1
|
Moxley-Paquette V, Pellizzari J, Lane D, Steiner K, Costa PM, Wolff WW, Lysak DH, Ghosh Biswas R, Downey K, Ronda K, Soong R, Zverev D, De Castro P, Frei T, Al Adwan-Stojilkovic D, Graf S, Gloor S, Schmidig D, Kuemmerle R, Kuehn T, Busse F, Haberer N, Domaszewicz J, Scatena R, Lacerda A, Nashman B, Anders J, Utz M, Simpson AJ. Exploration of Materials for Three-Dimensional NMR Microcoil Production via CNC Micromilling and Laser Etching. Anal Chem 2024; 96:13588-13597. [PMID: 39116295 DOI: 10.1021/acs.analchem.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The excellent versatility of 5-axis computer numerical control (CNC) micromilling has led to its application for prototyping NMR microcoils tailored to mass-limited samples (reducing development time and cost). However, vibrations during 5-axis milling can hinder the creation of complex 3D volume microcoils (i.e., solenoids and saddle coils). To address these limitations, a high-resolution NSCNC ELARA 4-axis milling machine was developed with the extra precision required for making complex 3D volume microcoils. Upon investigating the performance of resonators made with various copper-coated dielectrics, resonators with poly(methyl methacrylate) (PMMA) provided the best SNR/line shape. Thus, complex 1.7 mm microcoil designs were machined from Cu-coated PMMA. A milled 6.4 mm solenoid also provided 6.6× the total carbon signal for a 13C-labeled broccoli seed compared to a commercial inverse 5 mm NMR probe (demonstrating potential for larger coil designs). However, the manufacture of coils <1.7 mm with copper-coated PMMA rods was challenging as ∼0.5 mm of remaining PMMA was needed to retain their structural integrity. To manufacture smaller microcoils, both a solenoid and saddle coil (both with 1 mm O.D., 0.1 mm thick walls) were etched from Cu-coated glass capillaries using a UV picosecond laser that was mounted onto an NSCNC 5-axis MiRA7L. Both resonators showed excellent signal and identified a wide range of metabolites in a 13C-labeled algae extract, while the solenoid was further tested on two copepod egg sacs (∼4 μg of total sample). In summary, the flexibility to prototype complex microcoils in-house allows laboratories to tailor microcoils to specific mass-limited samples while avoiding the costs of cleanrooms.
Collapse
Affiliation(s)
- Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Jacob Pellizzari
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Lane
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Katrina Steiner
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Peter M Costa
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - William W Wolff
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Rajshree Ghosh Biswas
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Kiera Ronda
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Dmitri Zverev
- NSCNC Manufacturing LTD, 19358 96 Ave, Unit 150, Surrey, British Colombia V4N 4C1, Canada
| | - Peter De Castro
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | | | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Simon Gloor
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Falko Busse
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Nathan Haberer
- Aidlab, 651 N., Broad St., Suite 201, Middletown, Delaware 19709, United States
| | - Jakub Domaszewicz
- Aidlab, 651 N., Broad St., Suite 201, Middletown, Delaware 19709, United States
| | - Ryan Scatena
- Thermal Conductive Bonding Inc., 6210 88th Street, Sacramento, California 95828, United States
| | - Andressa Lacerda
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Ben Nashman
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Jens Anders
- University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - André J Simpson
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
2
|
Lysak DH, Bermel W, Moxley-Paquette V, Michal C, Ghosh-Biswas R, Soong R, Nashman B, Lacerda A, Simpson AJ. Cutting without a Knife: A Slice-Selective 2D 1H- 13C HSQC NMR Sequence for the Analysis of Inhomogeneous Samples. Anal Chem 2023; 95:14392-14401. [PMID: 37713676 DOI: 10.1021/acs.analchem.3c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Nuclear magnetic resonance (NMR) is a powerful technique with applications ranging from small molecule structure elucidation to metabolomics studies of living organisms. Typically, solution-state NMR requires a homogeneous liquid, and the whole sample is analyzed as a single entity. While adequate for homogeneous samples, such an approach is limited if the composition varies as would be the case in samples that are naturally heterogeneous or layered. In complex samples such as living organisms, magnetic susceptibility distortions lead to broad 1H line shapes, and thus, the additional spectral dispersion afforded by 2D heteronuclear experiments is often required for metabolite discrimination. Here, a novel, slice-selective 2D, 1H-13C heteronuclear single quantum coherence (HSQC) sequence was developed that exclusively employs shaped pulses such that only spins in the desired volume are perturbed. In turn, this permits multiple volumes in the tube to be studied during a single relaxation delay, increasing sensitivity and throughput. The approach is first demonstrated on standards and then used to isolate specific sample/sensor elements from a microcoil array and finally study slices within a living earthworm, allowing metabolite changes to be discerned with feeding. Overall, slice-selective NMR is demonstrated to have significant potential for the study of layered and other inhomogeneous samples of varying complexity. In particular, its ability to select subelements is an important step toward developing microcoil receive-only arrays to study environmental toxicity in tiny eggs, cells, and neonates, whereas localization in larger living species could help better correlate toxin-induced biochemical responses to the physical localities or organs involved.
Collapse
Affiliation(s)
- Daniel H Lysak
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Vincent Moxley-Paquette
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Carl Michal
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Rajshree Ghosh-Biswas
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Ben Nashman
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8,Canada
| | - Andressa Lacerda
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8,Canada
| | - Andre J Simpson
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
3
|
Moxley-Paquette V, Lane D, Steiner K, Downey K, Costa PM, Lysak DH, Ronda K, Soong R, Zverev D, De Castro P, Frei T, Stuessi J, Al Adwan-Stojilkovic D, Graf S, Gloor S, Schmidig D, Kuemmerle R, Kuehn T, Busse F, Utz M, Lacerda A, Nashman B, Albert L, Anders J, Simpson AJ. Development of Low-Magnetic Susceptibility Microcoils via 5-Axis Machining for Analysis of Biological and Environmental Samples. Anal Chem 2023; 95:13932-13940. [PMID: 37676066 DOI: 10.1021/acs.analchem.3c02437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In environmental research, it is critical to understand how toxins impact invertebrate eggs and egg banks, which, due to their tiny size, are very challenging to study by conventional nuclear magnetic resonance (NMR) spectroscopy. Microcoil technology has been extensively utilized to enhance the mass-sensitivity of NMR. In a previous study, 5-axis computer numerical control (CNC) micromilling (shown to be a viable alternative to traditional microcoil production methods) was used to create a prototype copper slotted-tube resonator (STR). Despite the excellent limit of detection (LOD) of the resonator, the quality of the line shape was very poor due to the magnetic susceptibility of the copper resonator itself. This is best solved using magnetic susceptibility-matched materials. In this study, approaches are investigated that improve the susceptibility while retaining the versatility of coil milling. One method involves machining STRs from various copper/aluminum alloys, while the other involves machining ones from an aluminum 2011 alloy and electroplating them with copper. In all cases, combining copper and aluminum to produce resonators resulted in improved line shape and SNR compared to pure copper resonators due to their reduced magnetic susceptibility. However, the copper-plated aluminum resonators showed optimal performance from the devices tested. The enhanced LOD of these STRs allowed for the first 1H-13C heteronuclear multiple quantum coherence (HMQC) of a single intact 13C-labeled Daphnia magna egg (∼4 μg total biomass). This is a key step toward future screening programs that aim to elucidate the toxic processes in aquatic eggs.
Collapse
Affiliation(s)
- Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Lane
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Katrina Steiner
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Peter M Costa
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Kiera Ronda
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Dimitri Zverev
- NSCNC Manufacturing LTD, 1515 Broadway Street Unit 607, Port Coquitlam, British Columbia V3C 6M2, Canada
| | - Peter De Castro
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Juerg Stuessi
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | | | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Simon Gloor
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Falko Busse
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Andressa Lacerda
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8Canada
| | - Ben Nashman
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8Canada
| | - Larry Albert
- ACI Alloys, Inc, 1458 Seareel Place, San Jose, California 95131, United States
| | - Jens Anders
- Institute of Smart Sensors,University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - André J Simpson
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
4
|
Price LE, Alaniva N, Millen M, Epprecht T, Urban M, Däpp A, Barnes AB. Cryogenic-compatible spherical rotors and stators for magic angle spinning dynamic nuclear polarization. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:231-241. [PMID: 37904856 PMCID: PMC10539783 DOI: 10.5194/mr-4-231-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/21/2023] [Indexed: 11/01/2023]
Abstract
Cryogenic magic angle spinning (MAS) is a standard technique utilized for dynamic nuclear polarization (DNP) in solid-state nuclear magnetic resonance (NMR). Here we describe the optimization and implementation of a stator for cryogenic MAS with 9.5 mm diameter spherical rotors, allowing for DNP experiments on large sample volumes. Designs of the stator and rotor for cryogenic MAS build on recent advancements of MAS spheres and take a step further to incorporate sample insert and eject and a temperature-independent spinning stability of ± 1 Hz. At a field of 7 T and spinning at 2.0 kHz with a sample temperature of 105-107 K, DNP enhancements of 256 and 200 were observed for 124 and 223 µ L sample volumes, respectively, each consisting of 4 M 13 C, 15 N-labeled urea and 20 mM AMUPol in a glycerol-water glassy matrix.
Collapse
Affiliation(s)
- Lauren E. Price
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Nicholas Alaniva
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Marthe Millen
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Till Epprecht
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Michael Urban
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Alexander Däpp
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| | - Alexander B. Barnes
- Department of Chemistry and Applied Biochemistry, ETH Zürich,
Zurich 8093, Switzerland
| |
Collapse
|
5
|
Gomez MV, Baas S, Velders AH. Multinuclear 1D and 2D NMR with 19F-Photo-CIDNP hyperpolarization in a microfluidic chip with untuned microcoil. Nat Commun 2023; 14:3885. [PMID: 37391397 PMCID: PMC10313780 DOI: 10.1038/s41467-023-39537-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a most powerful molecular characterization and quantification technique, yet two major persistent factors limit its more wide-spread applications: poor sensitivity, and intricate complex and expensive hardware required for sophisticated experiments. Here we show NMR with a single planar-spiral microcoil in an untuned circuit with hyperpolarization option and capability to execute complex experiments addressing simultaneously up to three different nuclides. A microfluidic NMR-chip in which the 25 nL detection volume can be efficiently illuminated with laser-diode light enhances the sensitivity by orders of magnitude via photochemically induced dynamic nuclear polarization (photo-CIDNP), allowing rapid detection of samples in the lower picomole range (normalized limit of detection at 600 MHz, nLODf,600, of 0.01 nmol Hz1/2). The chip is equipped with a single planar microcoil operating in an untuned circuit that allows different Larmor frequencies to be addressed simultaneously, permitting advanced hetero-, di- and trinuclear, 1D and 2D NMR experiments. Here we show NMR chips with photo-CIDNP and broadband capabilities addressing two of the major limiting factors of NMR, by enhancing sensitivity as well as reducing cost and hardware complexity; the performance is compared to state-of-the-art instruments.
Collapse
Affiliation(s)
- M Victoria Gomez
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
| | - Sander Baas
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands
| | - Aldrik H Velders
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Lysak DH, Grisi M, Marable K, Conley GM, Michal CA, Moxley-Paquette V, Wolff WW, Downey K, Kock FVC, Costa PM, Ronda K, Moraes TB, Steiner K, Colnago LA, Simpson AJ. Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research. Molecules 2023; 28:5080. [PMID: 37446742 PMCID: PMC10343494 DOI: 10.3390/molecules28135080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
With sensitivity being the Achilles' heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including 7Li, 19F, 31P and, 205Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a D. magna egg) were successfully studied using the CMOS micro-coil system. 13C NMR was used to help resolve broad signals in the 1H spectrum of the 13C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. 19F NMR was used to track fluorinated contaminants in a single D. magna egg, showing potential for studying egg-pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered.
Collapse
Affiliation(s)
- Daniel H. Lysak
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Marco Grisi
- Annaida Technologies, Innovation Park, 1015 Lausanne, Switzerland
| | - Kathryn Marable
- Annaida Technologies, Innovation Park, 1015 Lausanne, Switzerland
| | | | - Carl A. Michal
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | | | - William W. Wolff
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Katelyn Downey
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Flavio V. C. Kock
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Peter M. Costa
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Kiera Ronda
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Tiago B. Moraes
- Departamento Engenharia de Biossistemas, Universidade de São Paulo/ESALQ, Av. Páduas Dias, 11, Piracicaba 13418-900, SP, Brazil
| | - Katrina Steiner
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Luiz A. Colnago
- Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos 13560-970, SP, Brazil
| | - Andre J. Simpson
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
7
|
Jenne A, von der Ecken S, Moxley-Paquette V, Soong R, Swyer I, Bastawrous M, Busse F, Bermel W, Schmidig D, Kuehn T, Kuemmerle R, Al Adwan-Stojilkovic D, Graf S, Frei T, Monette M, Wheeler AR, Simpson AJ. Integrated Digital Microfluidics NMR Spectroscopy: A Key Step toward Automated In Vivo Metabolomics. Anal Chem 2023; 95:5858-5866. [PMID: 36996326 DOI: 10.1021/acs.analchem.2c04201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Toxicity testing is currently undergoing a paradigm shift from examining apical end points such as death, to monitoring sub-lethal toxicity in vivo. In vivo nuclear magnetic resonance (NMR) spectroscopy is a key platform in this endeavor. A proof-of-principle study is presented which directly interfaces NMR with digital microfluidics (DMF). DMF is a "lab on a chip" method allowing for the movement, mixing, splitting, and dispensing of μL-sized droplets. The goal is for DMF to supply oxygenated water to keep the organisms alive while NMR detects metabolomic changes. Here, both vertical and horizontal NMR coil configurations are compared. While a horizontal configuration is ideal for DMF, NMR performance was found to be sub-par and instead, a vertical-optimized single-sided stripline showed most promise. In this configuration, three organisms were monitored in vivo using 1H-13C 2D NMR. Without support from DMF droplet exchange, the organisms quickly showed signs of anoxic stress; however, with droplet exchange, this was completely suppressed. The results demonstrate that DMF can be used to maintain living organisms and holds potential for automated exposures in future. However, due to numerous limitations of vertically orientated DMF, along with space limitations in standard bore NMR spectrometers, we recommend future development be performed using a horizontal (MRI style) magnet which would eliminate practically all the drawbacks identified here.
Collapse
Affiliation(s)
- Amy Jenne
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Sebastian von der Ecken
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Nicoya, B-29 King Street East, Kitchener, Ontario N2G 2K4, Canada
| | - Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Ian Swyer
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Monica Bastawrous
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Falko Busse
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | | | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Martine Monette
- Bruker Canada Ltd., 2800 High Point Drive, Milton, Ontario L9T 6P4, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Andre J Simpson
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
8
|
Bastawrous M, Ghosh Biswas R, Soong R, Jouda M, MacKinnon N, Mager D, Korvink JG, Simpson AJ. Lenz Lenses in a Cryoprobe: Boosting NMR Sensitivity Toward Environmental Monitoring of Mass-Limited Samples. Anal Chem 2023; 95:1327-1334. [PMID: 36576271 DOI: 10.1021/acs.analchem.2c04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is commonly employed in a wide range of metabolomic research. Unfortunately, due to its relatively low sensitivity, smaller samples become challenging to study by NMR. Cryoprobes can be used to increase sensitivity by cooling the coil and preamplifier, offering sensitivity improvements of ∼3 to 4x. Alternatively, microcoils can be used to increase mass sensitivity by improving sample filling and proximity, along with decreased electrical resistance. Unfortunately, combining the two approaches is not just technically challenging, but as the coil decreases, so does its thermal fingerprint, reducing the advantage of cryogenic cooling. Here, an alternative solution is proposed in the form of a Lenz lens inside a cryoprobe. Rather than replacing the detection coil, Lenz lenses allow the B1 field from a larger coil to be refocused onto a much smaller sample area. In turn, the stronger B1 field at the sample provides strong coupling to the cryocoil, improving the signal. By combining a 530 I.D. Lenz lens with a cryoprobe, sensitivity was further improved by 2.8x and 3.5x for 1H and 13C, respectively, over the cryoprobe alone for small samples. Additionally, the broadband nature of the Lenz lenses allowed multiple nuclei to be studied and heteronuclear two-dimensional (2D) NMR approaches to be employed. The sensitivity improvements and 2D capabilities are demonstrated on 430 nL of hemolymph and eight eggs (∼350 μm O.D.) from the model organismDaphnia magna. In summary, combining Lenz lenses with cryoprobes offers a relatively simple approach to boost sensitivity for tiny samples while retaining cryoprobe advantages.
Collapse
Affiliation(s)
- Monica Bastawrous
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Rajshree Ghosh Biswas
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Mazin Jouda
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
9
|
Bastawrous M, Gruschke O, Soong R, Jenne A, Gross D, Busse F, Nashman B, Lacerda A, Simpson AJ. Comparing the Potential of Helmholtz and Planar NMR Microcoils for Analysis of Intact Biological Samples. Anal Chem 2022; 94:8523-8532. [DOI: 10.1021/acs.analchem.2c01560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monica Bastawrous
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Oliver Gruschke
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Ronald Soong
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Amy Jenne
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Dieter Gross
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Falko Busse
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Ben Nashman
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8, Canada
| | - Andressa Lacerda
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8, Canada
| | - Andre J. Simpson
- Environmental NMR Center, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
10
|
Moxley-Paquette V, Wu B, Lane D, Bastawrous M, Ning P, Soong R, De Castro P, Kovacevic I, Frei T, Stuessi J, Al Adwan-Stojilkovic D, Graf S, Vincent F, Schmidig D, Kuehn T, Kuemmerle R, Beck A, Fey M, Bermel W, Busse F, Gundy M, Boenisch H, Heumann H, Nashman B, Dutta Majumdar R, Lacerda A, Simpson AJ. Evaluation of double-tuned single-sided planar microcoils for the analysis of small 13 C enriched biological samples using 1 H- 13 C 2D heteronuclear correlation NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:386-397. [PMID: 34647646 DOI: 10.1002/mrc.5227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Microcoils provide a cost-effective approach to improve detection limits for mass-limited samples. Single-sided planar microcoils are advantageous in comparison to volume coils, in that the sample can simply be placed on top. However, the considerable drawback is that the RF field that is produced by the coil decreases with distance from the coil surface, which potentially limits more complex multi-pulse NMR pulse sequences. Unfortunately, 1 H NMR alone is not very informative for intact biological samples due to line broadening caused by magnetic susceptibility distortions, and 1 H-13 C 2D NMR correlations are required to provide the additional spectral dispersion for metabolic assignments in vivo or in situ. To our knowledge, double-tuned single-sided microcoils have not been applied for the 2D 1 H-13 C analysis of intact 13 C enriched biological samples. Questions include the following: Can 1 H-13 C 2D NMR be performed on single-sided planar microcoils? If so, do they still hold sensitivity advantages over conventional 5 mm NMR technology for mass limited samples? Here, 2D 1 H-13 C HSQC, HMQC, and HETCOR variants were compared and then applied to 13 C enriched broccoli seeds and Daphnia magna (water fleas). Compared to 5 mm NMR probes, the microcoils showed a sixfold improvement in mass sensitivity (albeit only for a small localized region) and allowed for the identification of metabolites in a single intact D. magna for the first time. Single-sided planar microcoils show practical benefit for 1 H-13 C NMR of intact biological samples, if localized information within ~0.7 mm of the 1 mm I.D. planar microcoil surface is of specific interest.
Collapse
Affiliation(s)
| | - Bing Wu
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Lane
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Monica Bastawrous
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Paris Ning
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| | - Peter De Castro
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Ivan Kovacevic
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Thomas Frei
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Juerg Stuessi
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | | | - Stephan Graf
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Franck Vincent
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Daniel Schmidig
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Till Kuehn
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Rainer Kuemmerle
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Armin Beck
- Magnetic Resonance Spectroscopy Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Michael Fey
- Magnetic Resonance Spectroscopy Division, Bruker Corporation, Billerica, MA, USA
| | - Wolfgang Bermel
- Magnetic Resonance Spectroscopy Division, Bruker Biospin GmbH, Rheinstetten, Germany
| | - Falko Busse
- Magnetic Resonance Spectroscopy Division, Bruker Biospin GmbH, Rheinstetten, Germany
| | - Marcel Gundy
- Research and Development, Silantes GmbH, Munich, Germany
| | | | | | - Ben Nashman
- Research and Development, Synex Medical, Toronto, Ontario, Canada
| | | | - Andressa Lacerda
- Research and Development, Synex Medical, Toronto, Ontario, Canada
| | - André J Simpson
- Environmental NMR Center, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|