1
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
2
|
Quantum chemical calculations of IR spectra of heparin disaccharide subunits. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Glycosaminoglycan interaction networks and databases. Curr Opin Struct Biol 2022; 74:102355. [DOI: 10.1016/j.sbi.2022.102355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022]
|
5
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
6
|
Greis K, Kirschbaum C, Fittolani G, Mucha E, Chang R, von Helden G, Meijer G, Delbianco M, Seeberger PH, Pagel K. Neighboring Group Participation of Benzoyl Protecting Groups in C3- and C6-Fluorinated Glucose. European J Org Chem 2022; 2022:e202200255. [PMID: 35915640 PMCID: PMC9321577 DOI: 10.1002/ejoc.202200255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Fluorination is a potent method to modulate chemical properties of glycans. Here, we study how C3- and C6-fluorination of glucosyl building blocks influence the structure of the intermediate of the glycosylation reaction, the glycosyl cation. Using a combination of gas-phase infrared spectroscopy and first-principles theory, glycosyl cations generated from fluorinated and non-fluorinated monosaccharides are structurally characterized. The results indicate that neighboring group participation of the C2-benzoyl protecting group is the dominant structural motif for all building blocks, correlating with the β-selectivity observed in glycosylation reactions. The infrared signatures indicate that participation of the benzoyl group in enhanced by resonance effects. Participation of remote acyl groups such as Fmoc or benzyl on the other hand is unfavored. The introduction of the less bulky fluorine leads to a change in the conformation of the ring pucker, whereas the structure of the active dioxolenium site remains unchanged.
Collapse
Affiliation(s)
- Kim Greis
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Carla Kirschbaum
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Giulio Fittolani
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Eike Mucha
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Rayoon Chang
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Gert von Helden
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Martina Delbianco
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Kevin Pagel
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| |
Collapse
|
7
|
Yatsyna V, Abikhodr AH, Ben Faleh A, Warnke S, Rizzo TR. High-Throughput Multiplexed Infrared Spectroscopy of Ion Mobility-Separated Species Using Hadamard Transform. Anal Chem 2022; 94:2912-2917. [PMID: 35113536 PMCID: PMC8851427 DOI: 10.1021/acs.analchem.1c04843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022]
Abstract
Coupling vibrational ion spectroscopy with high-resolution ion mobility separation offers a promising approach for detailed analysis of biomolecules in the gas phase. Improvements in the ion mobility technology have made it possible to separate isomers with minor structural differences, and their interrogation with a tunable infrared laser provides vibrational fingerprints for unambiguous database-enabled identification. Nevertheless, wide analytical application of this technique requires high-throughput approaches for acquisition of vibrational spectra of all species present in complex mixtures. In this work, we present a novel multiplexed approach and demonstrate its utility for cryogenic ion spectroscopy of peptides and glycans in mixtures. Since the method is based on Hadamard transform multiplexing, it yields infrared spectra with an increased signal-to-noise ratio compared to a conventional signal averaging approach.
Collapse
Affiliation(s)
- Vasyl Yatsyna
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
- Department
of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Ali H. Abikhodr
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ahmed Ben Faleh
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Karlsson R, Chopra P, Joshi A, Yang Z, Vakhrushev SY, Clausen TM, Painter CD, Szekeres GP, Chen YH, Sandoval DR, Hansen L, Esko JD, Pagel K, Dyer DP, Turnbull JE, Clausen H, Boons GJ, Miller RL. Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates. SCIENCE ADVANCES 2021; 7:eabl6026. [PMID: 34936441 PMCID: PMC8694587 DOI: 10.1126/sciadv.abl6026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
Heparan sulfate (HS) polysaccharides are master regulators of diverse biological processes via sulfated motifs that can recruit specific proteins. 3-O-sulfation of HS/heparin is crucial for anticoagulant activity, but despite emerging evidence for roles in many other functions, a lack of tools for deciphering structure-function relationships has hampered advances. Here, we describe an approach integrating synthesis of 3-O-sulfated standards, comprehensive HS disaccharide profiling, and cell engineering to address this deficiency. Its application revealed previously unseen differences in 3-O-sulfated profiles of clinical heparins and 3-O-sulfotransferase (HS3ST)–specific variations in cell surface HS profiles. The latter correlated with functional differences in anticoagulant activity and binding to platelet factor 4 (PF4), which underlies heparin-induced thrombocytopenia, a known side effect of heparin. Unexpectedly, cells expressing the HS3ST4 isoenzyme generated HS with potent anticoagulant activity but weak PF4 binding. The data provide new insights into 3-O-sulfate structure-function and demonstrate proof of concept for tailored cell-based synthesis of next-generation heparins.
Collapse
Affiliation(s)
- Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Apoorva Joshi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay ApS, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chelsea D. Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gergo P. Szekeres
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay ApS, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Daniel R. Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Pagel
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Douglas P. Dyer
- Wellcome Centre for Cell-Matrix Research, Geoffrey Jefferson Brain Research Centre, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jeremy E. Turnbull
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- Centre for Glycobiology, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
9
|
Greis K, Kirschbaum C, von Helden G, Pagel K. Gas-phase infrared spectroscopy of glycans and glycoconjugates. Curr Opin Struct Biol 2021; 72:194-202. [PMID: 34952241 DOI: 10.1016/j.sbi.2021.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/02/2021] [Accepted: 11/21/2021] [Indexed: 11/28/2022]
Abstract
Glycans are intrinsically complex biomolecules that pose particular analytical challenges. Standard workflows for glycan analysis are based on mass spectrometry, often coupled with separation techniques such as liquid chromatography and ion mobility spectrometry. However, this approach does not yield direct structural information and cannot always distinguish between isomers. This gap might be filled in the future by gas-phase infrared spectroscopy, which has emerged as a promising structure-sensitive technique for glycan fingerprinting. This review highlights recent applications of gas-phase infrared spectroscopy for the analysis of synthetic and biological glycans and how they can be integrated into mass spectrometry-based workflows.
Collapse
Affiliation(s)
- Kim Greis
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Carla Kirschbaum
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.
| |
Collapse
|
10
|
Warnke S, Ben Faleh A, Rizzo TR. Toward High-Throughput Cryogenic IR Fingerprinting of Mobility-Separated Glycan Isomers. ACS MEASUREMENT SCIENCE AU 2021; 1:157-164. [PMID: 34939078 PMCID: PMC8679095 DOI: 10.1021/acsmeasuresciau.1c00018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/10/2023]
Abstract
Infrared (IR) spectroscopy is a powerful tool used to infer detailed structural information on molecules, often in conjunction with quantum-chemical calculations. When applied to cryogenically cooled ions, IR spectra provide unique fingerprints that can be used for biomolecular identification. This is particularly important in the analysis of isomeric biopolymers, which are difficult to distinguish using mass spectrometry. However, IR spectroscopy typically requires laser systems that need substantial user attention and measurement times of tens of minutes, which limits its analytical utility. We report here the development of a new high-throughput instrument that combines ultrahigh-resolution ion-mobility spectrometry with cryogenic IR spectroscopy and mass spectrometry, and we apply it to the analysis of isomeric glycans. The ion mobility step, which is based on structures for lossless ion manipulations (SLIM), separates glycan isomers, and an IR fingerprint spectrum identifies them. An innovative cryogenic ion trap allows multiplexing the acquisition of analyte IR fingerprints following mobility separation, and using a turn-key IR laser, we can obtain spectra and identify isomeric species in less than a minute. This work demonstrates the potential of IR fingerprinting methods to impact the analysis of isomeric biomolecules and more specifically glycans.
Collapse
|
11
|
van Outersterp RE, Martens J, Peremans A, Lamard L, Cuyckens F, Oomens J, Berden G. Evaluation of table-top lasers for routine infrared ion spectroscopy in the analytical laboratory. Analyst 2021; 146:7218-7229. [PMID: 34724520 PMCID: PMC8607882 DOI: 10.1039/d1an01406d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023]
Abstract
Infrared ion spectroscopy is increasingly recognized as a method to identify mass spectrometry-detected analytes in many (bio)chemical areas and its integration in analytical laboratories is now on the horizon. Commercially available quadrupole ion trap mass spectrometers are attractive ion spectroscopy platforms but operate at relatively high pressures. This promotes collisional deactivation which directly interferes with the multiple-photon excitation process required for ion spectroscopy. To overcome this, infrared lasers having a high instantaneous power are required and therefore a majority of analytical studies have been performed at infrared free electron laser facilities. Proliferation of the technique to routine use in analytical laboratories requires table-top infrared lasers and optical parametric oscillators (OPOs) are the most suitable candidates, offering both relatively high intensities and reasonable spectral tuning ranges. Here, we explore the potential of a range of commercially available high-power OPOs for ion spectroscopy, comparing systems with repetition rates of 10 Hz, 20 kHz, 80 MHz and a continuous-wave (cw) system. We compare the performance for various molecular ions and show that the kHz and MHz repetition-rate systems outperform cw and 10 Hz systems in photodissociation efficiency and offer several advantages in terms of cost-effectiveness and practical implementation in an analytical laboratory not specialized in laser spectroscopy.
Collapse
Affiliation(s)
- Rianne E van Outersterp
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - André Peremans
- Laboratoire Physique de la Matière et du Rayonnement (P.M.R), Université de Namur, 5000 Namur, Belgium
| | | | - Filip Cuyckens
- Drug Metabolism & Pharmacokinetics, Janssen R&D, Beerse, Belgium
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Gaigeot MP. Some opinions on MD-based vibrational spectroscopy of gas phase molecules and their assembly: An overview of what has been achieved and where to go. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119864. [PMID: 34052762 DOI: 10.1016/j.saa.2021.119864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
We hereby review molecular dynamics simulations for anharmonic gas phase spectroscopy and provide some of our opinions of where the field is heading. With these new directions, the theoretical IR/Raman spectroscopy of large (bio)-molecular systems will be more easily achievable over longer time-scale MD trajectories for an increase in accuracy of the MD-IR and MD-Raman calculated spectra. With the new directions presented here, the high throughput 'decoding' of experimental IR/Raman spectra into 3D-structures should thus be possible, hence advancing e.g. the field of MS-IR for structural characterization by spectroscopy. We also review the assignment of vibrational spectra in terms of anharmonic molecular modes from the MD trajectories, and especially introduce our recent developments based on Graph Theory algorithms. Graph Theory algorithmic is also introduced in this review for the identification of the molecular 3D-structures sampled over MD trajectories.
Collapse
Affiliation(s)
- Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France.
| |
Collapse
|
13
|
Lettow M, Greis K, Grabarics M, Horlebein J, Miller RL, Meijer G, von Helden G, Pagel K. Chondroitin Sulfate Disaccharides in the Gas Phase: Differentiation and Conformational Constraints. J Phys Chem A 2021; 125:4373-4379. [PMID: 33979516 PMCID: PMC8279649 DOI: 10.1021/acs.jpca.1c02463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Glycosaminoglycans
(GAGs) are a family of complex carbohydrates
vital to all mammalian organisms and involved in numerous biological
processes. Chondroitin and dermatan sulfate, an important class of
GAGs, are linear macromolecules consisting of disaccharide building
blocks of N-acetylgalactosamine and two different
uronic acids. The varying degree and the site of sulfation render
their characterization challenging. Here, we combine mass spectrometry
with cryogenic infrared spectroscopy in the wavenumber range from
1000 to 1800 cm–1. Fingerprint spectra were recorded
for a comprehensive set of disaccharides bearing all known motifs
of sulfation. In addition, state-of-the-art quantum chemical calculations
were performed to aid the understanding of the differences in the
experimental fingerprint spectra. The results show that the degree
and position of charged sulfate groups define the size of the conformational
landscape in the gas phase. The detailed understanding of cryogenic
infrared spectroscopy for acidic and often highly sulfated glycans
may pave the way to utilize the technique in fragment-based sequencing
approaches.
Collapse
Affiliation(s)
- Maike Lettow
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Kim Greis
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Márkó Grabarics
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jan Horlebein
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Kevin Pagel
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
14
|
Non-covalent double bond sensors for gas-phase infrared spectroscopy of unsaturated fatty acids. Anal Bioanal Chem 2021; 413:3643-3653. [PMID: 33956167 PMCID: PMC8141490 DOI: 10.1007/s00216-021-03334-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
The position and configuration of carbon-carbon double bonds in unsaturated fatty acids is crucial for their biological functions and influences health and disease. However, double bond isomers are not routinely distinguished by classical mass spectrometry workflows. Instead, they require sophisticated analytical approaches usually based on chemical derivatization and/or instrument modification. In this work, a novel strategy to investigate fatty acid double bond isomers (18:1) without prior chemical treatment or modification of the ion source was implemented by non-covalent adduct formation in the gas phase. Fatty acid adducts with sodium, pyridinium, trimethylammonium, dimethylammonium, and ammonium cations were characterized by a combination of cryogenic gas-phase infrared spectroscopy, ion mobility-mass spectrometry, and computational modeling. The results reveal subtle differences between double bond isomers and confirm three-dimensional geometries constrained by non-covalent ion-molecule interactions. Overall, this study on fatty acid adducts in the gas phase explores new avenues for the distinction of lipid double bond isomers and paves the way for further investigations of coordinating cations to increase resolution.
Collapse
|
15
|
Huang F, Zhuang S, Liu W, Lin L, Sun L. Computational investigation on the chiral differentiation of D- and L-penicillamine by β-cyclodextrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119277. [PMID: 33310611 DOI: 10.1016/j.saa.2020.119277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The identification of chiral penicillamine (Pen) is of great significance for clinical medication safety. The host-guest systems formed by enantiomers and macromolecule can be applied to differentiate the chiral drugs and enable the drug delayed release. We hereby performed the dispersion corrected density functional theory (DFT-D) calculation on the complex formed by β-cyclodextrin(β-CD) and D/L-penicillamine (D/L-Pen). The diverse encapsulation configurations with different interaction energy show that both D-Pen and L-Pen tend to longitudinally embedded into the narrow aperture of β-CD with the front part of the sulfur group and the methyl group, and the interaction energy between L-Pen and β-CD is 5.47 kJ/mol(M062XD3) lower than that between D-Pen and β-CD. Based on the computed vibration frequency of host, guest, and the most stable complex, it is found that the featured peaks attributed to the vibration of the carboxyl group of guest and the skeleton vibration of complex are the most significant spectral standard to distinguish the β-CD-D/L-Pen and β-CD. Moreover, the peaks resulted from the skeleton vibration in terahertz spectra can be also used to distinguish the complex of β-CD with chiral Pen. Through the topological analysis and the Independent Gradient Model (IGM) analysis, the O-H…O hydrogen bond in β-CD-D-Pen is stronger than that in β-CD-L-Pen, and the van der Waals interactions such as C-H…O,C-H…N,C-H…S, O…S and C-H…C-H have the most contributions to the intermolecular interaction in β-CD-D/L-Pen. It is also noted that the H(-OH) in D-Pen and S in L-Pen contribute the most to the intermolecular interaction with β-CD in comparison with other atoms in Pen.
Collapse
Affiliation(s)
- Fan Huang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300071, PR China
| | - Shulei Zhuang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300071, PR China
| | - Weiwei Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300071, PR China
| | - Lie Lin
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300071, PR China
| | - Lu Sun
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300071, PR China; Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi, PR China.
| |
Collapse
|
16
|
van Geenen FAMG, Kranenburg RF, van Asten AC, Martens J, Oomens J, Berden G. Isomer-Specific Two-Color Double-Resonance IR 2MS 3 Ion Spectroscopy Using a Single Laser: Application in the Identification of Novel Psychoactive Substances. Anal Chem 2021; 93:2687-2693. [PMID: 33470107 PMCID: PMC7859929 DOI: 10.1021/acs.analchem.0c05042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The capability of
an ion trap mass
spectrometer to store ions for
an arbitrary amount of time allows the use of a single infrared (IR)
laser to perform two-color double resonance IR–IR spectroscopic
experiments on mass-to-charge (m/z) selected ions. In this single-laser IR2MS3 scheme, one IR laser frequency is used to remove a selected set
of isomers from the total trapped ion population and the second IR
laser frequency, from the same laser, is used to record the IR spectrum
of the remaining precursor ions. This yields isomer-specific vibrational
spectra of the m/z-selected ions,
which can reveal the structure and identity of the initially co-isolated
isomeric species. The use of a single laser greatly reduces the experimental
complexity of two-color IR2MS3 and enhances
its application in fields employing analytical MS. In this work, we
demonstrate the methodology by acquiring single-laser IR2MS3 spectra in a forensic context, identifying two previously
unidentified isomeric novel psychoactive substances (NPS) from a sample
that was confiscated by the Amsterdam Police.
Collapse
Affiliation(s)
- Fred A M G van Geenen
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Ruben F Kranenburg
- Forensic Laboratory, Unit Amsterdam, Dutch National Police, Kabelweg 25, 1014 BA Amsterdam, The Netherlands.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Arian C van Asten
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.,Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Jonathan Martens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|