetylcholine with an RSD of 4.5% within 10 min. The fabricated 3D emitter is integrated on a glass microfluidic chip designed with a T-junction droplet generator, which can realize efficient analysis of acetylcholine in picoliter-volume droplets by nESI-MS. Stability testing of over 20 000 droplets detected by the established system resulted in an RSD of 9.1% over approximately 180 min. The detection of ten neurochemicals in rat cerebrospinal fluid droplets is achieved. The established glass droplet microfluidic chip-MS system exhibits potential for broad applications such as in vivo neurochemical monitoring and single-cell analysis in the future.
Collapse
Affiliation(s)
- Ziyang Guo
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| | - Yingqi Zhao
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| | - Zhao Jin
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| | - Yaran Chang
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| | - Xiayan Wang
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| | - Guangsheng Guo
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
- Minzu University of China Beijing 100081 China
| | - Yaoyao Zhao
- Department of Chemistry, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
4
|
Payne EM, Murray BE, Penabad LI, Abbate E, Kennedy RT. Mass-Activated Droplet Sorting for the Selection of Lysine-Producing Escherichia coli. Anal Chem 2023; 95:15716-15724. [PMID: 37820298 PMCID: PMC11025463 DOI: 10.1021/acs.analchem.3c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Synthetic biology relies on engineering cells to have desirable properties, such as the production of select chemicals. A bottleneck in engineering methods is often the need to screen and sort variant libraries for potential activity. Droplet microfluidics is a method for high-throughput sample preparation and analysis which has the potential to improve the engineering of cells, but a limitation has been the reliance on fluorescent analysis. Here, we show the ability to select cell variants grown in 20 nL droplets at 0.5 samples/s using mass-activated droplet sorting (MADS), a method for selecting droplets based on the signal intensity measured by electrospray ionization mass spectrometry (ESI-MS). Escherichia coli variants producing lysine were used to evaluate the applicability of MADS for synthetic biology. E. coli were shown to be effectively grown in droplets, and the lysine produced by these cells was detectable using ESI-MS. Sorting of lysine-producing cells based on the MS signal was shown, yielding 96-98% purity for high-producing variants in the selected pool. Using this technique, cells were recovered after screening, enabling downstream validation via phenotyping. The presented method is translatable to whole-cell engineering for biocatalyst production.
Collapse
Affiliation(s)
- Emory M. Payne
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
| | - Bridget E. Murray
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
| | - Laura I. Penabad
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
| | - Eric Abbate
- Applications Development, Inscripta Inc., Pleasanton, CA 94588
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
| |
Collapse
|
5
|
Schirmer M, Dusny C. Microbial single-cell mass spectrometry: status, challenges, and prospects. Curr Opin Biotechnol 2023; 83:102977. [PMID: 37515936 DOI: 10.1016/j.copbio.2023.102977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
Single-cell analysis uncovers phenotypic differences between cells in a population and dissects their individual physiological states and differences on all omics levels from genome to phenome. Spectrometric observation allows label-free analysis of the metabolome and proteome of individual cells, but is still mainly limited to the analysis of mammalian single cells. Recent progress in mass spectrometry approaches now enables the analysis of microbial single cells - mainly by miniaturizing cell handling, incubation, and improving chip-coupling concepts for analyte ionization by interfacing microfluidic chips and mass spectrometers. This review aims at distilling the enabling principles behind microbial single-cell mass spectrometry and puts them into perspective for the future of the field.
Collapse
Affiliation(s)
- Martin Schirmer
- Department of Solar Materials - Microscale Analysis and Engineering, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Leizpig, Germany
| | - Christian Dusny
- Department of Solar Materials - Microscale Analysis and Engineering, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Leizpig, Germany.
| |
Collapse
|
6
|
Murray BE, Penabad LI, Kennedy RT. Advances in coupling droplet microfluidics to mass spectrometry. Curr Opin Biotechnol 2023; 82:102962. [PMID: 37336080 DOI: 10.1016/j.copbio.2023.102962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Droplet microfluidics enables development of workflows with low sample consumption and high throughput. Fluorescence-based assays are most used with droplet microfluidics; however, the requirement of a fluorescent reporter restricts applicability of this approach. The coupling of droplets to mass spectrometry (MS) has enabled selective assays on complex mixtures to broaden the analyte scope. Droplet microfluidics has been interfaced to MS via electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). The works reviewed herein outline the development of this nascent field as well as initial exploration of its application in biotechnology and bioanalysis, including synthetic biology, reaction development, and in vivo sensing.
Collapse
Affiliation(s)
- Bridget E Murray
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA
| | - Laura I Penabad
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
7
|
Smaluch K, Wollenhaupt B, Steinhoff H, Kohlheyer D, Grünberger A, Dusny C. Assessing the growth kinetics and stoichiometry of Escherichia coli at the single-cell level. Eng Life Sci 2023; 23:e2100157. [PMID: 36619887 PMCID: PMC9815083 DOI: 10.1002/elsc.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
Microfluidic cultivation and single-cell analysis are inherent parts of modern microbial biotechnology and microbiology. However, implementing biochemical engineering principles based on the kinetics and stoichiometry of growth in microscopic spaces remained unattained. We here present a novel integrated framework that utilizes distinct microfluidic cultivation technologies and single-cell analytics to make the fundamental math of process-oriented biochemical engineering applicable at the single-cell level. A combination of non-invasive optical cell mass determination with sub-pg sensitivity, microfluidic perfusion cultivations for establishing physiological steady-states, and picoliter batch reactors, enabled the quantification of all physiological parameters relevant to approximate a material balance in microfluidic reaction environments. We determined state variables (biomass concentration based on single-cell dry weight and mass density), biomass synthesis rates, and substrate affinities of cells grown in microfluidic environments. Based on this data, we mathematically derived the specific kinetics of substrate uptake and growth stoichiometry in glucose-grown Escherichia coli with single-cell resolution. This framework may initiate microscale material balancing beyond the averaged values obtained from populations as a basis for integrating heterogeneous kinetic and stoichiometric single-cell data into generalized bioprocess models and descriptions.
Collapse
Affiliation(s)
- Katharina Smaluch
- Department of Solar Materials – Microscale Analysis and EngineeringHelmholtz‐Centre for Environmental Research – UFZ LeipzigLeizpigGermany
| | - Bastian Wollenhaupt
- Microscale BioengineeringIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Heiko Steinhoff
- Multiscale BioengineeringFaculty of TechnologyBielefeld UniversityBielefeldGermany
| | - Dietrich Kohlheyer
- Microscale BioengineeringIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Alexander Grünberger
- Multiscale BioengineeringFaculty of TechnologyBielefeld UniversityBielefeldGermany
| | - Christian Dusny
- Department of Solar Materials – Microscale Analysis and EngineeringHelmholtz‐Centre for Environmental Research – UFZ LeipzigLeizpigGermany
| |
Collapse
|
8
|
Recent advances in microfluidic single-cell analysis and its applications in drug development. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Recent advances of integrated microfluidic systems for fungal and bacterial analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Heiligenthal L, van der Loh M, Polack M, Blaha ME, Moschütz S, Keim A, Sträter N, Belder D. Analysis of double-emulsion droplets with ESI mass spectrometry for monitoring lipase-catalyzed ester hydrolysis at nanoliter scale. Anal Bioanal Chem 2022; 414:6977-6987. [PMID: 35995875 PMCID: PMC9436884 DOI: 10.1007/s00216-022-04266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/11/2022]
Abstract
Microfluidic double-emulsion droplets allow the realization and study of biphasic chemical processes such as chemical reactions or extractions on the nanoliter scale. Double emulsions of the rare type (o1/w/o2) are used here to realize a lipase-catalyzed reaction in the non-polar phase. The surrounding aqueous phase induces the transfer of the hydrophilic product from the core oil phase, allowing on-the-fly MS analysis in single double droplets. A microfluidic two-step emulsification process is developed to generate the (o1/w/o2) double-emulsion droplets. In this first example of microfluidic double-emulsion MS coupling, we show in proof-of-concept experiments that the chemical composition of the water layer can be read online using ESI–MS. Double-emulsion droplets were further employed as two-phase micro-reactors for the hydrolysis of the lipophilic ester p-nitrophenyl palmitate catalyzed by the Candida antarctica lipase B (CalB). Finally, the formation of the hydrophilic reaction product p-nitrophenol within the double-emulsion droplet micro-reactors is verified by subjecting the double-emulsion droplets to online ESI–MS analysis.
Collapse
Affiliation(s)
- Laura Heiligenthal
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Marie van der Loh
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Maximilian E Blaha
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Susanne Moschütz
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Antje Keim
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
11
|
Wink K, van der Loh M, Hartner N, Polack M, Dusny C, Schmid A, Belder D. Quantification of Biocatalytic Transformations by Single Microbial Cells Enabled by Tailored Integration of Droplet Microfluidics and Mass Spectrometry. Angew Chem Int Ed Engl 2022; 61:e202204098. [PMID: 35511505 PMCID: PMC9401594 DOI: 10.1002/anie.202204098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Indexed: 12/23/2022]
Abstract
Improving the performance of chemical transformations catalysed by microbial biocatalysts requires a deep understanding of cellular processes. While the cellular heterogeneity of cellular characteristics, such as the concentration of high abundant cellular content, is well studied, little is known about the reactivity of individual cells and its impact on the chemical identity, quantity, and purity of excreted products. Biocatalytic transformations were monitored chemically specific and quantifiable at the single-cell level by integrating droplet microfluidics, cell imaging, and mass spectrometry. Product formation rates for individual Saccharomyces cerevisiae cells were obtained by i) incubating nanolitre-sized droplets for product accumulation in microfluidic devices, ii) an imaging setup to determine the number of cells in the droplets, and iii) electrospray ionisation mass spectrometry for reading the chemical contents of individual droplets. These findings now enable the study of whole-cell biocatalysis at single-cell resolution.
Collapse
Affiliation(s)
- Konstantin Wink
- University of LeipzigInstitute of Analytical Chemistry04107LeipzigGermany
| | - Marie van der Loh
- University of LeipzigInstitute of Analytical Chemistry04107LeipzigGermany
| | - Nora Hartner
- University of LeipzigInstitute of Analytical Chemistry04107LeipzigGermany
| | - Matthias Polack
- University of LeipzigInstitute of Analytical Chemistry04107LeipzigGermany
| | - Christian Dusny
- Department Solar MaterialsHelmholtz Centre for Environmental Research (UFZ)04318LeipzigGermany
| | - Andreas Schmid
- Department Solar MaterialsHelmholtz Centre for Environmental Research (UFZ)04318LeipzigGermany
| | - Detlev Belder
- University of LeipzigInstitute of Analytical Chemistry04107LeipzigGermany
| |
Collapse
|
12
|
Wink K, Loh M, Hartner N, Polack M, Dusny C, Schmid A, Belder D. Quantifizierung biokatalytischer Umwandlungen durch einzelne mikrobielle Zellen mittels maßgeschneiderter Integration von Tröpfchenmikrofluidik und Massenspektrometrie. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Konstantin Wink
- Universität Leipzig Institut für Analytische Chemie 04107 Leipzig Deutschland
| | - Marie Loh
- Universität Leipzig Institut für Analytische Chemie 04107 Leipzig Deutschland
| | - Nora Hartner
- Universität Leipzig Institut für Analytische Chemie 04107 Leipzig Deutschland
| | - Matthias Polack
- Universität Leipzig Institut für Analytische Chemie 04107 Leipzig Deutschland
| | - Christian Dusny
- Department Solare Materialien Helmholtz-Zentrum für Umweltforschung (UFZ) 04318 Leipzig Deutschland
| | - Andreas Schmid
- Department Solare Materialien Helmholtz-Zentrum für Umweltforschung (UFZ) 04318 Leipzig Deutschland
| | - Detlev Belder
- Universität Leipzig Institut für Analytische Chemie 04107 Leipzig Deutschland
| |
Collapse
|
13
|
Towards one sample per second for mass spectrometric screening of engineered microbial strains. Curr Opin Biotechnol 2022; 76:102725. [PMID: 35489307 DOI: 10.1016/j.copbio.2022.102725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022]
Abstract
Microbial cell factories convert renewable feedstocks into desirable chemicals and materials. Due to the lack of predictive modeling, high-throughput screening remains essential for microbial strain engineering. Mass spectrometry (MS) is a label-free modality with superior sensitivity and chemical specificity. Critical advances in improving the throughput of MS assays on complex microbial samples include massively parallel cultivation, robotic sample preparation, and chromatography-free instrumentation. Here, we review the recent development and application of rapid MS assays in screening microbial libraries, achieving or approaching a rate of one sample per second. We conclude with unique challenges associated with MS screening of strain libraries and discuss future solutions.
Collapse
|
14
|
Blaha ME, Hasan S, Dusny C, Belder D. Fluorescence lifetime activated droplet sorting (FLADS) for label-free sorting of Synechocystis sp. PCC6803. LAB ON A CHIP 2022; 22:1604-1614. [PMID: 35332894 DOI: 10.1039/d2lc00032f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study presents the label-free sorting of cyanobacterial cells in droplets with single-cell sensitivity based on their fluorescence lifetime. We separated living and dead cyanobacteria (Synechocystis sp. PCC6803) using fluorescence lifetime signals of the photopigment autofluorescence to indicate their photosynthetic activity. We developed a setup and a chip design to achieve live/dead sorting accuracies of more than 97% at a droplet frequency of 100 Hz with a PDMS-based chip system and standard optics using fluorescence lifetime as the sorting criterion. The obtained sorting accuracies could be experimentally confirmed by cell plating and observing the droplet sorting process via a high-speed camera. The herein presented results demonstrate the capabilities of the developed system for studying the effects of stressors on cyanobacterial physiology and the subsequent deterministic sorting of different stress-response phenotypes. This technology eliminates the need for tedious staining of cyanobacterial cells, which makes it particularly attractive for its application in the field of phototrophic microbial bio(techno)logic and in the context of cell secretion studies.
Collapse
Affiliation(s)
| | - Sadat Hasan
- Institute for Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Christian Dusny
- Department Solar Materials, Helmoltz-Centre for Environmental Research - UFZ Leipzig, Permoserstr. 15, 04318 Leipzig, Germany
| | - Detlev Belder
- Institute for Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| |
Collapse
|
15
|
|
16
|
Wang M, Liao X, Tchounwou PB, Liu YM. Coupling a droplet generator with conventional ESI-MS for quantitative analysis of small-volume samples. Anal Bioanal Chem 2022; 414:1809-1817. [PMID: 35061061 PMCID: PMC8828272 DOI: 10.1007/s00216-021-03808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
Abstract
Quantitative mass spectrometric analysis of small-volume samples (e.g., < 1 μL) has been a challenge mainly due to the difficulties with sample handling and its injection into the system for analysis. Herein we report a microfluidic analytical platform coupling a droplet generator with conventional electrospray ionization-mass spectrometry (ESI-MS) that enables multiple analyses of a μL-sized sample with sensitivity and repeatability. In an analysis by droplet generator-assisted ESI-MS (DG-ESI-MS), a sample of μL volume is pulled into a sampling capillary and its equal nL-sized portions are generated by a droplet generator and analyzed by ESI-MS at time intervals of choice. The droplet generator is made of PMMA sheets by laser engraving conveniently and at a low cost. In a study to achieve effective ESI-MS detection of water-in-oil droplets, it's found that the problem of MS signal suppression by oil can be solved by using an appropriate organic carrier with ESI-enhancing additives. The proposed DG-ESI-MS method has linear calibration curves for both adenine and phenylalanine with LODs at the sub-μM level. Application of the present analytical platform for monitoring substrate concentration changes in an enzymatic reaction solution of 3 μL is demonstrated.
Collapse
Affiliation(s)
- Meiyuan Wang
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Paul B. Tchounwou
- Department of Biology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
17
|
Zhang Y, Kim S, Shi W, Zhao Y, Park I, Brenden C, Iyer H, Jha P, Bashir R, Sweedler JV, Vlasov Y. Droplet-assisted electrospray phase separation using an integrated silicon microfluidic platform. LAB ON A CHIP 2021; 22:40-46. [PMID: 34897344 PMCID: PMC8691365 DOI: 10.1039/d1lc00758k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/01/2021] [Indexed: 06/14/2023]
Abstract
We report a silicon microfluidic platform that enables monolithic integration of transparent micron-scale microfluidic channels, an on-chip segmentation of analyte flows into picoliter-volume droplets, and a nano-electrospray ionization emitter that enables spatial and temporal separation of oil and aqueous phases during electro-spray for subsequent mass spectrometry analysis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
| | - Sungho Kim
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
| | - Weihua Shi
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
| | - Yaoyao Zhao
- Department of Chemistry and the Beckman Institute, University of Illinois Urbana Champaign, IL 61801, USA
| | - Insu Park
- Department of Bioengineering, University of Illinois Urbana Champaign, IL 61801, USA
| | - Christopher Brenden
- Department of Bioengineering, University of Illinois Urbana Champaign, IL 61801, USA
| | - Hrishikesh Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
| | - Prasoon Jha
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois Urbana Champaign, IL 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois Urbana Champaign, IL 61801, USA
| | - Yurii Vlasov
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
- Department of Bioengineering, University of Illinois Urbana Champaign, IL 61801, USA
| |
Collapse
|
18
|
Hartner NT, Wink K, Raddatz CR, Thoben C, Schirmer M, Zimmermann S, Belder D. Coupling Droplet Microfluidics with Ion Mobility Spectrometry for Monitoring Chemical Conversions at Nanoliter Scale. Anal Chem 2021; 93:13615-13623. [PMID: 34592821 DOI: 10.1021/acs.analchem.1c02883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce the coupling of droplet microfluidics and ion mobility spectrometry (IMS) to address the challenges of label-free and chemical-specific detection of compounds in individual droplets. In analogy to the established use of mass spectrometry, droplet-IMS coupling can be also achieved via electrospray ionization but with significantly less instrumental effort. Because IMS instruments do not require high-vacuum systems, they are very compact, cost-effective, and robust, making them an ideal candidate as a chemical-specific end-of-line detector for segmented flow experiments. Herein, we demonstrate the successful coupling of droplet microfluidics with a custom-built high-resolution drift tube IMS system for monitoring chemical reactions in nL-sized droplets in an oil phase. The analytes contained in each droplet were assigned according to their characteristic ion mobility with limit of detections down to 200 nM to 1 μM and droplet frequencies ranging from 0.1 to 0.5 Hz. Using a custom sheath flow electrospray interface, we have further achieved the chemical-specific monitoring of a biochemical transformation catalyzed by a few hundred yeast cells, at single droplet level.
Collapse
Affiliation(s)
- Nora T Hartner
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Konstantin Wink
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian-Robert Raddatz
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Christian Thoben
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Martin Schirmer
- Helmholtz Centre for Environmental Research - UFZ Leipzig, Leipzig 04318, Germany
| | - Stefan Zimmermann
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Xu S, Yang C, Yan X, Liu H. Towards high throughput and high information coverage: advanced single-cell mass spectrometric techniques. Anal Bioanal Chem 2021; 414:219-233. [PMID: 34435209 DOI: 10.1007/s00216-021-03624-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022]
Abstract
Mass spectrometry (MS) is attractive for single-cell analysis because of its high sensitivity, rich information, and large dynamic ranges, especially for the single-cell metabolome and proteome analysis. Efforts have been made to deal with the throughput and information coverage problems in typical manual single-cell MS techniques. In this review, advanced techniques to improve the automation and throughput for single-cell sampling and single-cell metabolome and proteome MS detection have been discussed. Furthermore, representative MS-based strategies that can increase the in-depth cellular information coverage and achieve the more comprehensive single-cell multiomics information during high throughput detection have been highlighted, providing an ongoing perspective of the MS performance for the single-cell research.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiuping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Huwei Liu
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Piendl SK, Schönfelder T, Polack M, Weigelt L, van der Zwaag T, Teutenberg T, Beckert E, Belder D. Integration of segmented microflow chemistry and online HPLC/MS analysis on a microfluidic chip system enabling enantioselective analyses at the nanoliter scale. LAB ON A CHIP 2021; 21:2614-2624. [PMID: 34008641 DOI: 10.1039/d1lc00078k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we introduce an approach to merge droplet microfluidics with an HPLC/MS functionality on a single chip to analyze the contents of individual droplets. This is achieved by a mechanical rotor-stator interface that precisely positions a microstructured PEEK rotor on a microfluidic chip in a pressure-tight manner. The developed full-body fused silica chip, manufactured by selective laser-induced etching, contained a segmented microflow compartment followed by a packed HPLC channel, which were interconnected by the microfluidic PEEK rotor on the fused silica lid with hair-thin through-holes. This enabled the targeted and leakage-free transfer of 10 nL fractions of droplets as small as 25 nL from the segmented microflow channel into the HPLC compartment that operated at pressures of up to 60 bar. In a proof of concept study, this approach was successfully applied to monitor reactions at the nanoliter scale and to distinguish the formed enantiomers.
Collapse
Affiliation(s)
- Sebastian K Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Thomas Schönfelder
- Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Laura Weigelt
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Till van der Zwaag
- Institut für Energie - und Umwelttechnik e. V., Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Thorsten Teutenberg
- Institut für Energie - und Umwelttechnik e. V., Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Erik Beckert
- Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| |
Collapse
|
21
|
Wright NR, Rønnest NP, Sonnenschein N. Single-Cell Technologies to Understand the Mechanisms of Cellular Adaptation in Chemostats. Front Bioeng Biotechnol 2020; 8:579841. [PMID: 33392163 PMCID: PMC7775484 DOI: 10.3389/fbioe.2020.579841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest in continuous manufacturing within the bioprocessing community. In this context, the chemostat process is an important unit operation. The current application of chemostat processes in industry is limited although many high yielding processes are reported in literature. In order to reach the full potential of the chemostat in continuous manufacture, the output should be constant. However, adaptation is often observed resulting in changed productivities over time. The observed adaptation can be coupled to the selective pressure of the nutrient-limited environment in the chemostat. We argue that population heterogeneity should be taken into account when studying adaptation in the chemostat. We propose to investigate adaptation at the single-cell level and discuss the potential of different single-cell technologies, which could be used to increase the understanding of the phenomena. Currently, none of the discussed single-cell technologies fulfill all our criteria but in combination they may reveal important information, which can be used to understand and potentially control the adaptation.
Collapse
Affiliation(s)
- Naia Risager Wright
- Novo Nordisk A/S, Bagsvaerd, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
22
|
Peretzki AJ, Schmidt S, Flachowsky E, Das A, Gerhardt RF, Belder D. How electrospray potentials can disrupt droplet microfluidics and how to prevent this. LAB ON A CHIP 2020; 20:4456-4465. [PMID: 33103684 DOI: 10.1039/d0lc00936a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A pressure-resistant microfluidic glass chip that integrates a packed-bed HPLC column, a droplet generator and a monolithic electrospray emitter is presented. This approach enables a seamless coupling of chip-HPLC and droplet microfluidics with ESI-MS detection. For the electrical contacting of the emitter, an electrode was integrated into the channel, which reaches up to the emitter tip. The incidental finding that under certain circumstances, the electrospray potential can strongly disturb the droplet microfluidics by electrowetting, was investigated in detail. Strategies to avoid this are evaluated and include electrical shielding and/or chip layouts, where the droplet generator is positioned at a long distance from the emitter.
Collapse
Affiliation(s)
- Andrea J Peretzki
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|