1
|
Lee KCM, Chung BMF, Siu DMD, Ho SCK, Ng DKH, Tsia KK. Dispersion-free inertial focusing (DIF) for high-yield polydisperse micro-particle filtration and analysis. LAB ON A CHIP 2024; 24:4182-4197. [PMID: 39101363 DOI: 10.1039/d4lc00275j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Inertial focusing excels at the precise spatial ordering and separation of microparticles by size within fluid flows. However, this advantage, resulting from its inherent size-dependent dispersion, could turn into a drawback that challenges applications requiring consistent and uniform positioning of polydisperse particles, such as microfiltration and flow cytometry. To overcome this fundamental challenge, we introduce Dispersion-Free Inertial Focusing (DIF). This new method minimizes particle size-dependent dispersion while maintaining the high throughput and precision of standard inertial focusing, even in a highly polydisperse scenario. We demonstrate a rule-of-thumb principle to reinvent an inertial focusing system and achieve an efficient focusing of particles ranging from 6 to 30 μm in diameter onto a single plane with less than 3 μm variance and over 95% focusing efficiency at highly scalable throughput (2.4-30 mL h-1) - a stark contrast to existing technologies that struggle with polydispersity. We demonstrated that DIF could be applied in a broad range of applications, particularly enabling high-yield continuous microparticle filtration and large-scale high-resolution single-cell morphological analysis of heterogeneous cell populations. This new technique is also readily compatible with the existing inertial microfluidic design and thus could unleash more diverse systems and applications.
Collapse
Affiliation(s)
- Kelvin C M Lee
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Bob M F Chung
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Dickson M D Siu
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Sam C K Ho
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
| | - Daniel K H Ng
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
| | - Kevin K Tsia
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| |
Collapse
|
2
|
Cremaschini S, Torriero N, Maceri C, Poles M, Cleve S, Crestani B, Meggiolaro A, Pierno M, Mistura G, Brun P, Ferraro D. Magnetic Stirring Device for Limiting the Sedimentation of Cells inside Microfluidic Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:5014. [PMID: 39124061 PMCID: PMC11314744 DOI: 10.3390/s24155014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
In experiments considering cell handling in microchannels, cell sedimentation in the storage container is a key problem because it affects the reproducibility of the experiments. Here, a simple and low-cost cell mixing device (CMD) is presented; the device is designed to prevent the sedimentation of cells in a syringe during their injection into a microfluidic channel. The CMD is based on a slider crank device made of 3D-printed parts that, combined with a permanent magnet, actuate a stir bar placed into the syringe containing the cells. By using A549 cell lines, the device is characterized in terms of cell viability (higher than 95%) in different mixing conditions, by varying the oscillation frequency and the overall mixing time. Then, a dedicated microfluidic experiment is designed to evaluate the injection frequency of the cells within a microfluidic chip. In the presence of the CMD, a higher number of cells are injected into the microfluidic chip with respect to the static conditions (2.5 times), proving that it contrasts cell sedimentation and allows accurate cell handling. For these reasons, the CMD can be useful in microfluidic experiments involving single-cell analysis.
Collapse
Affiliation(s)
| | - Noemi Torriero
- Department of Physics and Astronomy, University of Padua, 35131 Padua, Italy
| | - Chiara Maceri
- Department of Physics and Astronomy, University of Padua, 35131 Padua, Italy
| | - Maria Poles
- Department of Medicine, University of Verona, 37124 Verona, Italy
| | - Sarah Cleve
- Department of Physics and Astronomy, University of Padua, 35131 Padua, Italy
| | - Beatrice Crestani
- Department of Physics and Astronomy, University of Padua, 35131 Padua, Italy
| | - Alessio Meggiolaro
- Department of Physics and Astronomy, University of Padua, 35131 Padua, Italy
| | - Matteo Pierno
- Department of Physics and Astronomy, University of Padua, 35131 Padua, Italy
| | - Giampaolo Mistura
- Department of Physics and Astronomy, University of Padua, 35131 Padua, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Davide Ferraro
- Department of Physics and Astronomy, University of Padua, 35131 Padua, Italy
| |
Collapse
|
3
|
Iyer RR, Applegate CC, Arogundade OH, Bangru S, Berg IC, Emon B, Porras-Gomez M, Hsieh PH, Jeong Y, Kim Y, Knox HJ, Moghaddam AO, Renteria CA, Richard C, Santaliz-Casiano A, Sengupta S, Wang J, Zambuto SG, Zeballos MA, Pool M, Bhargava R, Gaskins HR. Inspiring a convergent engineering approach to measure and model the tissue microenvironment. Heliyon 2024; 10:e32546. [PMID: 38975228 PMCID: PMC11226808 DOI: 10.1016/j.heliyon.2024.e32546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H. Arogundade
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian C. Berg
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pei-Hsuan Hsieh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hailey J. Knox
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amir Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carlos A. Renteria
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Craig Richard
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marcia Pool
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biochemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - H. Rex Gaskins
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Hossein F, Angeli P. A review of acoustofluidic separation of bioparticles. Biophys Rev 2023; 15:2005-2025. [PMID: 38192342 PMCID: PMC10771489 DOI: 10.1007/s12551-023-01112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/09/2023] [Indexed: 01/08/2024] Open
Abstract
Acoustofluidics is an emerging interdisciplinary research field that involves the integration of acoustics and microfluidics to address challenges in various scientific areas. This technology has proven to be a powerful tool for separating biological targets from complex fluids due to its label-free, biocompatible, and contact-free nature. Considering a careful designing process and tuning the acoustic field particles can be separated with high yield. Recently the advancement of acoustofluidics led to the development of point-of-care devices for separations of micro particles which address many of the limitations of conventional separation tools. This review article discusses the working principles and different approaches of acoustofluidic separation and provides a synopsis of its traditional and emerging applications, including the theory and mechanism of acoustofluidic separation, blood component separation, cell washing, fluorescence-activated cell sorting, circulating tumor cell isolation, and exosome isolation. The technology offers great potential for solving clinical problems and advancing scientific research.
Collapse
Affiliation(s)
- Fria Hossein
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE, London, UK
| | - Panagiota Angeli
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE, London, UK
| |
Collapse
|
5
|
Haghjooy Javanmard S, Rafiee L, Bahri Najafi M, Khorsandi D, Hasan A, Vaseghi G, Makvandi P. Microfluidic-based technologies in cancer liquid biopsy: Unveiling the role of horizontal gene transfer (HGT) materials. ENVIRONMENTAL RESEARCH 2023; 238:117083. [PMID: 37690629 DOI: 10.1016/j.envres.2023.117083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Liquid biopsy includes the isolating and analysis of non-solid biological samples enables us to find new ways for molecular profiling, prognostic assessment, and better therapeutic decision-making in cancer patients. Despite the conventional theory of tumor development, a non-vertical transmission of DNA has been reported among cancer cells and between cancer and normal cells. The phenomenon referred to as horizontal gene transfer (HGT) has the ability to amplify the advancement of tumors by disseminating genes that encode molecules conferring benefits to the survival or metastasis of cancer cells. Currently, common liquid biopsy approaches include the analysis of extracellular vesicles (EVs) and tumor-free DNA (tfDNA) derived from primary tumors and their metastatic sites, which are well-known HGT mediators in cancer cells. Current technological and molecular advances expedited the high-throughput and high-sensitive HGT materials analyses by using new technologies, such as microfluidics in liquid biopsies. This review delves into the convergence of microfluidic-based technologies and the investigation of Horizontal Gene Transfer (HGT) materials in cancer liquid biopsy. The integration of microfluidics offers unprecedented advantages such as high sensitivity, rapid analysis, and the ability to analyze rare cell populations. These attributes are instrumental in detecting and characterizing CTCs, circulating nucleic acids, and EVs, which are carriers of genetic cargo that could potentially undergo HGT. The phenomenon of HGT in cancer has raised intriguing questions about its role in driving genomic diversity and acquired drug resistance. By leveraging microfluidic platforms, researchers have been able to capture and analyze individual cells or genetic material with enhanced precision, shedding light on the potential transfer of genetic material between cancer cells and surrounding stromal cells. Furthermore, the application of microfluidics in single-cell sequencing has enabled the elucidation of the genetic changes associated with HGT events, providing insights into the evolution of tumor genomes. This review also discusses the challenges and opportunities in studying HGT materials using microfluidic-based technologies. In conclusion, microfluidic-based technologies have significantly advanced the field of cancer liquid biopsy, enabling the sensitive and accurate detection of HGT materials. As the understanding of HGT's role in tumor evolution and therapy resistance continues to evolve, the synergistic integration of microfluidics and HGT research promises to provide valuable insights into cancer biology, with potential implications for precision oncology and therapeutic strategies.
Collapse
Affiliation(s)
- Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
6
|
Marassi V, Giordani S, Placci A, Punzo A, Caliceti C, Zattoni A, Reschiglian P, Roda B, Roda A. Emerging Microfluidic Tools for Simultaneous Exosomes and Cargo Biosensing in Liquid Biopsy: New Integrated Miniaturized FFF-Assisted Approach for Colon Cancer Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:9432. [PMID: 38067805 PMCID: PMC10708636 DOI: 10.3390/s23239432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The early-stage diagnosis of cancer is a crucial clinical need. The inadequacies of surgery tissue biopsy have prompted a transition to a less invasive profiling of molecular biomarkers from biofluids, known as liquid biopsy. Exosomes are phospholipid bilayer vesicles present in many biofluids with a biologically active cargo, being responsible for cell-to-cell communication in biological systems. An increase in their excretion and changes in their cargo are potential diagnostic biomarkers for an array of diseases, including cancer, and they constitute a promising analyte for liquid biopsy. The number of exosomes released, the morphological properties, the membrane composition, and their content are highly related to the physiological and pathological states. The main analytical challenge to establishing liquid biopsy in clinical practice is the development of biosensors able to detect intact exosomes concentration and simultaneously analyze specific membrane biomarkers and those contained in their cargo. Before analysis, exosomes also need to be isolated from biological fluids. Microfluidic systems can address several issues present in conventional methods (i.e., ultracentrifugation, size-exclusion chromatography, ultrafiltration, and immunoaffinity capture), which are time-consuming and require a relatively high amount of sample; in addition, they can be easily integrated with biosensing systems. A critical review of emerging microfluidic-based devices for integrated biosensing approaches and following the major analytical need for accurate diagnostics is presented here. The design of a new miniaturized biosensing system is also reported. A device based on hollow-fiber flow field-flow fractionation followed by luminescence-based immunoassay is applied to isolate intact exosomes and characterize their cargo as a proof of concept for colon cancer diagnosis.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Stefano Giordani
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
| | - Anna Placci
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
| | - Angela Punzo
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Cristiana Caliceti
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy—CIRI FRAME, University of Bologna, 40131 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research—CIRI Agrofood, University of Bologna, 47521 Cesena, Italy
| | - Andrea Zattoni
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Aldo Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
| |
Collapse
|
7
|
Yaghoubi Naei V, Bordhan P, Mirakhorli F, Khorrami M, Shrestha J, Nazari H, Kulasinghe A, Ebrahimi Warkiani M. Advances in novel strategies for isolation, characterization, and analysis of CTCs and ctDNA. Ther Adv Med Oncol 2023; 15:17588359231192401. [PMID: 37692363 PMCID: PMC10486235 DOI: 10.1177/17588359231192401] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Over the past decade, the detection and analysis of liquid biopsy biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have advanced significantly. They have received recognition for their clinical usefulness in detecting cancer at an early stage, monitoring disease, and evaluating treatment response. The emergence of liquid biopsy has been a helpful development, as it offers a minimally invasive, rapid, real-time monitoring, and possible alternative to traditional tissue biopsies. In resource-limited settings, the ideal platform for liquid biopsy should not only extract more CTCs or ctDNA from a minimal sample volume but also accurately represent the molecular heterogeneity of the patient's disease. This review covers novel strategies and advancements in CTC and ctDNA-based liquid biopsy platforms, including microfluidic applications and comprehensive analysis of molecular complexity. We discuss these systems' operational principles and performance efficiencies, as well as future opportunities and challenges for their implementation in clinical settings. In addition, we emphasize the importance of integrated platforms that incorporate machine learning and artificial intelligence in accurate liquid biopsy detection systems, which can greatly improve cancer management and enable precision diagnostics.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Science, Institute for Biomedical Materials & Devices, University of Technology Sydney, Australia
| | - Fatemeh Mirakhorli
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Arutha Kulasinghe
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, 1, Broadway, Ultimo New South Wales 2007, Australia
| |
Collapse
|
8
|
Michas A, Michas B, Tsitsibis A, Tsoukalas N. Molecular Screening for Urothelial Cancer: How Close We Are? Glob Med Genet 2023; 10:101-104. [PMID: 37228870 PMCID: PMC10205394 DOI: 10.1055/s-0043-1768958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Early detection of urothelial cancer offers the potential for effective and successful treatment. Despite previous efforts, currently, there is not a well-validated, recommended screening program in any country. This integrative, literature-based review provides details on how recent molecular advances may further advance early tumor detection. The minimally invasive liquid biopsy is capable of identifying tumor material in human fluid samples from asymptomatic individuals. Circulating tumor biomarkers (cfDNA, exosomes, etc.) are very promising and are attracting the interest of numerous studies for the diagnosis of early-stage cancer. However, this approach definitely needs to be refined before clinical implementation. Nevertheless, despite the variety of current obstacles that require further research, the prospect of identifying urothelial carcinoma by a single urine or blood test seems truly intriguing.
Collapse
Affiliation(s)
- Athanasios Michas
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| | - Basileios Michas
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| | - Anastasios Tsitsibis
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| | - Nikolaos Tsoukalas
- Department of Oncology, 401 General Army Hospital of Athens, 401 Geniko Stratiotiko Nosokomeio Athenon, Athina, Greece
| |
Collapse
|
9
|
De Figueiredo I, Bartenlian B, Van der Rest G, Pallandre A, Halgand F. Proteomics Methodologies: The Search of Protein Biomarkers Using Microfluidic Systems Coupled to Mass Spectrometry. Proteomes 2023; 11:proteomes11020019. [PMID: 37218924 DOI: 10.3390/proteomes11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Protein biomarkers have been the subject of intensive studies as a target for disease diagnostics and monitoring. Indeed, biomarkers have been extensively used for personalized medicine. In biological samples, these biomarkers are most often present in low concentrations masked by a biologically complex proteome (e.g., blood) making their detection difficult. This complexity is further increased by the needs to detect proteoforms and proteome complexity such as the dynamic range of compound concentrations. The development of techniques that simultaneously pre-concentrate and identify low-abundance biomarkers in these proteomes constitutes an avant-garde approach to the early detection of pathologies. Chromatographic-based methods are widely used for protein separation, but these methods are not adapted for biomarker discovery, as they require complex sample handling due to the low biomarker concentration. Therefore, microfluidics devices have emerged as a technology to overcome these shortcomings. In terms of detection, mass spectrometry (MS) is the standard analytical tool given its high sensitivity and specificity. However, for MS, the biomarker must be introduced as pure as possible in order to avoid chemical noise and improve sensitivity. As a result, microfluidics coupled with MS has become increasingly popular in the field of biomarker discovery. This review will show the different approaches to protein enrichment using miniaturized devices and the importance of their coupling with MS.
Collapse
Affiliation(s)
- Isabel De Figueiredo
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Bernard Bartenlian
- Centre des Nanosciences et Nanotechnologies, Université Paris Saclay, 10 Boulevard Thomas Gobert, F91120 Palaiseau, France
| | - Guillaume Van der Rest
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Antoine Pallandre
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| |
Collapse
|
10
|
Zou B, Lou S, Duan J, Zhou S, Wang Y. Design of Raman reporter-embedded magnetic/plasmonic hybrid nanostirrers for reliable microfluidic SERS biosensors. NANOSCALE 2023; 15:8424-8431. [PMID: 37093062 DOI: 10.1039/d3nr00303e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Magnetic-based microfluidic SERS biosensors hold great potential in various biological analyses due to their integrated advantages including easy manipulation, miniaturization and ultrasensitivity. However, it remains challenging to collect reliable SERS nanoprobe signals for quantitative analysis due to the irregular aggregation of magnetic carriers in a microfluidic chamber. Here, magnetic/plasmonic hybrid nanostirrers embedded with a Raman reporter are developed as capture carriers to improve the reliability of microfluidic SERS biosensors. Experimental results revealed that SERS signals from magnetic hybrid nanostirrers could serve as microenvironment beacons of their irregular aggregation, and a signal filtering method was proposed through exploring the relationship between the intensity range of beacons and the signal reproducibility of SERS nanoprobes using interleukin 6 as a model target analyte. Using the signal filtering method, reliable SERS nanoprobe signals with high reproducibility could be picked out from similar microenvironments according to their beacon intensity, and then the influence of irregular aggregation of magnetic carriers on the SERS nanoprobe could be eliminated. The filtered SERS nanoprobe signals also exhibited excellent repeatability from independent tests, which lay a solid foundation for a reliable working curve and subsequent accurate bioassay. This study provides a simple but promising route for reliable microfluidic SERS biosensors, which will further promote their practical application in biological analysis.
Collapse
Affiliation(s)
- Bingfang Zou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Shiyun Lou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Jie Duan
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Shaomin Zhou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Yongqiang Wang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
11
|
Seyfoori A, Seyyed Ebrahimi SA, Samandari M, Samiei E, Stefanek E, Garnis C, Akbari M. Microfluidic-Assisted CTC Isolation and In Situ Monitoring Using Smart Magnetic Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205320. [PMID: 36720798 DOI: 10.1002/smll.202205320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Capturing rare disease-associated biomarkers from body fluids can offer an early-stage diagnosis of different cancers. Circulating tumor cells (CTCs) are one of the major cancer biomarkers that provide insightful information about the cancer metastasis prognosis and disease progression. The most common clinical solutions for quantifying CTCs rely on the immunomagnetic separation of cells in whole blood. Microfluidic systems that perform magnetic particle separation have reported promising outcomes in this context, however, most of them suffer from limited efficiency due to the low magnetic force generated which is insufficient to trap cells in a defined position within microchannels. In this work, a novel method for making soft micromagnet patterns with optimized geometry and magnetic material is introduced. This technology is integrated into a bilayer microfluidic chip to localize an external magnetic field, consequently enhancing the capture efficiency (CE) of cancer cells labeled with the magnetic nano/hybrid microgels that are developed in the previous work. A combined numerical-experimental strategy is implemented to design the microfluidic device and optimize the capturing efficiency and to maximize the throughput. The proposed design enables high CE and purity of target cells and real-time time on-chip monitoring of their behavior. The strategy introduced in this paper offers a simple and low-cost yet robust opportunity for early-stage diagnosis and monitoring of cancer-associated biomarkers.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | | | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Evan Stefanek
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
- Bitechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90024, USA
| |
Collapse
|
12
|
Clack K, Soda N, Kasetsirikul S, Mahmudunnabi RG, Nguyen NT, Shiddiky MJA. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205856. [PMID: 36631277 DOI: 10.1002/smll.202205856] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.
Collapse
Affiliation(s)
- Kimberley Clack
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Surasak Kasetsirikul
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Rabbee G Mahmudunnabi
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| |
Collapse
|
13
|
Wang J, Dallmann R, Lu R, Yan J, Charmet J. Flow Rate-Independent Multiscale Liquid Biopsy for Precision Oncology. ACS Sens 2023; 8:1200-1210. [PMID: 36802518 PMCID: PMC10043932 DOI: 10.1021/acssensors.2c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Immunoaffinity-based liquid biopsies of circulating tumor cells (CTCs) hold great promise for cancer management but typically suffer from low throughput, relative complexity, and postprocessing limitations. Here, we address these issues simultaneously by decoupling and independently optimizing the nano-, micro-, and macro-scales of an enrichment device that is simple to fabricate and operate. Unlike other affinity-based devices, our scalable mesh approach enables optimum capture conditions at any flow rate, as demonstrated with constant capture efficiencies, above 75% between 50 and 200 μL min-1. The device achieved 96% sensitivity and 100% specificity when used to detect CTCs in the blood of 79 cancer patients and 20 healthy controls. We demonstrate its postprocessing capacity with the identification of potential responders to immune checkpoint inhibition (ICI) therapy and the detection of HER2 positive breast cancer. The results compare well with other assays, including clinical standards. This suggests that our approach, which overcomes major limitations associated with affinity-based liquid biopsies, could help improve cancer management.
Collapse
Affiliation(s)
- Jie Wang
- Institute
for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Robert Dallmann
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, U. K.
| | - Renquan Lu
- Department
of Clinical Laboratory, Fudan University
Shanghai Cancer Center, Shanghai 200032, China
| | - Jing Yan
- Holosensor
Medical Technology Ltd., Suzhou 215000, China
| | - Jérôme Charmet
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, U. K.
- WMG
University of Warwick, Coventry CV4 7AL, U.K.
- School of
Engineering − HE-Arc Ingénierie, HES-SO University of Applied Sciences Western Switzerland, 2000 Neuchâtel, Switzerland
| |
Collapse
|
14
|
Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles. J Pharm Anal 2023; 13:340-354. [PMID: 37181295 PMCID: PMC10173182 DOI: 10.1016/j.jpha.2023.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Liquid biopsy is a technology that exhibits potential to detect cancer early, monitor therapies, and predict cancer prognosis due to its unique characteristics, including noninvasive sampling and real-time analysis. Circulating tumor cells (CTCs) and extracellular vesicles (EVs) are two important components of circulating targets, carrying substantial disease-related molecular information and playing a key role in liquid biopsy. Aptamers are single-stranded oligonucleotides with superior affinity and specificity, and they can bind to targets by folding into unique tertiary structures. Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools. In this review, we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches. Then, we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection. Finally, we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications.
Collapse
|
15
|
Shen H, Li Q, Song W, Jiang X. Microfluidic on-chip valve and pump for applications in immunoassays. LAB ON A CHIP 2023; 23:341-348. [PMID: 36602133 DOI: 10.1039/d2lc01042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
On-chip valves can simplify a microfluidic chip and make it easy to operate. However, most on-chip valves already reported still need complicated manufacture and sophisticated supporting devices. In this work, we present a straightforward on-chip valve, which can be serially connected, to form an on-chip pump. The liquid can horizontally flow one way by the regular deformations of flexure strips in the two valves at both sides of the chamber under pressure changes in microchannels generated by repeated vertical movements of linear actuators. The volume of this system including the chip and the supporting device is 0.65 cubic decimeters, which is much smaller than that of reported systems with a volume of at least 12 cubic decimeters, and the weight of this system is only 0.56 kg, making it possible for point-of-care testing. We carry out an immunoassay of folic acid on chip, and the results show satisfactory reproducibility with acceptable coefficients of variation. We determine 163 clinical human serum samples for folic acid. Furthermore, we detect transferrin, cobalamin and folic acid simultaneously on one chip with both sandwich and competitive binding immunoassay methods. We anticipate that this on-chip valve and pump can be applied in immunoassays and other biosensing applications.
Collapse
Affiliation(s)
- Haiying Shen
- National Institute of Metrology, Beijing 100029, People's Republic of China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong 518055, People's Republic of China.
- National Center for NanoScience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qiliang Li
- Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, Beijing 100045, People's Republic of China.
| | - Wenqi Song
- Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, Beijing 100045, People's Republic of China.
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong 518055, People's Republic of China.
- National Center for NanoScience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
16
|
Wang Y, Wang S, Li L, Zou Y, Liu B, Fang X. Microfluidics‐based molecular profiling of tumor‐derived exosomes for liquid biopsy. VIEW 2023. [DOI: 10.1002/viw.20220048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yuqing Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Shurong Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Lanting Li
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Yan Zou
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Baohong Liu
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Xiaoni Fang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
17
|
Comparative application of microfluidic systems in circulating tumor cells and extracellular vesicles isolation; a review. Biomed Microdevices 2022; 25:4. [PMID: 36574057 DOI: 10.1007/s10544-022-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
Cancer is a prevalent cause of mortality globally, where early diagnosis leads to a reduced death rate. Many researchers' common strategies are based on personalized diagnostic methods with rapid response and high accuracy. This technology was developed by applying liquid biopsy instead of tissue biopsies in the case of tumor cell analysis that facilitates point-of-care testing for cancer diagnosis and treatment. In recent years, significant progress in microfluidic technology led to the successful isolation, analysis, and monitoring of cancer biomarkers in body liquid biopsy with merits like high sensitivity and flexibility, low sample usage, cost effective, and the ability of automation. The most critical and informative markers in body liquid refer to circulating tumor cells (CTCs) and extracellular vesicles derived from tumors (EVs) that carry various biomarkers in their structure (DNAs, proteins, and RNAs) as compared to ctDNA. The released ctDNA has a low half-life and decreased sensitivity due to large amounts of nucleic acid in serum. This review intends to highlight different cancer screening tests with a particular focus on the details regarding the only FDA-approved and awaiting technologies for FDA clearance to isolate CTCs and EVs based on microfluidics systems.
Collapse
|
18
|
Kim H, Zhbanov A, Yang S. Microfluidic Systems for Blood and Blood Cell Characterization. BIOSENSORS 2022; 13:13. [PMID: 36671848 PMCID: PMC9856090 DOI: 10.3390/bios13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A laboratory blood test is vital for assessing a patient's health and disease status. Advances in microfluidic technology have opened the door for on-chip blood analysis. Currently, microfluidic devices can reproduce myriad routine laboratory blood tests. Considerable progress has been made in microfluidic cytometry, blood cell separation, and characterization. Along with the usual clinical parameters, microfluidics makes it possible to determine the physical properties of blood and blood cells. We review recent advances in microfluidic systems for measuring the physical properties and biophysical characteristics of blood and blood cells. Added emphasis is placed on multifunctional platforms that combine several microfluidic technologies for effective cell characterization. The combination of hydrodynamic, optical, electromagnetic, and/or acoustic methods in a microfluidic device facilitates the precise determination of various physical properties of blood and blood cells. We analyzed the physical quantities that are measured by microfluidic devices and the parameters that are determined through these measurements. We discuss unexplored problems and present our perspectives on the long-term challenges and trends associated with the application of microfluidics in clinical laboratories. We expect the characterization of the physical properties of blood and blood cells in a microfluidic environment to be considered a standard blood test in the future.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan 47011, Republic of Korea
| | - Alexander Zhbanov
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Yang
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
19
|
Singh S, Podder PS, Russo M, Henry C, Cinti S. Tailored point-of-care biosensors for liquid biopsy in the field of oncology. LAB ON A CHIP 2022; 23:44-61. [PMID: 36321747 DOI: 10.1039/d2lc00666a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the field of cancer detection, technologies to analyze tumors using biomarkers circulating in fluids such as blood have developed rapidly based on liquid biopsy. A proactive approach to early cancer detection can lead to more effective treatments with minimal side effects and better long-term patient survival. However, early detection of cancer is hindered by the existing limitations of conventional cancer diagnostic methods. To enable early diagnosis and regular monitoring and improve automation, the development of integrated point-of-care (POC) and biosensors is needed. This is expected to fundamentally change the diagnosis, management, and monitoring of response to treatment of cancer. POC-based techniques will provide a way to avoid complications that occur after invasive tissue biopsy, such as bleeding, infection, and pain. The aim of this study is to provide a comprehensive view of biosensors and their clinical relevance in oncology for the detection of biomarkers with liquid biopsies of proteins, miRNA, ctDNA, exosomes, and cancer cells. The preceding discussion also illustrates the changing landscape of liquid biopsy-based cancer diagnosis through nanomaterials, machine learning, artificial intelligence, wearable devices, and sensors, many of which apply POC design principles. With the advent of sensitive, selective, and timely detection of cancer, we see the field of POC technology for cancer detection and treatment undergoing a positive paradigm shift in the foreseeable future.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Pritam Saha Podder
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Matt Russo
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Charles Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Naples, Italy
| |
Collapse
|
20
|
Schwab FD, Scheidmann MC, Ozimski LL, Kling A, Armbrecht L, Ryser T, Krol I, Strittmatter K, Nguyen-Sträuli BD, Jacob F, Fedier A, Heinzelmann-Schwarz V, Wicki A, Dittrich PS, Aceto N. MyCTC chip: microfluidic-based drug screen with patient-derived tumour cells from liquid biopsies. MICROSYSTEMS & NANOENGINEERING 2022; 8:130. [PMID: 36561926 PMCID: PMC9763115 DOI: 10.1038/s41378-022-00467-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Cancer patients with advanced disease are characterized by intrinsic challenges in predicting drug response patterns, often leading to ineffective treatment. Current clinical practice for treatment decision-making is commonly based on primary or secondary tumour biopsies, yet when disease progression accelerates, tissue biopsies are not performed on a regular basis. It is in this context that liquid biopsies may offer a unique window to uncover key vulnerabilities, providing valuable information about previously underappreciated treatment opportunities. Here, we present MyCTC chip, a novel microfluidic device enabling the isolation, culture and drug susceptibility testing of cancer cells derived from liquid biopsies. Cancer cell capture is achieved through a label-free, antigen-agnostic enrichment method, and it is followed by cultivation in dedicated conditions, allowing on-chip expansion of captured cells. Upon growth, cancer cells are then transferred to drug screen chambers located within the same device, where multiple compounds can be tested simultaneously. We demonstrate MyCTC chip performance by means of spike-in experiments with patient-derived breast circulating tumour cells, enabling >95% capture rates, as well as prospective processing of blood from breast cancer patients and ascites fluid from patients with ovarian, tubal and endometrial cancer, where sensitivity to specific chemotherapeutic agents was identified. Together, we provide evidence that MyCTC chip may be used to identify personalized drug response patterns in patients with advanced metastatic disease and with limited treatment opportunities.
Collapse
Affiliation(s)
- Fabienne D. Schwab
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Gynaecologic Oncology, University Hospital Basel, Basel, Switzerland
| | - Manuel C. Scheidmann
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
| | - Lauren L. Ozimski
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - André Kling
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich (ETH Zurich), Basel, Switzerland
| | - Lucas Armbrecht
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich (ETH Zurich), Basel, Switzerland
| | - Till Ryser
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
| | - Ilona Krol
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Karin Strittmatter
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel, Basel, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Department of Gynaecology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Francis Jacob
- Department of Biomedicine, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - André Fedier
- Department of Biomedicine, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Department of Gynaecologic Oncology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas Wicki
- University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich (ETH Zurich), Basel, Switzerland
| | - Nicola Aceto
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
21
|
Liu W, Wu Q, Wang W, Xu X, Yang C, Song Y. Enhanced molecular recognition on Microfluidic affinity interfaces. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Chen Y, Yang Y, Feng J, Carrier AJ, Tyagi D, Yu X, Wang C, Oakes KD, Zhang X. A universal monoclonal antibody-aptamer conjugation strategy for selective non-invasive bioparticle isolation from blood on a regenerative microfluidic platform. Acta Biomater 2022; 152:210-220. [PMID: 36087870 DOI: 10.1016/j.actbio.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Simultaneous isolation of various circulating tumor cell (CTC) subtypes from whole blood is useful in cancer diagnosis and prognosis. Microfluidic affinity separation devices are promising for CTC separation because of their high throughput capacity and automatability. However, current affinity agents, such as antibodies (mAbs) and aptamers (Apts) alone, are still suboptimal for efficient, consistent, and versatile cell analysis. By introducing a hybrid affinity agent, i.e., an aptamer-antibody (Apt-mAb) conjugate, we developed a universal and regenerative microchip with high efficiency and non-invasiveness in the separation and profiling of various CTCs from blood. The Apt-mAb conjugate consists of a monoclonal antibody that specifically binds the target cell receptor and a surface-bound aptamer that recognizes the conserved Fc region of the mAb. The aptamer then indirectly links the surface functionalization of the microfluidic channels to the mAbs. This hybrid affinity agent and the microchip platform may be widely useful for various bio-particle separations in different biological matrices. Further, the regeneration capability of the microchip improves data consistency between multiple uses and minimizes plastic waste while promoting environmental sustainability. STATEMENT OF SIGNIFICANCE: A hybrid affinity agent, Apt-mAb, consisting of a universal aptamer (Apt) that binds the conserved Fc region of monoclonal antibodies (mAbs) was developed. The invented nano-biomaterial combines the strengths and overcomes the weakness of both Apts and mAbs, thus changing the paradigm of affinity separation of cell subtypes. When Apt-mAb was used to fabricate microfluidic chips using a "universal screwdriver" approach, the microchip could be easily tuned to bind any cell type, exhibiting great universality. Besides high sensitivity and selectivity, the superior regenerative capacity of the microchips makes them reusable, which provides improved consistency and repeatability in cell profiling and opens a new approach towards in vitro diagnostic point-of-care testing devices with environmental sustainability and cost-effectiveness.
Collapse
Affiliation(s)
- Yongli Chen
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Yikun Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China.
| | - Jinglong Feng
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Deependra Tyagi
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Xin Yu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China
| | - Chunguang Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China
| | - Ken D Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada.
| |
Collapse
|
23
|
Wang Y, Gao Y, Song Y. Microfluidics-Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem 2022; 17:e202200422. [PMID: 36040297 DOI: 10.1002/cmdc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Indexed: 11/08/2022]
Abstract
Urine biopsy, allowing for the detection, analysis and monitoring of numerous cancer-associated urinary biomarkers to provide insights into cancer occurrence, progression and metastasis, has emerged as an attractive liquid biopsy strategy with enormous advantages over traditional tissue biopsy, such as noninvasiveness, large sample volume, and simple sampling operation. Microfluidics enables precise manipulation of fluids in a tiny chip and exhibits outstanding performance in urine biopsy owing to its minimization, low cost, high integration, high throughput and low sample consumption. Herein, we review recent advances in microfluidic techniques employed in urine biopsy for cancer detection. After briefly summarizing the major urinary biomarkers used for cancer diagnosis, we provide an overview of the typical microfluidic techniques utilized to develop urine biopsy devices. Some prospects along with the major challenges to be addressed for the future of microfluidic-based urine biopsy are also discussed.
Collapse
Affiliation(s)
- Yanping Wang
- Nanjing University of Science and Technology, Sino-French Engineer School, CHINA
| | - Yanfeng Gao
- Nanjing University, College of Engineering and Applied Sciences, CHINA
| | - Yujun Song
- Nanjing University, Biomedical Engineering, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
24
|
Liu Y, Wang C, Zhang C, Chen R, Liu B, Zhang K. Nonenzymatic Multiamplified Electrochemical Detection of Medulloblastoma-Relevant MicroRNAs from Cerebrospinal Fluid. ACS Sens 2022; 7:2320-2327. [PMID: 35925869 DOI: 10.1021/acssensors.2c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The sensitive analysis of microRNAs (miRNAs) in cerebrospinal fluid (CSF) holds promise for the minimally invasive early diagnosis of brain cancers such as pediatric medulloblastoma but remains challenging due partially to a lack of facile yet sensitive sensing methods. Herein, an enzyme-free triple-signal amplification electrochemical assay for miRNA was developed by integrating the target-triggered cyclic strand-displacement reaction (TCSDR), hybridization chain reaction (HCR), and methylene blue (MB) intercalation. In this assay, the presence of target miRNA (miR-9) initiated the TCSDR and produced primers that triggered the subsequent HCR amplification to generate copious double-stranded DNAs (dsDNAs) on the electrode surface. Intercalation of a large number of MB reporters into the long nicked double helixes of dsDNAs yielded a more enhanced signal of differential pulse voltammetry. The enzyme-free multiple-amplification approach allowed for highly sensitive (detection limit: 6.5 fM) and sequence-specific (single-base mismatch resolution) detection of miR-9 from tumor cells and human CSF with minimal sample consumption (10 μL). Moreover, the clinical utilization of this method was documented by accurate discrimination of five medulloblastoma patients from the nontumoral controls. In light of its sensitivity, specificity, and convenience of use, this electrochemical method was expected to facilitate the early detection of malignant brain tumors.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chen Wang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruoping Chen
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences Fudan University, Shanghai 200438, China
| | - Kun Zhang
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
25
|
Cha H, Fallahi H, Dai Y, Yadav S, Hettiarachchi S, McNamee A, An H, Xiang N, Nguyen NT, Zhang J. Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures. LAB ON A CHIP 2022; 22:2789-2800. [PMID: 35587546 DOI: 10.1039/d2lc00197g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inertial microfluidics functions solely based on the fluid dynamics at relatively high flow speed. Thus, channel geometry is the critical design parameter that contributes to the performance of the device. Four basic channel geometries (i.e., straight, expansion-contraction, spiral and serpentine) have been proposed and extensively studied. To further enhance the performance, innovative channel design through combining two or more geometries is promising. This work explores embedding periodic concave and convex obstacle microstructures in sinusoidal channels and investigates their influence on particle inertial focusing and separation. The concave obstacles could significantly enhance the Dean flow and tune the flow range for particle inertial focusing and separation. Based on this finding, we propose a cascaded device by connecting two sinusoidal channels consecutively for rare cell separation. The concave obstacles are embedded in the second channel to adapt its operational flow rates and enable the functional operation of both channels. Polystyrene beads and breast cancer cells (T47D) spiking in the blood were respectively processed by the proposed device. The results indicate an outstanding separation performance, with 3 to 4 orders of magnitude enhancement in purity for samples with a primary cancer cells ratio of 0.01% and 0.001%, respectively. Embedding microstructures as obstacles brings more flexibility to the design of inertial microfluidic devices, offering a feasible new way to combine two or more serial processing units for high-performance separation.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Antony McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nan Xiang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
26
|
Lu Y, Tong Z, Wu Z, Jian X, Zhou L, Qiu S, Shen C, Yin H, Mao H. Multiple exosome RNA analysis methods for lung cancer diagnosis through integrated on-chip microfluidic system. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Recent advances for cancer detection and treatment by microfluidic technology, review and update. Biol Proced Online 2022; 24:5. [PMID: 35484481 PMCID: PMC9052508 DOI: 10.1186/s12575-022-00166-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
Numerous cancer-associated deaths are owing to a lack of effective diagnostic and therapeutic approaches. Microfluidic systems for analyzing a low volume of samples offer a precise, quick, and user-friendly technique for cancer diagnosis and treatment. Microfluidic devices can detect many cancer-diagnostic factors from biological fluids and also generate appropriate nanoparticles for drug delivery. Thus, microfluidics may be valuable in the cancer field due to its high sensitivity, high throughput, and low cost. In the present article, we aim to review recent achievements in the application of microfluidic systems for the diagnosis and treatment of various cancers. Although microfluidic platforms are not yet used in the clinic, they are expected to become the main technology for cancer diagnosis and treatment. Microfluidic systems are proving to be more sensitive and accurate for the detection of cancer biomarkers and therapeutic strategies than common assays. Microfluidic lab-on-a-chip platforms have shown remarkable potential in the designing of novel procedures for cancer detection, therapy, and disease follow-up as well as the development of new drug delivery systems for cancer treatment.
Collapse
|
28
|
Azizipour N, Avazpour R, Sawan M, Ajji A, H Rosenzweig D. Surface Optimization and Design Adaptation toward Spheroid Formation On-Chip. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22093191. [PMID: 35590879 DOI: 10.1039/d2sd00004k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 05/27/2023]
Abstract
Spheroids have become an essential tool in preclinical cancer research. The uniformity of spheroids is a critical parameter in drug test results. Spheroids form by self-assembly of cells. Hence, the control of homogeneity of spheroids in terms of size, shape, and density is challenging. We developed surface-optimized polydimethylsiloxane (PDMS) biochip platforms for uniform spheroid formation on-chip. These biochips were surface modified with 10% bovine serum albumin (BSA) to effectively suppress cell adhesion on the PDMS surface. These surface-optimized platforms facilitate cell self-aggregations to produce homogenous non-scaffold-based spheroids. We produced uniform spheroids on these biochips using six different established human cell lines and a co-culture model. Here, we observe that the concentration of the BSA is important in blocking cell adhesion to the PDMS surfaces. Biochips treated with 3% BSA demonstrated cell repellent properties similar to the bare PDMS surfaces. This work highlights the importance of surface modification on spheroid production on PDMS-based microfluidic devices.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Mohamad Sawan
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, Westlake Institute for Advanced Study, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
- The Research Center for High Performance Polymer and Composite Systems, Chemical Engineering Department, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Derek H Rosenzweig
- Department of Surgery, McGill University, Montréal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montréal, QC H3H 2R9, Canada
| |
Collapse
|
29
|
Azizipour N, Avazpour R, Sawan M, Ajji A, H. Rosenzweig D. Surface Optimization and Design Adaptation toward Spheroid Formation On-Chip. SENSORS (BASEL, SWITZERLAND) 2022; 22:3191. [PMID: 35590879 PMCID: PMC9104470 DOI: 10.3390/s22093191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022]
Abstract
Spheroids have become an essential tool in preclinical cancer research. The uniformity of spheroids is a critical parameter in drug test results. Spheroids form by self-assembly of cells. Hence, the control of homogeneity of spheroids in terms of size, shape, and density is challenging. We developed surface-optimized polydimethylsiloxane (PDMS) biochip platforms for uniform spheroid formation on-chip. These biochips were surface modified with 10% bovine serum albumin (BSA) to effectively suppress cell adhesion on the PDMS surface. These surface-optimized platforms facilitate cell self-aggregations to produce homogenous non-scaffold-based spheroids. We produced uniform spheroids on these biochips using six different established human cell lines and a co-culture model. Here, we observe that the concentration of the BSA is important in blocking cell adhesion to the PDMS surfaces. Biochips treated with 3% BSA demonstrated cell repellent properties similar to the bare PDMS surfaces. This work highlights the importance of surface modification on spheroid production on PDMS-based microfluidic devices.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (N.A.); (M.S.)
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Mohamad Sawan
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (N.A.); (M.S.)
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, Westlake Institute for Advanced Study, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (N.A.); (M.S.)
- The Research Center for High Performance Polymer and Composite Systems, Chemical Engineering Department, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Derek H. Rosenzweig
- Department of Surgery, McGill University, Montréal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montréal, QC H3H 2R9, Canada
| |
Collapse
|
30
|
Li W, Zhou Y, Deng Y, Khoo BL. Early Predictor Tool of Disease Using Label-Free Liquid Biopsy-Based Platforms for Patient-Centric Healthcare. Cancers (Basel) 2022. [PMID: 35159085 DOI: 10.3390/cancfers14030818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Cancer cells undergo phenotypic changes or mutations during treatment, making detecting protein-based or gene-based biomarkers challenging. Here, we used algorithmic analysis combined with patient-derived tumor models to derive an early prediction tool using patient-derived cell clusters from liquid biopsy (LIQBP) for cancer prognosis in a label-free manner. The LIQBP platform incorporated a customized microfluidic biochip that mimicked the tumor microenvironment to establish patient clusters, and extracted physical parameters from images of each sample, including size, thickness, roughness, and thickness per area (n = 31). Samples from healthy volunteers (n = 5) and cancer patients (pretreatment; n = 4) could be easily distinguished with high sensitivity (91.16 ± 1.56%) and specificity (71.01 ± 9.95%). Furthermore, we demonstrated that the multiple unique quantitative parameters reflected patient responses. Among these, the ratio of normalized gray value to cluster size (RGVS) was the most significant parameter correlated with cancer stage and treatment duration. Overall, our work presented a novel and less invasive approach for the label-free prediction of disease prognosis to identify patients who require adjustments to their treatment regime. We envisioned that such efforts would promote the management of personalized patient care conveniently and cost effectively.
Collapse
Affiliation(s)
- Wei Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong 999077, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong 999077, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen-Futian Research Institute, Shenzhen 518057, China
| |
Collapse
|
31
|
Early Predictor Tool of Disease Using Label-Free Liquid Biopsy-Based Platforms for Patient-Centric Healthcare. Cancers (Basel) 2022; 14:cancers14030818. [PMID: 35159085 PMCID: PMC8834418 DOI: 10.3390/cancers14030818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary We proposed a comprehensive early prediction tool based on liquid biopsy for the label-free phenotypic analysis of cell clusters from clinical samples (n = 31). Our custom algorithm analysis, combined with a microfluidic-based tumor model, was designed to assess and stratify cancer patients in a label-free, cost-effective, and user-friendly way. Multiple quantitative phenotypic parameters (cluster size, thickness, roughness, and thickness per area) were derived from the profiling of the patient-derived cell clusters. Our platform could distinguish healthy donors from pretreatment cancer patients with high sensitivity (91.16 ± 1.56%) and specificity (71.01 ± 9.95%). In addition, the ratio of normalized gray value to cluster size (RGVS) parameter was significantly correlated to treatment duration and cancer stage. In conclusion, our patient-centric, early prediction tool will allow the prognosis of patients in a relatively less invasive manner, which can help clinicians identify diseases or indicate the need for new treatment strategies. Abstract Cancer cells undergo phenotypic changes or mutations during treatment, making detecting protein-based or gene-based biomarkers challenging. Here, we used algorithmic analysis combined with patient-derived tumor models to derive an early prediction tool using patient-derived cell clusters from liquid biopsy (LIQBP) for cancer prognosis in a label-free manner. The LIQBP platform incorporated a customized microfluidic biochip that mimicked the tumor microenvironment to establish patient clusters, and extracted physical parameters from images of each sample, including size, thickness, roughness, and thickness per area (n = 31). Samples from healthy volunteers (n = 5) and cancer patients (pretreatment; n = 4) could be easily distinguished with high sensitivity (91.16 ± 1.56%) and specificity (71.01 ± 9.95%). Furthermore, we demonstrated that the multiple unique quantitative parameters reflected patient responses. Among these, the ratio of normalized gray value to cluster size (RGVS) was the most significant parameter correlated with cancer stage and treatment duration. Overall, our work presented a novel and less invasive approach for the label-free prediction of disease prognosis to identify patients who require adjustments to their treatment regime. We envisioned that such efforts would promote the management of personalized patient care conveniently and cost effectively.
Collapse
|
32
|
Cha H, Fallahi H, Dai Y, Yuan D, An H, Nguyen NT, Zhang J. Multiphysics microfluidics for cell manipulation and separation: a review. LAB ON A CHIP 2022; 22:423-444. [PMID: 35048916 DOI: 10.1039/d1lc00869b] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3216, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
33
|
Chelakkot C, Yang H, Shin YK. Relevance of Circulating Tumor Cells as Predictive Markers for Cancer Incidence and Relapse. Pharmaceuticals (Basel) 2022; 15:75. [PMID: 35056131 PMCID: PMC8781286 DOI: 10.3390/ph15010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Shedding of cancer cells from the primary site or undetectable bone marrow region into the circulatory system, resulting in clinically overt metastasis or dissemination, is the hallmark of unfavorable invasive cancers. The shed cells remain in circulation until they extravasate to form a secondary metastatic lesion or undergo anoikis. The circulating tumor cells (CTCs) found as single cells or clusters carry a plethora of information, are acknowledged as potential biomarkers for predicting cancer prognosis and cancer progression, and are supposed to play key roles in determining tailored therapies for advanced diseases. With the advent of novel technologies that allow the precise isolation of CTCs, more and more clinical trials are focusing on the prognostic and predictive potential of CTCs. In this review, we summarize the role of CTCs as a predictive marker for cancer incidence, relapse, and response to therapy.
Collapse
Affiliation(s)
- Chaithanya Chelakkot
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Genobio Corp., Seoul 08394, Korea
| | - Hobin Yang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
| | - Young Kee Shin
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08226, Korea
| |
Collapse
|
34
|
Liquid Biopsies: Flowing Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:341-368. [DOI: 10.1007/978-3-031-04039-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Teixeira A, Carneiro A, Piairo P, Xavier M, Ainla A, Lopes C, Sousa-Silva M, Dias A, Martins AS, Rodrigues C, Pereira R, Pires LR, Abalde-Cela S, Diéguez L. Advances in Microfluidics for the Implementation of Liquid Biopsy in Clinical Routine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:553-590. [DOI: 10.1007/978-3-031-04039-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Zou Z, Luo X, Chen Z, Zhang YS, Wen C. Emerging microfluidics-enabled platforms for osteoarthritis management: from benchtop to bedside. Theranostics 2022; 12:891-909. [PMID: 34976219 PMCID: PMC8692897 DOI: 10.7150/thno.62685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent debilitating age-related joint degenerative disease. It is a leading cause of pain and functional disability in older adults. Unfortunately, there is no cure for OA once the damage is established. Therefore, it promotes an urgent need for early detection and intervention of OA. Theranostics, combining therapy and diagnosis, emerges as a promising approach for OA management. However, OA theranostics is still in its infancy. Three fundamental needs have to be firstly fulfilled: i) a reliable OA model for disease pathogenesis investigation and drug screening, ii) an effective and precise diagnostic platform, and iii) an advanced fabrication approach for drug delivery and therapy. Meanwhile, microfluidics emerges as a versatile technology to address each of the needs and eventually boost the development of OA theranostics. Therefore, this review focuses on the applications of microfluidics, from benchtop to bedside, for OA modelling and drug screening, early diagnosis, and clinical therapy. We first introduce the basic pathophysiology of OA and point out the major unfilled research gaps in current OA management including lack of disease modelling and drug screening platforms, early diagnostic modalities and disease-modifying drugs and delivery approaches. Accordingly, we then summarize the state-of-the-art microfluidics technology for OA management from in vitro modelling and diagnosis to therapy. Given the existing promising results, we further discuss the future development of microfluidic platforms towards clinical translation at the crossroad of engineering and biomedicine.
Collapse
Affiliation(s)
- Zhou Zou
- Department of Biomedical Engineering, Faculty of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaohe Luo
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhengkun Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Currently at Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
37
|
Akgönüllü S, Bakhshpour M, Pişkin AK, Denizli A. Microfluidic Systems for Cancer Diagnosis and Applications. MICROMACHINES 2021; 12:mi12111349. [PMID: 34832761 PMCID: PMC8619454 DOI: 10.3390/mi12111349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Microfluidic devices have led to novel biological advances through the improvement of micro systems that can mimic and measure. Microsystems easily handle sub-microliter volumes, obviously with guidance presumably through laminated fluid flows. Microfluidic systems have production methods that do not need expert engineering, away from a centralized laboratory, and can implement basic and point of care analysis, and this has attracted attention to their widespread dissemination and adaptation to specific biological issues. The general use of microfluidic tools in clinical settings can be seen in pregnancy tests and diabetic control, but recently microfluidic platforms have become a key novel technology for cancer diagnostics. Cancer is a heterogeneous group of diseases that needs a multimodal paradigm to diagnose, manage, and treat. Using advanced technologies can enable this, providing better diagnosis and treatment for cancer patients. Microfluidic tools have evolved as a promising tool in the field of cancer such as detection of a single cancer cell, liquid biopsy, drug screening modeling angiogenesis, and metastasis detection. This review summarizes the need for the low-abundant blood and serum cancer diagnosis with microfluidic tools and the progress that has been followed to develop integrated microfluidic platforms for this application in the last few years.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
| | - Monireh Bakhshpour
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
| | - Ayşe Kevser Pişkin
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara 06230, Turkey;
| | - Adil Denizli
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
- Correspondence:
| |
Collapse
|
38
|
Zhong H, Yuan C, He J, Yu Y, Jin Y, Huang Y, Zhao R. Engineering Peptide-Functionalized Biomimetic Nanointerfaces for Synergetic Capture of Circulating Tumor Cells in an EpCAM-Independent Manner. Anal Chem 2021; 93:9778-9787. [PMID: 34228920 DOI: 10.1021/acs.analchem.1c01254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Broad-spectrum detection and long-term monitoring of circulating tumor cells (CTCs) remain challenging due to the extreme rarity, heterogeneity, and dynamic nature of CTCs. Herein, a dual-affinity nanostructured platform was developed for capturing different subpopulations of CTCs and monitoring CTCs during treatment. Stepwise assembly of fibrous scaffolds, a ligand-exchangeable spacer, and a lysosomal protein transmembrane 4 β (LAPTM4B)-targeting peptide creates biomimetic, stimuli-responsive, and multivalent-binding nanointerfaces, which enable harvest of CTCs directly from whole blood with high yield, purity, and viability. The stable overexpression of the target LAPTM4B protein in CTCs and the enhanced peptide-protein binding facilitate the capture of rare CTCs in patients at an early stage, detection of both epithelial-positive and nonepithelial CTCs, and tracking of therapeutic responses. The reversible release of CTCs allows downstream molecular analysis and identification of specific liver cancer genes. The consistency of the information with clinical diagnosis presents the prospect of this platform for early diagnosis, metastasis prediction, and prognosis assessment.
Collapse
Affiliation(s)
- Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwang Yuan
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiayuan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|