1
|
Harper CC, Schloemer TH, Jordan JS, Heflin N, Narayanan P, Zhou Q, Congreve DN, Williams ER. Understanding the Formation Dynamics and Physical Properties of Nanocapsules Using Charge Detection Mass Spectrometry. ACS NANO 2024. [PMID: 39723934 DOI: 10.1021/acsnano.4c12461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Characterizing the size, structure, and composition of nanoparticles is vital in predicting and understanding their macroscopic properties. In this work, charge detection mass spectrometry (CDMS) was used to analyze nanocapsules (∼10-200 MDa) consisting of a liquid oleic acid core surrounded by a dense silica outer shell. CDMS is an emerging method for nanoparticle analysis that can rapidly measure the mass and charge of thousands of individual nanoparticles. We find that increasing the feed volume of the tetraethylorthosilicate (TEOS) precursor added to form the silica shell of the nanocapsules yielded both higher and broader nanocapsule mass distributions with differentiable densities. A two-dimensional mass versus charge analysis also revealed the formation of two distinct populations of nanocapsules. These two nanocapsule morphologies were also present in transmission electron microscopy (TEM) images and exhibited low-density spherical cores and crescent-shaped cores where the remainder of the core volume was "filled in" by more dense silica. Nanocapsule shell growth kinetics over a ∼48-h synthesis period were also monitored by sampling the reaction mixture at various times, quenching the sampled aliquots, and then characterizing these time-resolved samples by CDMS. The CDMS data reveal three distinct growth phases in nanocapsule formation; rapid initial nucleation, an "inverted" distribution of silica growth, and a final slow growth phase where the rate of mass increase and final nanocapsule masses are dictated by the initial TEOS feed volumes. CDMS-enabled understanding of the diverse nanocapsule sizes, morphologies, and growth dynamics will allow us to better predict nanocapsule properties while reducing the experimental burden in optimizing nanocapsules for real-world applications.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tracy H Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicole Heflin
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Chen CJ, Williams ER. Are Hydroxyl Radicals Spontaneously Generated in Unactivated Water Droplets? Angew Chem Int Ed Engl 2024; 63:e202407433. [PMID: 39242353 DOI: 10.1002/anie.202407433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/04/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Spontaneous ionization/breakup of water at the surface of aqueous droplets has been reported with evidence ranging from formation of hydrogen peroxide and hydroxyl radicals, indicated by ions at m/z 36 attributed to OH⋅-H3O+ or (H2O-OH2)+⋅ as well as oxidation products of radical scavengers in mass spectra of water droplets formed by pneumatic nebulization. Here, aqueous droplets are formed both by nanoelectrospray, which produces highly charged nanodrops with initial diameters ~100 nm, and a vibrating mesh nebulizer, which produces 2-20 μm droplets that are initially less highly charged. The lifetimes of these droplets range from 10s of μs to 560 ms and the surface-to-volume ratios span ~100-fold range. No ions at m/z 36 are detected with pure water, nor are significant oxidation products for the two radical scavengers that were previously reported to be formed in high abundance. These and other results indicate that prior conclusions about spontaneous hydroxyl radical formation in unactivated water droplets are not supported by the evidence and that water appears to be stable at droplet surfaces over a wide range of droplet size, charge and lifetime.
Collapse
Affiliation(s)
- Casey J Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Lee KJ, Jordan JS, Williams ER. Is Native Mass Spectrometry in Ammonium Acetate Really Native? Protein Stability Differences in Biochemically Relevant Salt Solutions. Anal Chem 2024; 96:17586-17593. [PMID: 39453378 DOI: 10.1021/acs.analchem.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Ammonium acetate is widely used in native mass spectrometry to provide adequate ionic strength without adducting to protein ions, but different ions can preferentially stabilize or destabilize the native form of proteins in solution. The stability of bovine serum albumin (BSA) was investigated in 50 mM solutions of a variety of salts using electrospray emitters with submicron tips to desalt protein ions. The charge-state distribution of BSA is narrow (+14 to +18) in ammonium acetate (AmmAc), whereas it is much broader (+13 to +42) in solutions containing sodium acetate (NaAc), ammonium chloride (AmmCl), potassium chloride (KCl), and sodium chloride (NaCl). The average charge state and percent of unfolded protein increase in these respective solutions, indicating greater extents of protein destabilization and conformational changes. In contrast, no high charge states of either bovine carbonic anhydrase II or IgG1 were formed in AmmAc or NaCl despite their similar melting temperatures to BSA, indicating that the presence of unfolded BSA in some of these solutions is not an artifact of the electrospray ionization process. The charge states formed from the nonvolatile salt solutions do not change significantly for up to 7 min of electrospray, but higher charging occurs after 10 min, consistent with solution acidification. Formation of unfolded BSA in NaAc but not in AmmAc indicates that the cation identity, not acidification, is responsible for structural differences in these two solutions. Temperature-dependent measurements show both increased charging and aggregation at lower temperatures in NaCl:Tris than in AmmAc, consistent with lower protein stability in the former solution. These results are consistent with the order of these ions in the Hofmeister series and indicate that data on protein stability in AmmAc may not be representative of solutions containing nonvolatile salts that are directly relevant to biology.
Collapse
Affiliation(s)
- Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
4
|
Hatvany JB, Olsen ELP, Gallagher ES. Characterizing Theta-Emitter Generation for Use in Microdroplet Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39387805 DOI: 10.1021/jasms.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Theta emitters are useful for generating microdroplets for rapid-mixing reactions. Theta emitters are glass tips containing an internal septum that separates two channels. When used for mixing, the solutions from each channel are sprayed with mixing occurring during electrospray ionization (ESI) with reaction times on the order of microseconds to milliseconds. Theta emitters of increasing size cause the formation of ESI droplets of increasing size, which require longer times for desolvation and increase droplet lifetimes. Droplets with longer lifetimes provide more time for mixing and allow for increased reaction times prior to desolvation. Because theta emitters are typically produced in-house, there is a need to consistently pull tips with a variety of sizes. Herein, we characterize the effect of pull parameters on the generation of distinct-sized theta emitters using a P-1000 tip puller. Of the examined parameters, the velocity value had the largest impact on the channel diameter. This work also compares the effect of pulling parameters between single-channel and theta capillaries to examine how the internal septum in theta capillaries affects tip pulling. We demonstrate the utility of using theta emitters with different sizes for establishing distinct reaction times. Finally, we offer suggestions on producing theta emitters of various sizes while maintaining high repeatability. Through this work, we provide resources to establish a versatile and inexpensive rapid-mixing system for probing biologically relevant systems and performing rapid derivatizations.
Collapse
Affiliation(s)
- Jacob B Hatvany
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Emma-Le P Olsen
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
5
|
Alinezhad V, Ng YK, Mehta S, Konermann L. Uncovering the Pathway of Serine Octamer Magic Number Cluster Formation during Electrospray Ionization: Experiments and Simulations. J Am Chem Soc 2024; 146:26726-26742. [PMID: 39287424 DOI: 10.1021/jacs.4c05760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Electrospray ionization (ESI) of serine (Ser) solution generates Ser8H+ as an abundant magic number cluster. ESI clustering of most other solutes yields nonspecific stoichiometries. It is unclear why Ser8H+ dominates in the case of Ser, and how Ser8H+ forms during ESI. Even the location of Ser8H+ formation is contentious (in solution, in ESI droplets, or elsewhere). Here we unravel key aspects of the l-Ser8H+ formation pathway. Harsh ion sampling conditions promote the collision-induced dissociation (CID) of regular ESI analytes. Unexpectedly, Ser8H+ was seemingly resistant against CID during ion sampling, despite its extremely low tandem mass spectrometry (MS/MS) stability. This unusual behavior reveals that Ser8H+ forms during ion sampling. We propose the following pathway: (1) Nonspecific Ser clusters are released when ESI droplets evaporate to dryness. These initial clusters cover a wide size range, from a few Ser to hundreds or thousands of monomers. (2) The clusters undergo dissociation during ion sampling, mostly via successive loss of neutral monomers. For any source activation voltage, there is a subpopulation of clusters for which this CID cascade tends to terminate at the octamer level, culminating in Ser8H+-dominated product distributions. Mobile proton molecular dynamics simulations were used to model the entire pathway. Ser8H+ structures formed in these simulations were consistent with ion mobility experiments. The most compact structures resembled the model of [Scutelnic, V. J. Am. Chem. Soc. 2018, 140, 7554-7560], with numerous intermolecular salt bridges and H-bonds. Our findings illustrate how the interplay of association and dissociation reactions across phase boundaries can culminate in magic number clusters.
Collapse
Affiliation(s)
- Vida Alinezhad
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yuen Ki Ng
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Sanvid Mehta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
6
|
Stroganova I, Toprakcioglu Z, Willenberg H, Knowles TPJ, Rijs AM. Unraveling the Structure and Dynamics of Ac-PHF6-NH 2 Tau Segment Oligomers. ACS Chem Neurosci 2024; 15:3391-3400. [PMID: 39215387 DOI: 10.1021/acschemneuro.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The aggregation of the proteins tau and amyloid-β is a salient feature of Alzheimer's disease, the most common form of neurodegenerative disorders. Upon aggregation, proteins transition from their soluble, monomeric, and functional state into insoluble, fibrillar deposits through a complex process involving a variety of intermediate species of different morphologies, including monomers, toxic oligomers, and insoluble fibrils. To control and direct peptide aggregation, a complete characterization of all species present and an understanding of the molecular processes along the aggregation pathway are essential. However, this is extremely challenging due to the transient nature of oligomers and the complexity of the reaction networks. Therefore, we have employed a combined approach that allows us to probe the structure and kinetics of oligomeric species, following them over time as they form fibrillar structures. Targeting the tau protein peptide segment Ac-PHF6-NH2, which is crucial for the aggregation of the full protein, soft nano-electrospray ionization combined with ion mobility mass spectrometry has been employed to study the kinetics of heparin-induced intact oligomer formation. The oligomers are identified and characterized using high-resolution ion mobility mass spectrometry, demonstrating that the addition of heparin does not alter the structure of the oligomeric species. The kinetics of fibril formation is monitored through a Thioflavin T fluorescence assay. Global fitting of the kinetic data indicates that secondary nucleation plays a key role in the aggregation of the Ac-PHF6-NH2 tau segment, while the primary nucleation rate is greatly accelerated by heparin.
Collapse
Affiliation(s)
- Iuliia Stroganova
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Hannah Willenberg
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Anouk M Rijs
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
7
|
Jordan JS, Harper CC, Zhang F, Kofman E, Li M, Sathiyamoorthy K, Zaragoza JP, Fayadat-Dilman L, Williams ER. Charge Detection Mass Spectrometry Reveals Conformational Heterogeneity in Megadalton-Sized Monoclonal Antibody Aggregates. J Am Chem Soc 2024; 146:23297-23305. [PMID: 39110484 DOI: 10.1021/jacs.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Aggregation of protein-based therapeutics can occur during development, production, or storage and can lead to loss of efficacy and potential toxicity. Native mass spectrometry of a covalently linked pentameric monoclonal antibody complex with a mass of ∼800 kDa reveals several distinct conformations, smaller complexes, and abundant higher-order aggregates of the pentameric species. Charge detection mass spectrometry (CDMS) reveals individual oligomers up to the pentamer mAb trimer (15 individual mAb molecules; ∼2.4 MDa) whereas intermediate aggregates composed of 6-9 mAb molecules and aggregates larger than the pentameric dimer (1.6 MDa) were not detected/resolved by standard mass spectrometry, size exclusion chromatography (SEC), capillary electrophoresis (CE-SDS), or by mass photometry. Conventional quadrupole time-of-flight mass spectrometry (QTOF MS), mass photometry, SEC, and CE-SDS did not resolve partially or more fully unfolded conformations of each oligomer that were readily identified using CDMS by their significantly higher extents of charging. Trends in the charge-state distributions of individual oligomers provides detailed insight into how the structures of compact and elongated mAb aggregates change as a function of aggregate size. These results demonstrate the advantages of CDMS for obtaining accurate masses and information about the conformations of large antibody aggregates despite extensive overlapping m/z values. These results open up the ability to investigate structural changes that occur in small, soluble oligomers during the earliest stages of aggregation for antibodies or other proteins.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Fan Zhang
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Esther Kofman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Mandy Li
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Karthik Sathiyamoorthy
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Jan Paulo Zaragoza
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Laurence Fayadat-Dilman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
8
|
Jordan JS, Lee KJ, Williams ER. Overcoming aggregation with laser heated nanoelectrospray mass spectrometry: thermal stability and pathways for loss of bicarbonate from carbonic anhydrase II. Analyst 2024; 149:2281-2290. [PMID: 38497240 DOI: 10.1039/d4an00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Variable temperature electrospray mass spectrometry is useful for multiplexed measurements of the thermal stabilities of biomolecules, but the ionization process can be disrupted by aggregation-prone proteins/complexes that have irreversible unfolding transitions. Resistively heating solutions containing a mixture of bovine carbonic anhydrase II (BCAII), a CO2 fixing enzyme involved in many biochemical pathways, and cytochrome c leads to complete loss of carbonic anhydrase signal and a significant reduction in cytochrome c signal above ∼72 °C due to aggregation. In contrast, when the tips of borosilicate glass nanoelectrospray emitters are heated with a laser, complete thermal denaturation curves for both proteins are obtained in <1 minute. The simultaneous measurements of the melting temperature of BCAII and BCAII bound to bicarbonate reveal that the bicarbonate stabilizes the folded form of this protein by ∼6.4 °C. Moreover, the temperature dependences of different bicarbonate loss pathways are obtained. Although protein analytes are directly heated by the laser for only 140 ms, heat conduction further up the emitter leads to a total analyte heating time of ∼41 s. Pulsed laser heating experiments could reduce this time to ∼0.5 s for protein aggregation that occurs on a faster time scale. Laser heating provides a powerful method for studying the detailed mechanisms of cofactor/ligand loss with increasing temperature and promises a new tool for studying the effect of ligands, drugs, growth conditions, buffer additives, or other treatments on the stabilities of aggregation-prone biomolecules.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| |
Collapse
|
9
|
Cruz-Simbron RL, Picasso G, Cerda-Hernández J. Amino acid chiral amplification using Monte Carlo dynamic. J Chem Phys 2024; 160:084502. [PMID: 38407289 DOI: 10.1063/5.0190089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/21/2024] [Indexed: 02/27/2024] Open
Abstract
This study investigates the stability of chiral-molecule solution phases, with a specific focus on amino acids. The model framework is based on a two-dimensional square lattice model, where individual sites may be occupied by oriented chiral molecules or structureless solvent particles. Utilizing the Glauber dynamics and statistical mechanical formalism, as previously introduced and examined by Lombardo et al., we explore the influence of temperature, amino acid concentration, enantiomeric excess, and homochiral interaction strength on nucleation mechanisms, equilibrium phase behavior, and crystal composition. Our findings offer thermodynamic insights into the chiral amplification process of amino acids, contributing to a deeper understanding of the underlying processes.
Collapse
Affiliation(s)
- Romulo Leoncio Cruz-Simbron
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima, Peru
| | - Gino Picasso
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima, Peru
| | - José Cerda-Hernández
- Econometric Modelling and Data Science Research Group, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima, Peru
| |
Collapse
|
10
|
Hanozin E, Harper CC, McPartlan MS, Williams ER. Dynamics of Rayleigh Fission Processes in ∼100 nm Charged Aqueous Nanodrops. ACS CENTRAL SCIENCE 2023; 9:1611-1622. [PMID: 37637724 PMCID: PMC10451037 DOI: 10.1021/acscentsci.3c00323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 08/29/2023]
Abstract
Fission of micron-size charged droplets has been observed using optical methods, but little is known about fission dynamics and breakup of smaller nanosize droplets that are important in a variety of natural and industrial processes. Here, spontaneous fission of individual aqueous nanodrops formed by electrospray is investigated using charge detection mass spectrometry. Fission processes ranging from formation of just two progeny droplets in 2 ms to production of dozens of progeny droplets over 100+ ms are observed for nanodrops that are charged above the Rayleigh limit. These results indicate that Rayleigh fission is a continuum of processes that produce progeny droplets that vary widely in charge, mass, and number.
Collapse
Affiliation(s)
- Emeline Hanozin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Conner C. Harper
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew S. McPartlan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Gadzuk-Shea MM, Hubbard EE, Gozzo TA, Bush MF. Sample pH Can Drift during Native Mass Spectrometry Experiments: Results from Ratiometric Fluorescence Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1675-1684. [PMID: 37405934 PMCID: PMC10563179 DOI: 10.1021/jasms.3c00147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The ability of nanoelectrospray ionization (nanoESI) to generate a continuous flow of charged droplets relies on the electrolytic nature of the process. This electrochemistry can lead to the accumulation of redox products in the sample solution. This consequence can have significant implications for native mass spectrometry (MS), which aims to probe the structures and interactions of biomolecules in solution. Here, ratiometric fluorescence imaging and a pH-sensitive, fluorescent probe are used to quantify changes in solution pH during nanoESI under conditions relevant to native MS. Results show that the extent and rate of change in sample pH depends on several experimental parameters. There is a strong correlation between the extent and rate of change in solution pH and the magnitude of both the nanoESI current and electrolyte concentration. Smaller changes in solution pH are observed during experiments when a negative potential is applied than for those when a positive potential is applied. Finally, we make specific recommendations for designing native MS experiments that control for these effects.
Collapse
Affiliation(s)
- Meagan M. Gadzuk-Shea
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
- Current Affiliation: Discovery Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA 02451
| | - Evan E. Hubbard
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
- Current Affiliation: Current Affiliation: Department of Chemistry, University of California, Riverside, California 92521
| | - Theresa A. Gozzo
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Matthew F Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
12
|
Mostafa ME, Hayes MM, Grinias JP, Bythell BJ, Edwards JL. Supercritical Fluid Nanospray Mass Spectrometry: II. Effects on Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37097105 DOI: 10.1021/jasms.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanospraying supercritical fluids coupled to a mass spectrometer (nSF-MS) using a 90% supercritical fluid CO2 carrier (sCO2) has shown an enhanced desolvation compared to traditional liquid eluents. Capillaries of 25, 50, and 75 μm internal diameter (i.d.) with pulled emitter tips provided high MS detection sensitivity. Presented here is an evaluation of the effect of proton affinity, hydrophobicity, and nanoemitter tip size on the nSF-MS signal. This was done using a set of primary, secondary, tertiary, and quaternary amines with butyl, hexyl, octyl, and decyl chains as analytes. Each amine class was analyzed individually to evaluate hydrophobicity and proton affinity effects on signal intensity. The system has shown a mass sensitive detection on a linear dynamic range of 0.1-100 μM. Results indicate that hydrophobicity has a larger effect on the signal response than proton affinity. Nanospraying a mixture of all amine classes using the 75 μm emitter has shown a quaternary amine signal not suppressed by competing analytes. Competing ionization was observed for primary, secondary, and tertiary amines. The 75 and 50 μm emitters demonstrated increased signal with increasing hydrophobicity. Surprisingly, the 25 μm i.d. emitter yielded a signal decrease as the alkyl chain length increased, contrary to conventional understanding. Nanospraying the evaporative fluid in a sub-500 nm emitter likely resulted in differences in the ionization mechanism. Results suggest that 90% sCO2 with 9.99% methanol and 0.01% formic acid yielded fast desolvation, high ionization efficiency, and low matrix effect, which could benefit complex biological matrix analysis.
Collapse
Affiliation(s)
- Mahmoud Elhusseiny Mostafa
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Madisyn M Hayes
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, New Jersey 08028, United States
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| |
Collapse
|
13
|
Harper CC, Miller ZM, McPartlan MS, Jordan JS, Pedder RE, Williams ER. Accurate Sizing of Nanoparticles Using a High-Throughput Charge Detection Mass Spectrometer without Energy Selection. ACS NANO 2023; 17:7765-7774. [PMID: 37027782 PMCID: PMC10389270 DOI: 10.1021/acsnano.3c00539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The sizes and shapes of nanoparticles play a critical role in their chemical and material properties. Common sizing methods based on light scattering or mobility lack individual particle specificity, and microscopy-based methods often require cumbersome sample preparation and image analysis. A promising alternative method for the rapid and accurate characterization of nanoparticle size is charge detection mass spectrometry (CDMS), an emerging technique that measures the masses of individual ions. A recently constructed CDMS instrument designed specifically for high acquisition speed, efficiency, and accuracy is described. This instrument does not rely on an ion energy filter or estimates of ion energy that have been previously required for mass determination, but instead uses direct, in situ measurements. A standardized sample of ∼100 nm diameter polystyrene nanoparticles and ∼50 nm polystyrene nanoparticles with amine-functionalized surfaces are characterized using CDMS and transmission electron microscopy (TEM). Individual nanoparticle masses measured by CDMS are transformed to diameters, and these size distributions are in close agreement with distributions measured by TEM. CDMS analysis also reveals dimerization of ∼100 nm nanoparticles in solution that cannot be determined by TEM due to the tendency of nanoparticles to agglomerate when dried onto a surface. Comparing the acquisition and analysis times of CDMS and TEM shows particle sizing rates up to ∼80× faster are possible using CDMS, even when samples ∼50× more dilute were used. The combination of both high-accuracy individual nanoparticle measurements and fast acquisition rates by CDMS represents an important advance in nanoparticle analysis capabilities.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Zachary M Miller
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Matthew S McPartlan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Randall E Pedder
- Ardara Technologies LP, Ardara, Pennsylvania 15615, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
14
|
Hou Y, Xu X, Kong X. K +-Selectivity Due to Coordination with a D4d-Symmetric Homochiral Proline Octamer Verified by Mass Spectrometry and Infrared Photodissociation Spectroscopy. J Phys Chem Lett 2023; 14:2660-2664. [PMID: 36892259 DOI: 10.1021/acs.jpclett.2c03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Both phenomena of homochirality and sodium-potassium ion selectivity in cells have been regarded as important issues in the process of the origin of life. However, whether K+/Na+ selectivity was involved in homochirogenesis has never been considered. Herein, we report that a homochiral proline octamer shows high K+-selectivity. Coordination of K+ results in formation of a stable, noncovalent, D4d-symmetric complex, as demonstrated by mass spectrometry, infrared photodissociation spectroscopy, and calculations. A cooperative relationship between an eight-coordinated metal cation and a homochirality-restricted topological hydrogen-bonded proline network is the key for the K+/Na+ selectivity. As the complex comprises merely the basic chiral amino acid, it provides a possible linkage between K+/Na+ selectivity and the origin of chirality on the prebiotic Earth.
Collapse
Affiliation(s)
- Yameng Hou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xingshi Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xianglei Kong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Konermann L, Haidar Y. Mechanism of Magic Number NaCl Cluster Formation from Electrosprayed Water Nanodroplets. Anal Chem 2022; 94:16491-16501. [DOI: 10.1021/acs.analchem.2c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
Lee J, Jang S, Kim M, Boraste DR, Kim K, Park KM, Seo J. Trapping Alkali Halide Cluster Ions Inside the Cucurbit[7]uril Cavity. J Phys Chem Lett 2022; 13:9581-9588. [PMID: 36205501 DOI: 10.1021/acs.jpclett.2c02583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, the distinctive behavior of cucurbit[n]uril (CB[n]), which captures a variety of alkali halide clusters inside the cavity during the droplet evaporation, has been investigated by using ion mobility spectrometry-mass spectrometry. Complexes of CB[7] with various alkali chloride cluster cations or anions generated during the electrospray ionization were studied, and their collision cross-section (CCS) values were obtained to determine whether these clusters were trapped inside the cavity or not. It was found that the clusters smaller than a specific critical size were trapped inside the CB[7] cavity in the gas phase, although trapping of alkali halide clusters at the given concentration is supposed to be unfavorable in solution. We suggest that the rapid solvent evaporation rapidly increases ion concentrations and subsequently forms alkali-chloride contact ion pairs; therefore, it may provide a specific environment to enable the formation of the inclusion complexes.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| | - Seongjae Jang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| | - Minsu Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| | - Deepak R Boraste
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| | - Kimoon Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Gyeongsangbuk-do, Republic of Korea
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| | - Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
17
|
Tan S, Yin X, Feng L, Wang J, Li C, Jiang Y, Gong X, Fang X, Dai X. Investigation on the binary ionization choices for large conjugated amines during electrospray ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9330. [PMID: 35637635 DOI: 10.1002/rcm.9330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Generally, amines form protonated cations ([M + H]+ ) in positive polarity during electrospray ionization (ESI). However, it was found that large conjugated amines (LCAs) had binary ionization choices of generating either radical cations (M•+ ) or [M + H]+ during ESI. Investigation on the mechanism would further our understanding of ESI. METHODS In this work, the binary ionization behavior of LCAs was reported and studied. Internal factors (functional groups and sizes of conjugated systems) and external factors (solvent type, flow rate, and electrode position) were systematically investigated and discussed. RESULTS For the internal factors, electron-donating groups and large conjugated structures of LCAs were conducive to the generation of M•+ . For the external factors, aprotic solvent, higher flow rate, and shorter distance from the electrode to the spray cone facilitated the formation of M•+ but hampered the generation of [M + H]+ . CONCLUSION The present study illustrated that the formations of M•+ and [M + H]+ for LCAs were two independent processes. The M•+ cations of LCAs were formed on the surface of the electrode through electrochemical oxidation, whereas the [M + H]+ cations were generated following the typical ESI evolution process. By regulating the external factors, the ionization results of LCAs could be well modulated.
Collapse
Affiliation(s)
- Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Lulu Feng
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou, People's Republic of China
| | - Juduo Wang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Chang Li
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, People's Republic of China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| |
Collapse
|
18
|
Jordan JS, Xia Z, Williams ER. Tips on Making Tiny Tips: Secrets to Submicron Nanoelectrospray Emitters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:607-611. [PMID: 35157433 DOI: 10.1021/jasms.1c00372] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoelectrospray ionization emitters with submicron tip diameters have significant advantages for use in native mass spectrometry, including the ability to produce resolved charge-state distributions for proteins and macromolecular complexes from standard biochemical buffers that contain high concentrations of nonvolatile salts and to prevent nonspecific aggregation that can occur during droplet evaporation. We report on various factors affecting the tip morphology and provide suggestions for producing and using emitters with submicron tips. Effects of pulling parameters for a Sutter Instrument P-87 tip puller on the resulting tip diameter and morphology are shown. The "Pull" parameter has the largest effect on tip diameter, followed by "Velocity", "Pressure", and "Heat", whereas the "Time" parameter has minimal effect beyond a lower threshold. High "Pull" values generate emitters with multiple tapers, whereas high "Velocity" values generate a tip with only a single tapered region. A protocol for producing reproducible emitters in the submicron size range, as well as guidelines and tips for using these emitters with standard biochemical buffers that contain high concentrations of nonvolatile salts, is presented with the aim of expanding their use within the native mass spectrometry community.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zijie Xia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Dulay MT, Chamberlayne CF, Zare RN. Optimizing Coaxial Sonic Spray Geometry for Generating Water Microdroplets. Anal Chem 2022; 94:3762-3766. [PMID: 35191692 DOI: 10.1021/acs.analchem.1c05337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sonic spray creates a stream of neutral and charged microdroplets without application of voltage, heating, laser irradiation, or corona discharge. The solvent of interest flows through an inner capillary (usually constructed of fused silica) that is surrounded by an outer stainless-steel tube through which a nebulizing gas flows under pressure. This technique has been widely used as the interface in mass spectrometric studies for chemical analysis and for understanding microdroplet chemistry. We have used light scattering to characterize the size distribution and density for water microdroplets as a function of several parameters, such as water quality, water flow rate, nebulizing gas pressure, and sonic sprayer geometry. We find that the size distribution of the microdroplets, which is critical to many applications, depends most sensitively on the distance between the inner and outer capillary outlets and the gas flow pressure. The best performance as measured by the smallness of the microdroplet diameters is obtained when the gas flow pressure is the highest and there is no separation distance, d, between the two capillary outlets. In addition, at d = 0 mm, the microdroplet diameter distribution is nearly independent of the water flow rate, indicating that studies under these conditions can be scaled up.
Collapse
Affiliation(s)
- Maria T Dulay
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Department of Radiology, Stanford School of Medicine, Stanford, California 94305, United States
| | | | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Homochiral or Heterochiral: A Systematic Study of Threonine Clusters Using a FT ICR Mass Spectrometer. Symmetry (Basel) 2022. [DOI: 10.3390/sym14010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The strong chiral preferences of some magic clusters of amino acids have attracted continually increasing interests due to their unique structures, properties and possible roles in homochirogenesis. However, how chirality can influence the generation and stability of cluster ions in a wild range of cluster sizes is still unknown for most amino acids. In this study, the preference for threonine clusters to form homochiral and heterochiral complex ions has been investigated by electrospray ionization (ESI) mass spectrometry. Abundant cluster [Thrn+mH]m+ ions (7 ≤ n ≤ 78, 1 ≤ m ≤ 5) have been observed for both samples of enantiopure (100% L) and racemic (50:50 L:D) threonine solutions. Further analyses of the spectra show that the [Thr14+2H]2+ ion is characterized by its most outstanding homochiral preference, and [Thr7+H]+ and [Thr8+H]+ ions also clearly exhibit their homochiral preferences. Although most of the triply charged clusters (20 ≤ n ≤ 36) are characterized by heterochiral preferences, the quadruply charged [Thrn+4H]4+ ions (40 ≤ n ≤ 59) have no obvious chiral preference in general. On the other hand, a weak homochiral preference exists for most of the quintuply charged ions observed in the experiment.
Collapse
|
21
|
Jordan JS, Williams ER. Homochiral preference of serine octamer in solution and formed by dissociation of large gaseous clusters. Analyst 2021; 146:6822-6830. [PMID: 34668895 DOI: 10.1039/d1an01646f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of electrospray emitters with submicron tip diameters to significantly reduce and even eliminate aggregation of analyte molecules that can occur inside evaporating droplets was recently demonstrated to show that serine octamer exists in bulk solution, albeit in low abundance. Results using 222 nm emitter tips for D-serine and deuterium labeled L-serine show that the serine octamer that exists in 100 μM solution has a strong homochiral preference. Dissociation of large multiply protonated clusters results in formation of protonated octamer through a doubly protonated decamer intermediate. Remarkably, dissociation of the doubly protonated decamer from solution, which has a heterochiral preference, results in protonated octamer with strong homochiral preference. This homochiral preference is higher when protonated octamer is formed from larger clusters and approaches the chiral preference of the octamer in solution. These results show that the doubly protonated decamer has a different structure when formed from solution than when formed by dissociation of larger clusters. These results indicate that the unusually high abundance of protonated homochiral octamer formed by spray ionization methods that has been reported previously can be largely attributed to aggregation of serine that occurs in rapidly evaporating droplets and from dissociation of large clusters that form abundant protonated octamer at an optimized effective temperature.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Javanshad R, Venter AR. Effects of amino acid additives on protein solubility - insights from desorption and direct electrospray ionization mass spectrometry. Analyst 2021; 146:6592-6604. [PMID: 34586125 DOI: 10.1039/d1an01392k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring amino acids have been broadly used as additives to improve protein solubility and inhibit aggregation. In this study, improvements in protein signal intensity obtained with the addition of L-serine, and structural analogs, to the desorption electrospray ionization mass spectrometry (DESI-MS) spray solvent were measured. The results were interpreted at the hand of proposed mechanisms of solution additive effects on protein solubility and dissolution. DESI-MS allows for these processes to be studied efficiently using dilute concentrations of additives and small amounts of proteins, advantages that represent real benefits compared to classical methods of studying protein stability and aggregation. We show that serine significantly increases the protein signal in DESI-MS when native proteins are undergoing unfolding during the dissolution process with an acidic solvent system (p-value = 0.0001), or with ammonium bicarbonate under denaturing conditions for proteins with high isoelectric points (p-value = 0.001). We establish that a similar increase in the protein signal cannot be observed with direct ESI-MS, and the observed increase is therefore not related to ionization processes or changes in the physical properties of the bulk solution. The importance of the presence of serine during protein conformational changes while undergoing dissolution is demonstrated through comparisons between the analyses of proteins deposited in native or unfolded states and by using native state-preserving and denaturing desorption solvents. We hypothesize that direct, non-covalent interactions involving all three functional groups of serine are involved in the beneficial effect on protein solubility and dissolution. Supporting evidence for a direct interaction include a reduction in efficacy with D-serine or the racemic mixture, indicating a non-bulk-solution physical property effect; insensitivity to the sample surface type or relative placement of serine addition; and a reduction in efficacy with any modifications to the serine structure, most notably the carboxyl functional group. An alternative hypothesis, also supported by some of our observations, could involve the role of serine clusters in the mechanism of solubility enhancement. Our study demonstrates the capability of DESI-MS together with complementary ESI-MS experiments as a novel tool for understanding protein solubility and dissolution and investigating the mechanism of action for solubility-enhancing additives.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| |
Collapse
|
23
|
Inoue K, Fujihara A. Quantification of Amino Acid Enantiomers Using Electrospray Ionization and Ultraviolet Photodissociation. Mass Spectrom (Tokyo) 2021; 10:A0097. [PMID: 34552841 PMCID: PMC8440895 DOI: 10.5702/massspectrometry.a0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
The enantioselectivity of tryptophan (Trp) for amino acids, such as alanine (Ala), valine (Val), and serine (Ser), was investigated using ultraviolet (UV) photoexcitation and tandem mass spectrometry. Product ion spectra of cold gas-phase amino acid enantiomers that were hydrogen-bonded to Na+(L-Trp) were measured using a variable-wavelength UV laser and a tandem mass spectrometer equipped with an electrospray ionization source and a cold ion trap. Na+(L-Trp), formed via amino acid detachment, and the elimination of CO2 from the clusters were observed in the product ion spectra. For photoexcitation at 265 nm, the relative abundance of Na+(L-Trp) compared to that of the precursor ion observed in the product ion spectrum of heterochiral Na+(L-Trp)(D-Ala) was larger than that observed in the product ion spectrum of homochiral Na+(L-Trp)(L-Ala). A difference between the Val enantiomers in the relative abundance of the precursor and product ions was observed in the case of photoexcitation at 272 nm. The elimination of CO2 was not observed for L-Ser for the 285 nm photoexcitation, which was the main reaction pathway for D-Ser. Photoexcited Trp chiral recognition was applied to identify and quantify the amino acid enantiomers in solution. Ala, Val, and Ser enantiomers in solution were quantified from their relative abundances in single product ion spectra measured using photoexcitation at 265, 272, and 285 nm, respectively, for hydrogen-bonded Trp within the clusters.
Collapse
Affiliation(s)
- Kanako Inoue
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka 599–8531, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka 599–8531, Japan
| |
Collapse
|
24
|
Jordan JS, Williams ER. Dissociation of large gaseous serine clusters produces abundant protonated serine octamer. Analyst 2021; 146:2617-2625. [PMID: 33688888 DOI: 10.1039/d1an00273b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonated serine octamer is especially abundant in spray ionization mass spectra of serine solutions under a wide range of conditions. Although serine octamer exists in low abundance in solution, abundant clusters, including octamer, can be formed by aggregation inside evaporating electrospray droplets. A minimum cluster size of 8 and 21 serine molecules was observed for doubly protonated and triply protonated clusters, respectively, formed by electrospray ionization of a 10 mM serine solution. Dissociation of these clusters results in charge separation to produce predominantly protonated serine dimer and some trimer and the complimentary charged ion. Dissociation of clusters significantly larger than the minimum cluster size occurs by sequential loss of serine molecules. Dissociation of all large clusters investigated leads to protonated octamer as the second most abundant cluster (protonated dimer is most abundant) at optimized collision energies. All larger clusters dissociate through a combination of charge separation and neutral serine loss to form small doubly protonated clusters, and the vast majority of protonated octamer is produced by dissociation of the doubly protonated decamer by charge separation. Protonated octamer abundance is optimized at a uniform energy per degrees of freedom for all clusters indicating that simultaneous dissociation of all large clusters will lead to abundant protonated octamer at an optimum ion temperature. These results provide evidence for another route to formation of abundant protonated octamer in spray ionization or other methods that promote formation and subsequent dissociation of large clusters.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|