1
|
Zhou W, Lan Q, Dutt M, Pawliszyn J. 3D Printed Coated Blade Spray-Mass Spectrometry Devices. Anal Chem 2024; 96:16520-16524. [PMID: 39395199 DOI: 10.1021/acs.analchem.4c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Coated blade spray-mass spectrometry (CBS-MS) has emerged as a powerful tool for the rapid screening of target compounds at trace levels in complex biological matrices. Despite its potential, the broader adoption of CBS-MS technology has been hindered by the lack of commercially available, user-friendly MS interfaces and extraction devices. In this work, we present comprehensive CBS-MS solutions developed using 3D printing, including a versatile MS interface and two extraction devices tailored to different analytical needs: one is compatible with LC vials for large-volume samples, while the other is optimized for single-drop blood analysis. The MS interface features a novel design that separates the immobilization station from the blade holder, significantly simplifying the operational workflow and minimizing the contamination risks and hazards associated with manual blade handling. The first extraction cartridge can process 48 samples simultaneously with an average sample preparation time of less than 20 s, while the second extraction device enables extraction from 8 single-drop blood samples via on-blade extraction. The developed devices were successfully tested for the rapid screening of seven drugs in both urine and single-drop blood samples, demonstrating a promising analytical performance. Additionally, potential contamination issues related to the use of 3D-printed materials as extraction phases were examined, emphasizing the importance of ensuring that 3D-printed materials do not leach contaminants into samples or solvents and contaminate the MS.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Qizhen Lan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Malvika Dutt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Martínez-Pérez-Cejuela H, Gionfriddo E. Evolution of Green Sample Preparation: Fostering a Sustainable Tomorrow in Analytical Sciences. Anal Chem 2024; 96:7840-7863. [PMID: 38687329 DOI: 10.1021/acs.analchem.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Affiliation(s)
- H Martínez-Pérez-Cejuela
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - E Gionfriddo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
3
|
Scheid C, Monteiro SA, Mello W, Velho MC, Dos Santos J, Beck RCR, Deon M, Merib J. A novel honeycomb-like 3D-printed device for rotating-disk sorptive extraction of organochlorine and organophosphorus pesticides from environmental water samples. J Chromatogr A 2024; 1722:464892. [PMID: 38608369 DOI: 10.1016/j.chroma.2024.464892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
In this study, 3D-printing based on fused-deposition modeling (FDM) was employed as simple and cost-effective strategy to fabricate a novel format of rotating-disk sorptive devices. As proof-of-concept, twenty organochlorine and organophosphorus pesticides were determined in water samples through rotating-disk sorptive extraction (RDSE) using honeycomb-like 3D-printed disks followed by gas chromatography coupled to mass spectrometry (GC-MS). The devices that exhibited the best performance were comprised of polyamide + 15 % carbon fiber (PA + 15 % C) with the morphology being evaluated through X-ray microtomography. The optimized extraction conditions consisted of 120 min of extraction using 20 mL of sample at stirring speed of 1100 rpm. Additionally, liquid desorption using 800 µL of acetonitrile for 25 min at stirring speed of 1100 rpm provided the best response. Importantly, the methodology also exhibited high throughput since an extraction/desorption platform that permitted up to fifteen simultaneous extractions was employed. The method was validated, providing coefficients of determination higher than 0.9706 for all analytes; limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.15 to 3.03 μg L-1 and from 0.5 to 10.0 μg L-1, respectively. Intraday precision ranged from 4.01 to 18.73 %, and interday precision varied from 4.83 to 20.00 %. Accuracy was examined through relative recoveries and ranged from 73.29 to 121.51 %. This method was successfully applied to analyze nine groundwater samples from monitoring wells of gas stations in São Paulo. Moreover, the greenness was assessed through AGREEprep metrics, and an overall score of 0.69 was obtained indicating that the method proposed can be considered sustainable.
Collapse
Affiliation(s)
- Camila Scheid
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Sofia Aquino Monteiro
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Wendell Mello
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Maiara Callegaro Velho
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Juliana Dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Ruy Carlos Ruver Beck
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil; Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Josias Merib
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil; Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| |
Collapse
|
4
|
Goryński K, Sobczak Ł. Quantification of prohibited substances and endogenous corticosteroids in saliva using traditional, alternative microextraction-based, and novel 3D printed sample-preparation methods coupled with LC-MS. Anal Chim Acta 2024; 1291:342236. [PMID: 38280791 DOI: 10.1016/j.aca.2024.342236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Oral fluid has gained significant interest as an alternative matrix for drug testing due to its easy and non-invasive collection. Despite these advantages, achieving suitably low limits of detection remains a clear challenge in the use of oral fluids for drug screening. In this study, we demonstrate that the application of commercially available SPME fibers followed by liquid chromatography tandem mass spectrometry can enable the comprehensive detection and confirmation of drugs in oral fluid samples. To this end, we develop and test a sample-preparation protocol for a panel of 46 drugs covering the most popular drugs of abuse and doping agents available worldwide. Human saliva samples were collected using a Salivette® device (CE IVD certified) and sampled using SPME devices coated with a C18 extraction phase. The proposed protocol was validated with respect to its lower limits of quantification (LLOQ), linearity, matrix effects, precision, and extraction recovery. Linearity was confirmed for all compounds (R2 > 0.97), except for testosterone (R2 = 0.953) and metandrostenolon (R2 = 0.958). Furthermore, 4 compounds suffered from matrix effects, with less than 10 % deviation from acceptance criteria. After analytical validation, saliva samples from volunteers were analyzed to determine free concentrations of cortisol at different times after awaking. Finally, a 3D-printed prototype device was designed and successfully applied to extract small molecules, thus demonstrating a new modern low-cost approach for bioanalysis.
Collapse
Affiliation(s)
- Krzysztof Goryński
- Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326, Bydgoszcz, Poland.
| | - Łukasz Sobczak
- Nicolaus Copernicus University in Toruń, Faculty of Pharmacy, Jurasza 2, 85-089, Bydgoszcz, Poland
| |
Collapse
|
5
|
Goryński K, Sobczak Ł, Kołodziej D. Developing and Evaluating the Greenness of a Reliable, All-in-One Thin-Film Microextraction Protocol for Determining Fentanyl, Methadone, and Zolpidem in Plasma, Urine, and Oral Fluid. Molecules 2024; 29:335. [PMID: 38257248 PMCID: PMC10818652 DOI: 10.3390/molecules29020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
This paper proposes an all-in-one microextraction-based protocol capable of determining and quantifying fentanyl, methadone, and zolpidem in plasma, urine, and saliva at concentrations below those required by international regulatory organizations. A homemade thin-film microextraction device featuring an octyl-cyanopropyl stationary phase was coupled with LC-MS/MS. The proposed method was developed and validated according to FDA criteria, providing extraction efficiency values ranging from 26.7% to 76.2% with no significant matrix effects (2.6% to 15.5% signal suppression). The developed protocol provided low limits of quantification (mostly equal to 1 ng mL-1) and good reproducibility (intra- and inter-day RSDs of less than 9.6% and 12.0%, respectively) and accuracy (89% to 104% of the test concentration). An assessment of the protocol's environmental impact indicated that attention must be devoted to eliminating the use of toxic reagents and developing its capability for in situ sampling and in-field analysis using portable instruments. The proposed TFME-based protocol provides clinical laboratories with a versatile, one-step tool that enables the simultaneous monitoring of fentanyl, methadone, and zolpidem using the most popular biological matrices.
Collapse
Affiliation(s)
- Krzysztof Goryński
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Łukasz Sobczak
- Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Dominika Kołodziej
- Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
6
|
Zhu N, Wu Z, He M, Chen B, Hu B. 3D printed stir bar sorptive extraction coupled with high performance liquid chromatography for trace estrogens analysis in environmental water samples. Anal Chim Acta 2023; 1281:341904. [PMID: 38783742 DOI: 10.1016/j.aca.2023.341904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Any imaginary shape with good preparation reproducibility can be made by 3D printing technology, and it has been applied in various fields. Comparatively, its applications in sample pre-treatment are relatively less, most of which involves making extraction sorbents and producing non-functionalized devices for support assistance. 3D printing has not been applied to fabricate stir bars in stir bar sorptive extraction, mainly due to the lacking of suitable printing feedstocks. This work aimed to fabricate stir bars by 3D printing, reducing the manufacturing cost and steps and improving preparation reproducibility. (90) RESULTS: By using fused deposition modeling technique and porous filament printing feedstock, stir bars were fabricated without any modifications. Adsorption performance of 3D printed stir bars were investigated for substances with different structures and polarities. Five estrogens with adsorption efficiencies of over 80 % were selected as the representatives. The 3D printed stir bars exhibited good preparation reproducibility (2.9-4.4 %) and higher extraction recoveries (73-81 %) for five estrogens than commercial polydimethylsiloxane coated stir bars (13-69 %) in a shorter time (90 vs 120 min). They showed long lifespan (160 times) with good mechanical properties and merited reduced manufacturing cost (0.064 $ per bar) and manual operation. A method of stir bar sorptive extraction coupled with high performance liquid chromatography was proposed for trace analysis of estrogens in environmental water. Under the optimized conditions, the linear ranges for estrogens were 0.5-200 μg/L with LODs of 0.13-0.17 μg/L. (136) SIGNIFICANCE: The feasibility of fused deposition modeling in stir bar fabrication was demonstrated, along with the potential of porous filament printing feedstock as the sorbent for substances with medium polarity. 3D printed stir bars were featured with excellent preparation reproducibility, long lifespan, and good mechanical properties. The stir bar fabrication method can be used for mass production with minimal differences in products performance. (62).
Collapse
Affiliation(s)
- Ning Zhu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhekuan Wu
- Tobacco Research Institute of Hubei Province, Hubei Tobacco Company, Wuhan, 430040, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Kołodziej D, Sobczak Ł, Goryński K. Innovative, simple, and green: A sample preparation method based on 3D printed polymers. Talanta 2023; 257:124380. [PMID: 36821965 DOI: 10.1016/j.talanta.2023.124380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
The present study evaluates the capability of fifteen 3D printed thermoplastic polymers as novel stationary phases for the extraction of forty-three physicochemically diverse analytes from fortified human oral fluid samples. Prototype extraction devices were prepared in 96-well plate-compatible format using fused deposition modeling 3D printer. The sample preparation was performed with 5-step protocol utilizing 96-well plates and semiautomated benchtop shaker. All resulting extracts were analyzed via high-performance liquid chromatography (operated in reversed-phase gradient elution mode) and tandem mass spectrometry (with electrospray ionization and triple quadrupole mass spectrometer). Exceptionally favorable results were observed for three polymer types: polyamide 6 (reinforced with 15% carbon fiber), LAYFOMM-60 (polyurethane with water-soluble polyvinyl alcohol), and S-FLEX 90A (thermoplastic polyurethane). Furthermore, this study also introduces an automated and repeatable 3D printing method for the fast fabrication of high-throughput, and highly selective sample preparation devices, most of which are ready-to-use without any additional processing or chemical functionalization. As such, the proposed printing method represents a significant step towards the introduction of novel polymeric stationary phases for analytical sample preparation, thus providing laboratory personnel with a method that is safer and more convenient, while minimizing negative environmental impacts.
Collapse
Affiliation(s)
- Dominika Kołodziej
- Bioanalysis Scientific Group, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz at Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Łukasz Sobczak
- Bioanalysis Scientific Group, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz at Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Krzysztof Goryński
- Bioanalysis Scientific Group, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz at Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089, Bydgoszcz, Poland; Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326, Bydgoszcz, Poland.
| |
Collapse
|
8
|
Zhu Q, Liu C, Tang S, Shen W, Lee HK. Application of three dimensional-printed devices in extraction technologies. J Chromatogr A 2023; 1697:463987. [PMID: 37084696 DOI: 10.1016/j.chroma.2023.463987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023]
Abstract
Sample pretreatment is an important and necessary process in chemical analysis. Traditional sample preparation methods normally consume moderate to large quantities of solvents and reagents, are time- and labor-intensive and can be prone to error (since they usually involve multiple steps). In the past quarter century or so, modern sample preparation techniques have evolved, from the advent of solid-phase microextraction and liquid-phase microextraction to the present day where they are now widely applied to extract analytes from simple as well as complex matrices leveraging on their extremely low solvent consumption, high extraction efficiency, generally straightforward and simple operation and integration of most, if not all, of the following aspects: Sampling, cleanup, extraction, preconcentration and ready-to-inject status of the final extract. One of the most interesting features of the progress of microextraction techniques over the years lies in the development of devices, apparatus and tools to facilitate and improve their operations. This review explores the application of a recent material fabrication technology that has been receiving a lot of interest, that of three-dimensional (3D) printing, to the manipulation of microextraction. The review highlights the use of 3D-printed devices in the extraction of various analytes and in different methods to address, and improves upon some current extraction (and microextraction) problems, issues and concerns.
Collapse
Affiliation(s)
- Qi Zhu
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China.
| | - Wei Shen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China
| | - Hian Kee Lee
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China; Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
9
|
Scur R, Dagnoni Huelsmann R, Carasek E. Polyamide-coated paper-based sorptive phase applied in high-throughput thin film microextraction designed by 3D printing. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Merib J. High-throughput platforms for microextraction techniques. Anal Bioanal Chem 2023:10.1007/s00216-022-04504-7. [PMID: 36598538 DOI: 10.1007/s00216-022-04504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
The proposal of high-throughput platforms in microextraction-based approaches is important to offer sustainable and efficient tools in analytical chemistry. Particularly, automated configurations exhibit enormous potential because they provide accurate and precise results in addition to less analyst intervention. Recently, significant achievements have been obtained in proposing affordable platforms for microextraction techniques capable of being integrated with different analytical instrumentations. Considering the evolution of these approaches, this article describes innovative high-throughput platforms that have recently been proposed for the analysis of varied matrices, with special attention to laboratory-made devices. Additionally, some challenges, opportunities, and trends regarding these experimental workflows are pointed out.
Collapse
Affiliation(s)
- Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, 90050-170, Brazil. .,Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|