1
|
Ouyang M, Liu T, Yuan X, Xie C, Luo K, Zhou L. Nanomaterials-based aptasensors for rapid detection and early warning of key food contaminants: A review. Food Chem 2025; 462:140990. [PMID: 39208725 DOI: 10.1016/j.foodchem.2024.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.
Collapse
Affiliation(s)
- Min Ouyang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
2
|
Yao J, Feng X, Wang S, Liang Y, Zhang B. Plasmon-Enhanced Photoelectrochemistry of Photosystem II on a Hierarchical Tin Oxide Electrode for Ultrasensitive Detection of 17β-Estradiol. Anal Chem 2024. [PMID: 39479964 DOI: 10.1021/acs.analchem.4c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Despite its excellent efficiency in natural photosynthesis, the utilization of photosystem II (PSII)-based artificial photoelectrochemical (PEC) systems for analytical purposes is hindered due to the low enzyme loading density and ineffective electron transfer (ET) processes. Here, we present a straightforward and effective approach to prepare a PSII-based biohybrid photoanode with remarkable photoresponse, enabled by the use of a hierarchically structured inverse-opal tin oxide (IO-SnO2) electrode combined with gold nanoparticles (Au NPs). The porous, carbon-containing IO-SnO2 structure allows for a high density and photoactivity loading of PSII complexes, while also providing strong electrical coupling between the protein film and the electrode. A new electron transfer pathway mediated by Au NPs was identified at the protein-electrode interface, which efficiently shuttles the photogenerated electrons from the enzyme to the IO-SnO2 electrode. Furthermore, the PEC response of the electrode was significantly enhanced by the surface plasmon resonance (SPR) effect of Au NPs. Upon light irradiation, this PSII-based photoanode exhibited an impressively high and stable photocurrent output, which was utilized to fabricate an aptasensor for 17β-Estradiol (E2) detection. Under optimal conditions, a detection limit of 0.33 pM was obtained, along with a broad detection range from 15 pM to 30 nM. The applicability of the aptasensor was assessed by measuring E2 in water and urine samples, demonstrating its feasibility in environmental monitoring and clinical tests.
Collapse
Affiliation(s)
- Jingjing Yao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaonan Feng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shangqing Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuemei Liang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Li H, Cai Q, Li P, Jie G. Zero-Background Dual-Mode Closed Bipolar Electrode Electrochemiluminescence Biosensor Based on ZnCoN-C Potential Regulation for Ultrasensitive Detection of Ochratoxin A. Anal Chem 2024. [PMID: 39140171 DOI: 10.1021/acs.analchem.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this work, the relationship between electrochemiluminescence (ECL) signal and driving voltage was first studied by self-made reduced and oxidized closed bipolar electrodes (CBPEs). It was found that when the driving voltage was large enough, the maximum ECL signals for the two kinds of CBPEs were the same but their required drive voltages were different. Zinc cobalt nitrogen doped carbon material (ZnCoN-C) had an outstanding electric double layer (EDL) property and conductivity. Therefore, it could significantly reduce the driving voltage of two kinds of CBPE systems, reaching the maximum ECL signal of Ru(bpy)32+. Interestingly, when the ZnCoN-C modified electrode reached the maximum ECL signal, the bare electrode signal was zero. As a proof-of-concept application, a zero-background dual-mode CBPE-ECL biosensor was constructed for the ultrasensitive detection of ochratoxin A (OTA) in beer. Considering that beer samples contained a large number of reducing substances, a reduced CBPE system was selected to build the biosensor. Furthermore, a convenient ECL imaging platform using a smartphone was built for the detection of OTA. This work used a unique EDL material ZnCoN-C to regulate the driving voltage of CBPE for the first time; thus, a novel zero-background ECL sensor was constructed. Further, this work provided a deeper understanding of the CBPE-ECL system and opened a new door for zero-background detection.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Pingping Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
4
|
Chen Y, Liang J, Xu J, Shan L, Lv J, Wu C, Zhang L, Li L, Yu J. Ultrasensitive Paper-Based Photoelectrochemical Biosensor for Acetamiprid Detection Enabled by Spin-State Manipulation and Polarity-Switching. Anal Chem 2024. [PMID: 39018067 DOI: 10.1021/acs.analchem.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Efficient carrier separation is vitally crucial to improving the detection sensitivity of photoelectrochemical (PEC) biosensors. Here, we developed a facile strategy to efficiently regulate the carrier separation efficiency of the photoactive matrix BiOI and In2S3 signal label functionalized paper chip by manipulation of electrons spin-state and rational design of electron transport pathways. The spin-dependent electronic structures of BiOI and In2S3 were regulated via enhanced electron-spin parallel alignment induced by an external magnetic field, markedly retarding carrier recombination and extending their lifetime. Simultaneously, with the progress of the target-induced catalytic hairpin assembly process, the transfer path of photogenerated carriers was changed, leading to a switch in photocurrent polarity from cathode to anode. This reversed electron transport pathway not only boosted the separation ability of photogenerated electrons but also eliminated false-positive and false-negative signals, thereby further improving the detection sensitivity. As a proof of concept, the well-designed magnetic field-stimulated paper-based PEC biosensor showed highly selectivity and sensitivity for acetamiprid assay with a wide linear range of 1 fM to 20 nM and an ultralow detection limit of 0.73 fM. This work develops a universal strategy for improving the sensitivity of biosensors and exhibits enormous potential in the fields of bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jiaxin Liang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jiahui Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Shan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jingjing Lv
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chengjun Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
5
|
Han X, Zhang D, Xie M, Yang J, Wang Y, Li H, Wang S, Pan M. Microfluidic paper-based analysis device applying black phosphorus nanosheets@MWCNTs-COOH: A portable and efficient strategy for detection of β-Lactoglobulin in dairy products. Food Chem 2024; 446:138844. [PMID: 38422642 DOI: 10.1016/j.foodchem.2024.138844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
This study prepared a novel, portable and cost-effective microfluidic paper-based electrochemical analysis device (μ-PAD) using black phosphorus nanosheets@carboxylated multi-walled carbon nanotubes (BPNSs@MWCNTs-COOH) nanocomposites for β-lactoglobulin (β-LG) detection. At the appreciate ratio, the synthesized BPNSs@MWCNTs-COOH was demonstrated to not only serve as a high-quality substrate for the specific aptamer immobilization, but also improve the electron transfer capability of the sensing interface. The μ-PADs, utilizing BPNSs@MWCNTs-COOH and aptamer recognition, exhibited a wider detection range (10-1000 ng mL-1) and lower detection limit (LOD: 0.12 ng mL-1) for β-LG, and demonstrated enhanced specificity, satisfactory anti-interference ability and stability. When applied to the β-LG determination in dairy samples, the μ-PAD yielded β-LG concentrations highly correlated with those obtained using the HPLC method (R2: 0.9982). These results emphasized the reliable performance of the developed μ-PADs in β-LG allergen quantification, highlighting their potential as an efficient platform for the rapid screening of β-LG allergens.
Collapse
Affiliation(s)
- Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Dan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Mengjiao Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| |
Collapse
|
6
|
Qin M, Khan IM, Ding N, Qi S, Dong X, Zhang Y, Wang Z. Aptamer-modified paper-based analytical devices for the detection of food hazards: Emerging applications and future perspective. Biotechnol Adv 2024; 73:108368. [PMID: 38692442 DOI: 10.1016/j.biotechadv.2024.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Food analysis plays a critical role in assessing human health risks and monitoring food quality and safety. Currently, there is a pressing need for a reliable, portable, and quick recognition element for point-of-care testing (POCT) to better serve the demands of on-site food analysis. Aptamer-modified paper-based analytical devices (Apt-PADs) have excellent characteristics of high portability, high sensitivity, high specificity, and on-site detection, which have been widely used and concerned in the field of food safety. The article reviews the basic components and working principles of Apt-PADs, and introduces their representative applications detecting food hazards. Finally, the advantages, challenges, and future directions of Apt-PADs-based sensing performance are discussed, to provide new directions and insights for researchers to select appropriate Apt-PADs according to specific applications.
Collapse
Affiliation(s)
- Mingwei Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Ning Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Xia N, Gao F, Zhang J, Wang J, Huang Y. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024; 29:2796. [PMID: 38930860 PMCID: PMC11206384 DOI: 10.3390/molecules29122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Enzyme-linked electrochemical immunosensors have attracted considerable attention for the sensitive and selective detection of various targets in clinical diagnosis, food quality control, and environmental analysis. In order to improve the performances of conventional immunoassays, significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox cycling for signal amplification. The current review summarizes the recent advances in the development of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal amplification. The special features of redox cycling reactions and their synergistic functions in signal amplification are discussed. Additionally, the current challenges and future directions of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling are addressed.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
8
|
Chen Y, Gu W, Zhu C, Hu L. Recent Advances in Photoelectrochemical Sensing for Food Safety. Anal Chem 2024; 96:8855-8867. [PMID: 38775631 DOI: 10.1021/acs.analchem.4c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Affiliation(s)
- Yuanxing Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
9
|
Qian D, Zhang J, Sun G, Zhang Y, Xu Q, Li J, Li H. Programmable Entropy-Driven Circuit-Cascaded Self-Feedback DNAzyme Network for Ultra-Sensitive Fluorescence and Photoelectrochemical Dual-Mode Biosensing. Anal Chem 2024; 96:7274-7280. [PMID: 38655584 DOI: 10.1021/acs.analchem.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Inspired by natural DNA networks, programmable artificial DNA networks have become an attractive tool for developing high-performance biosensors. However, there is still a lot of room for expansion in terms of sensitivity, atom economy, and result self-validation for current microRNA sensors. In this protocol, miRNA-122 as a target model, an ultrasensitive fluorescence (FL) and photoelectrochemical (PEC) dual-mode biosensing platform is developed using a programmable entropy-driven circuit (EDC) cascaded self-feedback DNAzyme network. The well-designed EDC realizes full utilization of the DNA strands and improves the atomic economy of the signal amplification system. The unique and rational design of the double-CdSe quantum-dot-released EDC substrate and the cascaded self-feedback DNAzyme amplification network significantly avoids high background signals and enhances sensitivity and specificity. Also, the enzyme-free, programmable EDC cascaded DNAzyme network effectively avoids the risk of signal leakage and enhances the accuracy of the sensor. Moreover, the introduction of superparamagnetic Fe3O4@SiO2-cDNA accelerates the rapid extraction of E2-CdSe QDs and E3-CdSe QDs, which greatly improves the timeliness of sensor signal reading. In addition to the strengths of linear range (6 orders of magnitude) and stability, the biosensor design with dual signal reading makes the test results self-confirming.
Collapse
Affiliation(s)
- Defu Qian
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Jingling Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Guoshuai Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| |
Collapse
|
10
|
Bakhnooh F, Arvand M. A novel photoelectrochemical approach with "signal-off" pattern for anodic detection of sunset yellow in food samples based on Bi2WO6/TiO2 NTAs heterostructure nanocomposite. Food Chem 2024; 438:138070. [PMID: 38016299 DOI: 10.1016/j.foodchem.2023.138070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
A new and signal-off photoelectrochemical (PEC) sensing platform utilizing TiO2 nanotube arrays (NTAs) coated with Bi2WO6 nanoparticles (NPs) has been successfully developed for the highly sensitive detection of sunset yellow (SY). The interaction between SY and Bi2WO6 NPs leads to substantial steric hindrance, resulting in a noticeable decrease in the photocurrent signal. The proposed PEC sensor demonstrates quantitative detection capabilities for SY across a wide liner range of 10 fM to 100 µM with an ultralow detection limit (LOD) of 0.78 fM. Furthermore, the designed PEC sensor exhibits several notable advantages, including robust anti-interference properties, desirable repeatability, good reproducibility, and excellent stability. Finally, the designed PEC sensor was applied to determine SY in diverse real samples without any remarkable difference compared to the UV-Vis reference method.
Collapse
Affiliation(s)
- Fatemeh Bakhnooh
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran
| | - Majid Arvand
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran.
| |
Collapse
|
11
|
Wu Y, Liang R, Chen W, Wang C, Xing D. The development of biosensors for alkaline phosphatase activity detection based on a phosphorylated DNA probe. Talanta 2024; 270:125622. [PMID: 38215586 DOI: 10.1016/j.talanta.2024.125622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Alkaline phosphatase (ALP) is a zinc-containing metalloprotein that shows very great significance in clinical diagnosis, which can catalyze the hydrolysis of phosphorylated species. ALP has the potential to serve as a valuable biomarker for detecting liver dysfunction and bone diseases. On the other hand, ALP is an efficient biocatalyst to amplify detection signals in the enzyme-linked assay. It has always been a major research focus to develop novel biosensors that can detect ALP activity with high selectivity and sensitivity. There have been numerous reports on the development of biosensors to determine ALP activity using a phosphorylated DNA probe. Among them, various beneficial strategies, such as λ exonuclease-mediated cleavage reaction, terminal deoxynucleotidyl transferase-triggered DNA polymerization, and Klenow fragment polymerase-catalyzed elongation, are employed to generate amplified and more intuitive signal. This review discusses and summarizes the development and advances of biosensors for ALP activity detection that use a well-designed phosphorylated DNA probe, aiming to provide some guidelines for the design of more sophisticated sensing strategies that exhibit improved sensitivity, selectivity, and adaptability in detecting ALP activity.
Collapse
Affiliation(s)
- Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Zhang H, Wu S, Xiao HJ, Wang HB, Fang L, Cao JT. Chemical-chemical redox cycling for improving the sensitivity of the fluorescent assay: A proof-of-concept towards DNA methylation detection. Talanta 2024; 268:125363. [PMID: 37906997 DOI: 10.1016/j.talanta.2023.125363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Ultrasensitive analytical methods are still urgent for the discovery of trace level biomarkers and the early clinical diagnosis of disease. In this work, an ultrasensitive universal sensing platform was constructed by integrating fluorescent assay with chemical-chemical redox cycling signal amplification strategy. Using Ru@SiO2 nanoparticles wrapped by MnO2 nanosheets (Ru@SiO2@MnO2) as fluorescent probe, the chemical-chemical redox cycling system was conducted upon ascorbic acid (AA) and tris(2-carboxyethyl)phosphine (TCEP) as reductants and MnO2 nanosheets as oxidant. The MnO2 nanosheets not only could quench the fluorescence of Ru@SiO2 nanoparticles to reduce the background, but also could serve as oxidants to react with AA, generating dehydroascorbic acid (DHA). The DHA was reduced by TCEP in turn to form AA that participated in the next cycling of chemical-chemical redox reaction. Thus, the constantly released AA from the chemical-chemical redox cycling system could massively etch MnO2 nanosheets on Ru@SiO2 surface, making the fluorescence of Ru@SiO2 nanoparticles greatly recovered. It was shown that the sensitivity of the fluorescent assay was improved almost 52 times by utilizing the chemical-chemical redox cycling signal amplification strategy. This strategy was further employed to detect DNA methylation with the aid of AA-encapsulated liposomes that were modified with 5 mC antibodies to bind with the methylated DNA captured in 96-well plate. A detection of limit down to 16.2 fM was achieved for the detection of methylated DNA. It's believed that the incorporation of chemical-chemical redox cycling signal amplification strategy into fluorescent sensing paves a new way for ultrasensitive detection of biomarkers.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China.
| | - Sifei Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hui-Jin Xiao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China
| | - Linxia Fang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China.
| |
Collapse
|
13
|
Pan M, Han X, Chen S, Yang J, Wang Y, Li H, Wang S. Paper-based microfluidic device for selective detection of peanut allergen Ara h1 applying black phosphorus-Au nanocomposites for signal amplification. Talanta 2024; 267:125188. [PMID: 37716240 DOI: 10.1016/j.talanta.2023.125188] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
This paper developed a portable microfluidic paper-based analysis device (μ-PAD) combined with the electrochemical technique for efficient and sensitive detection of peanut allergen Ara h1. The proposed μ-PAD works based on the variation of differential pulse voltammetry (DPV) response current induced by peanut allergen Ara h1. Black phosphorus (BP)-Au nanocomposites were introduced both to improve the electron transfer rate at the electrode interface for signal amplification, and to immobilize the specific Ara h1 aptamers through Au-S bonding to recognize the target in food matrices. This μ-PAD had good specificity and detection stability for Ara h1 allergen and could complete the entire analysis process within 20 min, achieving a wide linear response range (25-800 ng mL-1) and a low detection limit (LOD, 11.8 ng mL-1). In the Ara h1 allergen detection applied to real peanut products (cookies, milk, and bread), the constructed μ-PAD obtained acceptable recoveries (93.50%-101.86%) with relative standard deviations (RSDs) of 0.36-2.97% (n = 3), with a good correlation with the ELISA results (R2 = 0.9956). Therefore, the portable μ-PAD based on BP-Au nanocomposites was demonstrated to provide an effective strategy for rapid analysis and screening of Ara h1 allergen in food, which has broad application prospects.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Sixuan Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
14
|
Meng S, Li Y, Dong N, Liu S, Liu C, Gong Q, Chen Z, Jiang K, Li X, Liu D, You T. Portable Visual Photoelectrochemical Biosensor Based on a MgTi 2O 5/CdSe Heterojunction and Reversible Electrochromic Supercapacitor for Dual-Modal Cry1Ab Protein Detection. Anal Chem 2023; 95:18224-18232. [PMID: 38013427 DOI: 10.1021/acs.analchem.3c04001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Reversible electrochromic supercapacitors (ESCs) have attracted considerable interest as visual display screens. The use of ESCs in combination with a photoelectrochemical (PEC) biosensor promises to improve the detection efficiency. Herein, a visual PEC biosensor is developed by introducing a circuit module between a PEC-sensing platform (PSP) and a reversible ESC for Cry1Ab protein detection. In PSP, a type II MgTi2O5/CdSe heterojunction effectively drives charge separation by their cross-matched band gap structures, generating an amplified photocurrent. Next, the circuit module is designed to connect the PSP and ESC, realizing the signal conversion from photocurrent to voltage. ESC, as a visual display screen, produces reversible color changes with different voltages. As the concentration of Cry1Ab increases, the photocurrent decreases due to the specific binding between the aptamer and Cry1Ab in PSP, while the color of the reversible ESC changes from green to blue. To improve the integrity of the device, a portable PEC biosensor is further constructed via three-dimensional printing for dual-modal Cry1Ab protein detection, thus collecting both PEC and visual signals. The linear ranges are 0.3-3000 ng mL-1 for PEC mode and 1-1000 ng mL-1 for visual mode. This work presents a portable, efficient, sensitive, and visualized detection system, providing an important reference for practical visualization applications.
Collapse
Affiliation(s)
- Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chang Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qingfa Gong
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zuo Chen
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kaituo Jiang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
15
|
Chen Y, Liang J, Tan X, Shan L, Zhang L, Li L, Ge S, Cui K, Yu J. Constructing DNAzyme-driven three-dimensional DNA nanomachine-mediated paper-based photoelectrochemical device for ultrasensitive detection of miR-486-5p. Biosens Bioelectron 2023; 241:115671. [PMID: 37714060 DOI: 10.1016/j.bios.2023.115671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
As a unique class of dynamic nanostructures, biomimetic DNA walking machines that exhibit geometrical complexity and nanometre precision have gained great success in photoelectrochemical (PEC) bioanalysis. Despite certain achievements, the slow reaction kinetics and low processivity severely restrict the amplification efficiency of the DNA walker-mediated biosensors. Herein, by taking advantage of efficient DNA rolling machines, a three-dimensional (3D) DNA nanomachine-mediated paper-based PEC device for speedy ultrasensitive detection of miR-486-5p was successfully constructed. To achieve it, a novel In2S3/SnS2 sensitized heterojunction was firstly in-situ grown on the Au-modified paper fibers and implemented as the photoanode with effective separation of photogenerated carriers to achieve an enhanced initial photocurrent. Subsequently, the copper hexacyanoferrate(II)-modified CuO nanosphere was introduced as a multifunctional signal regulator via the competitive capture of electron donors and photon energy with the photoelectric layer for efficiently quenching the PEC signal. With the introduction of targets, the DNAzyme-driven DNA nanomachine with editable motion modes was gradually activated and it could continuously cleave the tracks DNA labeled quenching probes, finally achieving the recovery of PEC signal. As a proof of concept, the elaborated paper-based PEC device presented a wide linear range from 0.1 fM to 100 pM and a detection limit of 35 aM for miR-486-5p bioassay. This work provides an innovative insight to the exploitation of DNA nanobiotechnology and nucleic acid signal amplification strategy.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Jiaxin Liang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Xiaoran Tan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Li Shan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, PR China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| |
Collapse
|
16
|
Guo L, Cui Z, Xue J, Zhang Y, Yang H, Miao M. Cascade signal amplification electrochemical biosensor based on AgNPs and ring opening polymerization for determination of Ochratoxin A. Mikrochim Acta 2023; 190:432. [PMID: 37806989 DOI: 10.1007/s00604-023-06001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
An ochratoxin A (OTA) electrochemical biosensor based on a cascade signal amplification strategy with Ag nanoparticles (AgNPs) and ring opening polymerization (ROP) was constructed. The large specific surface area of AgNPs was used to increase the loading of OTA aptamer on the electrode surface, enhancing the ability to capture OTA as a way to achieve the first signal amplification. The OTA antibody modified with polyethylenimine specifically recognizes the OTA, forming an aptamer-OTA-antibody sandwich structure. The amino group on polyethylenimine initiates the ROP reaction with α-amino acid-n-carboxylic anhydride-ferrocene (NCA-Fc) as the monomer. A large number of electrochemical signal units of ferrocene are introduced into the sensing system for a second signal amplification. By amplifying the signal twice, the sensitivity of the sensor is improved. Under the optimal conditions, the detection range of the sensor is 1 pg·mL-1 ~ 1 μg·mL-1, while the detection limit is as low as 117 fg·mL-1. Moreover, the sensor has the advantages of high sensitivity, good stability and selectivity. Standard addition recovery experiment proved that the sensing system can be successfully used for the detection of OTA in four actual samples with recoveries in the range 90.0 to 113% with RSDs of 0.6 to 5.2%, providing a new idea for the pollution assessment of mycotoxins.
Collapse
Affiliation(s)
- Liang Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Zhenzhen Cui
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Jinyan Xue
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Yuting Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Huaixia Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Mingsan Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
17
|
Geng W, Xue L, Li Y, Ji J, Yuan X, Ding L, Yang R. A dual-model immobilization-free photoelectrochemical/visual colorimetric bioanalysis based on microemulsion self-assemblies mediated multifunctional signal amplification strategy. Anal Chim Acta 2023; 1277:341644. [PMID: 37604608 DOI: 10.1016/j.aca.2023.341644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
Herein, a novel silver ion-loaded gold microemulsion assemblies (Au/Ag+ MAs) mediated multifunctional signal amplification strategy was proposed to construct a sensitive immobilization-free photoelectrochemical (PEC)/colorimetric biosensor for carcinoembryonic antigen (CEA) detection. Through the sandwiched reaction among CEA, the CEA aptamer (DNA1) loaded on the Au nanoparticles (NPs) functionalized iron oxide (Fe3O4) nanospheres and another CEA aptamer (DNA2) immobilized on Au/Ag+ MAs, a complex is formed and acquired by magnetic separation. Then, Au/Ag+ MAs of the complex are disassembled into Au NPs and Ag+ ions driven by an acetone response, and the obtained demulsification solution is transferred to the cadmium sulfide/cadmium telluride (CdS/CdTe) photoactive composites modified electrode. Based on the multiple inhibition functions (blocking effect of oleylamine; energy transfer effect of Au NPs; and electron snatching effect of Ag+), the photocurrent of the electrode decreases obviously, resulting in the ultrasensitive detection of CEA (a detection limit of 16 fg mL-1). Interestingly, the ion-exchange reactions between CdS/CdTe composites and Ag+ ions generate silver sulfide/silver telluride (Ag2S/Ag2Te) composites, and a color change of composites can be distinguished directly, leading to a quick visual detection of CEA. Compared with the traditional single-modal assay for CEA, such dual-modal PEC/colorimetric assay is a more accurate and reliable due to different mechanisms and independent signal conversion. This work will offer a new perspective for the applications of various self-assemblies in PEC bioanalysis.
Collapse
Affiliation(s)
- Wenchao Geng
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, China
| | - Linsheng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuling Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangying Ji
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinxin Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Dong Q, Xing J, Yuan R, Yuan Y. Novel Porphyrinic Covalent Organic Polymer with Polarity-Switchable Dual Wavelength for Accurate and Sensitive Photoelectrochemical Sensing. Anal Chem 2023; 95:13967-13974. [PMID: 37672686 DOI: 10.1021/acs.analchem.3c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we synthesized a novel porphyrinic covalent organic polymer (TPAPP-PTCA PCOP) for constructing a polarity-switchable dual-wavelength photoelectrochemical (PEC) biosensor with ferrocene (Fc) and hydrogen peroxide (H2O2) as regulator and amplifier simultaneously. Interestingly, this new PCOP possessed both n-type and p-type semiconductor characteristics, which thus enabled the appearance of a dual-polarity photocurrent at two different excitation wavelengths. Furthermore, Fc and H2O2 could readily switch the photocurrent of PCOP to the cathode and anode stemming from its efficient electron collection and donation function, respectively. Based on these, a PCOP-based PEC biosensor skillfully integrating dual wavelengths with reliable accuracy and polarity switch with high sensitivity was instituted. As a result, the developed PEC biosensor exhibited a low detection limit down to 0.089 pg mL-1 for the most powerful natural carcinogen aflatoxin M1 (AFM1) assay. Impressively, the target exhibited a completely opposite photocurrent difference to the interfering substances, and the linear correlation coefficient of the assay was improved compared to single-wavelength detection. The PEC sensing platform not only provided a basis for exploring multicharacteristic photoactive material but also innovatively developed the detection mode of the PEC biosensor.
Collapse
Affiliation(s)
- Qingyuan Dong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Juan Xing
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
19
|
Liao D, Zhi J, Wang Q, Yan W, Guo Y, Han Y, Dong C, Xiao Y, Bai H, Liang W, Fan L. Efficient photoelectrochemical aptasensing of di-2-ethylhexyl phthalate in environmental samples based on N, S co-doped graphene quantum dots/TiO 2 nanorods. Anal Chim Acta 2023; 1271:341477. [PMID: 37328253 DOI: 10.1016/j.aca.2023.341477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
An efficient photoelectrochemical (PEC) sensing platform was developed for detection of di-2-ethylhexyl phthalate (DEHP) based on nitrogen and sulfur co-doped graphene quantum dots/TiO2 nanorods (N, S-GQDs/TiO2 NRs) coupling with exonuclease I (Exo I)-assisted target recycling for remarkable signal amplification. N, S-GQDs uniformly grown on TiO2 NRs by simple hydrothermal method showed high electron-hole separation efficiency and superior photoelectric performance, which was explored as the photoactive substrate for anchoring anti-DEHP aptamer and its complementary DNA (cDNA). With the addition of DEHP, aptamer molecules fell from the electrode surface owing to the specific recognition of aptamer to DEHP, resulting in the increment of photocurrent signal. At this moment, Exo I could stimulate aptamer hydrolysis in the aptamer-DEHP complexes, so that DEHP was released from the complexes to take part in the next reaction cycling, which remarkably increasing the photocurrent response and achieving signal amplification. The designed PEC sensing platform exhibited excellent analytical performance for DEHP with a low detection limit of 0.1 pg L-1. Also, its applications in real samples were further investigated in detail. Thus, the established method would provide a simple and efficient tool for DEHP or other pollutants monitoring in the environment.
Collapse
Affiliation(s)
- Dongyun Liao
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Jinfeng Zhi
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Qiang Wang
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, CAS, Taiyuan, 030001, PR China
| | - Wenjun Yan
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, CAS, Taiyuan, 030001, PR China
| | - Yujing Guo
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yujie Han
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yong Xiao
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, CAS, Taiyuan, 030001, PR China
| | - Hongcun Bai
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Wenting Liang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Lifang Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
20
|
Zhou Y, Ai S, Chai Y, Yuan R, Liu H. Ultrasensitive Photocathodic Biosensor Based on the Cu 2O/PTB7-Th/PDA + Composite with Enhanced Photoelectrochemical Performance for the Detection of MicroRNA-375-3p. Anal Chem 2023; 95:12383-12390. [PMID: 37559508 DOI: 10.1021/acs.analchem.3c01935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Herein, an ultrasensitive photocathodic biosensor was fabricated based on Cu2O/PTB7-Th/PDA+ photoactive materials with high photocarrier separation efficiency for the detection of microRNA-375-3p. Impressively, the photocathodic signal of the Cu2O material was significantly enhanced by using PTB7-Th as an energy level-matching photoactive material to enhance the bulk charge separation and N,N-bis (2-(trimethylammoniumiodide) propylene) perylene-3,4,9,10-tetracarboxydiimide (PDA+) as an interfacial charge transfer mediator to efficiently suppress charge recombination at the photoelectrode/electrolyte interface. Compared with the pristine Cu2O as a photocathode, the obtained Cu2O/PTB7-Th/PDA+ exhibited a 17 times higher photocathodic signal. As a proof of concept, a PEC biosensor was fabricated by using Cu2O/PTB7-Th/PDA+ as a photoactive material and a target-triggered 3D DNA walker integrated with the dumbbell hybridization chain reaction (DHCR) as a signal amplifier to achieve the sensitive detection of microRNA-375-3p with a detection limit of 0.3 fM. This work provided a method to increase the photocurrent signal and the sensitivity of PEC-sensing platforms for the detection of biomarkers and disease diagnosis.
Collapse
Affiliation(s)
- Yuying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Simin Ai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hongyan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
21
|
Hong H, Yuan R, Ma H, Xiao L, Li B, Wang K. Accurate and ultrasensitive detection for PEDV based on photoelectrochemical sensing coupling loop-mediated isothermal amplification. Talanta 2023; 258:124476. [PMID: 36989618 DOI: 10.1016/j.talanta.2023.124476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Porcine epidemic diarrhea (PED) is a serious disease requiring a simple and accurate detection method. Accordingly, this study developed a novel, ultrasensitive photoelectrochemical (PEC) sensing platform using the loop-mediated isothermal amplification (LAMP) technique (LAMP-PEC). An amino (-NH2)-modified LAMP product is obtained by amplification of the PED virus gene with specially designed primers. The generated NH2-modified LAMP product is assembled on the surface of an electrode by forming imine linkages between aldehyde and amino groups based on the Schiff base reaction. A stable photocurrent is provided by a CdIn2S4 photoactive material, which possesses high photoelectric conversion efficiency. Amplified DNA assembled on the electrode surface increases steric hindrance and hinders electrons from moving from the electrode to electron acceptors, which decreases the photocurrent. This strategy can detect PEDV with a low detection limit of 0.3 fg μL-1 and a wide linear range of 1 × 10-3-1 × 102 pg/μL. The sensing platform has excellent specificity and sensitivity and can be used for the quantitative detection of many other pathogens with the assistance of LAMP.
Collapse
Affiliation(s)
- Honghong Hong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ruishuang Yuan
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hanyu Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Liting Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
22
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
23
|
Zhou J, Lv X, Gui Y, He J, Xie F, Cai J. Passion fruit-inspired dendritic mesoporous silica nanospheres-enriched quantum dots coupled with magnetism-controllable aptasensor enable sensitive detection of ochratoxin A in food products. Food Chem 2023; 425:136445. [PMID: 37270885 DOI: 10.1016/j.foodchem.2023.136445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Ochratoxin A (OTA) is a powerful mycotoxin present in a variety of food products, and its detection is important for human health. Here, a fluorescent aptasensor is reported for sensitive OTA determination. Specifically, the surface of bio-inspired passion fruit-like dendritic mesoporous silica nanospheres-enriched quantum dots (MSNQs-apt) was first modified with the OTA aptamer as the recognition unit and fluorescence emitter, while the aptamer-complementary DNA (MNPs-cDNA) was linked with the magnetic nanoparticles (MNPs) as the separation element. In the range of 2.56 pg/mL to 8 ng/mL, the proposed aptasensor exhibited satisfactory linearity and a detection limit of 1.402 pg/mL. The developed aptasensor achieved recoveries of 90.98-103.20% and 94.33-107.57 % in red wine and wheat flour samples, respectively. By simply replacing the aptamer, this aptasensor can be easily extended to detection of other analytes, suggesting its potential as a universal detection platform for mycotoxins in food products.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuqin Lv
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yue Gui
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
24
|
Xiao M, Zhu M, Yuan R, Yuan Y. Dual-sensitized heterojunction PDA/ZnO@MoS 2 QDs combined with multilocus domino-like DNA cascade reaction for ultrasensitive photoelectrochemical biosensor. Biosens Bioelectron 2023; 227:115151. [PMID: 36821994 DOI: 10.1016/j.bios.2023.115151] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
In this work, by integrating with a highly efficient multilocus domino-like cascade reaction on DNA nanonet, an ultrasensitive PEC biosensor based on dual-sensitized PDA/ZnO@MoS2 QDs photoactive material as signal probe was proposed for detection of miRNA-182-5p. The dual-sensitized PDA/ZnO@MoS2 QD composed by both of p-n and S-scheme heterojunctions on electrode generated an extremely high initial PEC signal, which however quenched by CdTe QDs decorated on DNA nanonet owing to the significant p-n quenching effect. Thereafter, the output DNA (RS) from DSN enzyme-assisted target recycling amplification triggered an ingenious multilocus domino-like DNA cascade reaction on DNA nanonet for releasing numerous CdTe QDs. Thanks to the multilocus domino-like mode that owned abundant binding sites for increasing trigger efficiency and drove cascade reaction automatically advance along four stated pathways, the target conversion rate could be improved effectively compared with that of traditional approaches, significantly enhancing the detection sensitivity. Consequently, the developed PEC biosensor exhibited a low detection limit to 0.17 fM, providing a new avenue for sensitive, fast and reliable sensing of various DNA/RNA.
Collapse
Affiliation(s)
- Mingjun Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Minghui Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
25
|
Miao P, Zhou Y, Li C, Li J, Wang W, Ma T, Lv Y, Song Z, Zhang J, Yan M. Near-infrared light-induced photoelectrochemical biosensor based on plasmon-enhanced upconversion nanocomposites for microRNA-155 detection with cascade amplifications. Biosens Bioelectron 2023; 226:115145. [PMID: 36787662 DOI: 10.1016/j.bios.2023.115145] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Herein, a novel near-infrared (NIR) light-driven photoelectrochemical (PEC) biosensor based on NaYF4:Yb3+, Er3+@Bi2MoO6@Bi (NYF@BMO@Bi) nanocomposites was elaborately developed to achieve highly sensitive detection of microRNA-155 (miRNA-155). To realize signal enhancement, the coupled plasmonic bismuth (Bi) nanoparticles were constructed as an energy relay to facilitate the transfer of energy from NaYF4:Yb3+, Er3+ to Bi2MoO6, ultimately enabling the efficient separation of electron-hole pairs of Bi2MoO6 under the irradiation of a 980 nm laser. For constructing biosensing system, the initial signal was firstly amplified after the addition of alkaline phosphatase (ALP) in conjunction with the biofunctionalized NYF@BMO@Bi nanocomposites, which could catalyze the conversion of ascorbic acid 2-phosphate into ascorbic acid, and then consumed the photoacoustic holes created on the surface of Bi2MoO6 for the enlarging photocurrent production. Upon addition of target miRNA-155, the cascade signal amplification process was triggered while the ALP-modified DNA sequence was replaced and then followed by the initiation of a simulated biocatalytic precipitation reaction to attenuate the photocurrent response. On account of the NIR-light-driven and cascade amplifications strategy, the as-constructed biosensor was successfully utilized for the accurate determination of miRNA-155 ranging from 1 fM to 0.1 μM with a detection limit of 0.32 fM. We believed that the proposed nanocomposites-based NIR-triggered PEC biosensor could provide a promising platform for effective monitoring other tumor biomarkers in clinical diagnostics.
Collapse
Affiliation(s)
- Pei Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yongqing Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Chengfang Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Juan Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wenshou Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Tingbin Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yanfeng Lv
- Department of Colorectal & Anal Surgery, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | - Zhiling Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
26
|
Robust and facile label-free colorimetric aptasensor for ochratoxin A detection using aptamer-enhanced oxidase-like activity of MnO2 nanoflowers. Food Chem 2023; 401:134144. [DOI: 10.1016/j.foodchem.2022.134144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
|
27
|
Li X, Huang J, Ding J, Xiu M, Huang K, Cui K, Zhang J, Hao S, Zhang Y, Yu J, Huang Y. PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO 4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. BIOSENSORS 2023; 13:103. [PMID: 36671939 PMCID: PMC9855910 DOI: 10.3390/bios13010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/06/2023]
Abstract
A dual-mode lab-on-paper device based on BiVO4/FeOOH nanocomposites as an efficient generating photoelectrochemical (PEC)/colorimetric signal reporter has been successfully constructed by integration of the lab-on-paper sensing platform and PEC/colorimetric detection technologies for sensitive detection of carcinoembryonic antigen (CEA). Concretely, the BiVO4/FeOOH nanocomposites were in situ synthesized onto the paper-working electrode (PWE) through hydrothermal synthesis of the BiVO4 layer on cellulose fibers (paper-based BiVO4) which were initially modified by Au nanoparticles for improving the conductivity of three dimensional PWE, and then the photo-electrodeposition of FeOOH onto the paper-based BiVO4 to construct the paper-based BiVO4/FeOOH for the portable dual-mode lab-on-paper device. The obtained nanocomposites with an FeOOH needle-like structure deposited on the BiVO4 layer exhibits enhanced PEC response activity due to its effective separation of the electron-hole pair which could further accelerate the PEC conversion efficiency during the sensing process. With the introduction of CEA targets onto the surface of nanocomposite-modified PWE assisted by the interaction with the CEA antibody from a specific recognition property, a signal-off PEC signal state with a remarkable photocurrent response decreasing trend can be achieved, realizing the quantitative detection of CEA with the PEC signal readout mode. By means of a smart origami paper folding, the colorimetric signal readout is achieved by catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue oxidized TMB in the presence of H2O2 due to the satisfied enzyme-like catalytic activity of the needle-like structure, FeOOH, thereby achieving the dual-mode signal readout system for the proposed lab-on-paper device. Under the optimal conditions, the PEC and colorimetric signals measurement were effectively carried out, and the corresponding linear ranges were 0.001-200 ng·mL-1 and 0.5-100 ng·mL-1 separately, with the limit of detection of 0.0008 and 0.013 ng·mL-1 for each dual-mode. The prepared lab-on-paper device also presented a successful application in serum samples for the detection of CEA, providing a potential pathway for the sensitive detection of target biomarkers in clinical application.
Collapse
Affiliation(s)
- Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiali Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiayu Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
28
|
An electrochemical aptasensor based on exonuclease III-assisted signal amplification coupled with CRISPR-Cas12a for ochratoxin A detection. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Zhong Y, Zha R, Li W, Lu C, Zong Y, Sun D, Li C, Wang Y. Signal-On Near-Infrared Photoelectrochemical Aptasensors for Sensing VEGF165 Based on Ionic Liquid-Functionalized Nd-MOF Nanorods and In-Site Formation of Gold Nanoparticles. Anal Chem 2022; 94:17835-17842. [PMID: 36508733 DOI: 10.1021/acs.analchem.2c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The low photon energy and deep penetrating ability of near-infrared (NIR) light make it an ideal light source for a photoelectrochemical (PEC) immunosensing system. Absorption wavelengths of the metal-organic frameworks (MOFs) can be regulated by adjusting the metal ions and the conjugation degree of the ligands. Herein, an ionic liquid with a large conjugated structure was synthesized and was used as a ligand to coordinate with Nd ions to prepare Nd-MOF nanorods with a band gap of 1.26 eV. The Nd-MOF rods show a good photoabsorption property from 200 to 980 nm. A PEC platform was constructed by using Nd-MOF nanorods as the photoelectroactive element. A detachable double-stranded DNA labeled with alkaline phosphatase (ALP), which is specific to VEGF165, was immobilized onto the PEC sensing interface. After blocking unspecific active sites with bovine albumin, an NIR PEC aptasensing system was developed for VEGF165 detection. After being incubated in a mixture of VEGF165, l-ascorbic acid 2-phosphate (magnesium salt hydrate) (AAP), and chloroauric acid, the aptamers for VEGF165 were detached from the PEC aptasensing interface, thus resulting in the decrease of the charge-transfer resistance and the increase of the photocurrent response. The shedding of the aptamers also makes the ALP approach the electrode surface, thus catalyzing the reduction of AAP to produce ascorbic acid (AA). Subsequently, AA reduces in situ chloroauric acid to produce AuNPs on the Nd-MOF-based sensing interface. With the excellent conductivity and localized surface plasmon resonance effect, the AuNPs can accelerate the separation of electron-hole pairs generated from Nd-MOF nanorods, thus promoting the photoelectric conversion efficiency and achieving signal amplification. Under optimized conditions, the PEC responses were linearly related to the VEGF165 concentrations in the range of 0.01-100 ng mL-1 and exhibit a low detection limit of 3.51 pg mL-1 (S/N = 3). VEGF165 in human serum samples was detected by the NIR PEC aptasensor. Their concentrations were found to be well consistent with that obtained from ELISA. Furthermore, the PEC aptasensor demonstrated recoveries from 96.07 to 103.8%. The relative standard deviations were within 5%, indicating good accuracy and precision. The results further verify its practicability for clinical diagnosis.
Collapse
Affiliation(s)
- Yingying Zhong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Ruyan Zha
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Wei Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chunfeng Lu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Yuange Zong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Dong Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China.,Experimental Teaching and Laboratory Management Center, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
30
|
Wang J, Guo Q, Li Q, Zheng L, Yang X, Wang X, Nie G. A “signal-off” type photoelectrochemical immunosensor for detecting carcinoembryonic antigen based on TiO2 NRs/BiOI heterojunction and SiO2/PDA-Au inhibitor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
31
|
Huang J, Li X, Xiu M, Huang K, Cui K, Zhang J, Ge S, Hao S, Yu J, Huang Y. A Paper-Based Photoelectrochemical Sensing Platform Based on In Situ Grown ZnO/ZnIn 2S 4 Heterojunctions onto Paper Fibers for Sensitively Detecting AFP. BIOSENSORS 2022; 12:818. [PMID: 36290955 PMCID: PMC9599276 DOI: 10.3390/bios12100818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/06/2023]
Abstract
Nowadays, developing a cost-effective, easy-to-operate, and efficient signal amplification platform is of important to microfluidic paper-based analytical devices (μPAD) for end-use markets of point-of-care (POC) assay applications. Herein, an ultrasensitive, paper-based photoelectrochemical (PEC) bioassay platform is constructed by in situ grown ZnO/ZnIn2S4 heterojunctions onto paper fibers, which acted as photoactive signal amplification probes for enhancing the sensitivity of antibodies-based diagnostic assays, for the sensitive detection of alpha-fetoprotein (AFP) targets. The crystalline flake-like ZnIn2S4 composited with hexagonal nanorods (NRs) morphology of ZnO is an in situ grown, at the first time, onto cellulose fibers surface supported with Au nanoparticle (Au NP) modification to improve conductivity of the device working zone. The obtained composites on paper fibers are implemented as a flexible paper-based photoelectrode to realize remarkable performance of the fabricated μPAD, resulting from the enhanced PEC activity of heterojunctions with effective electron-hole pair separation for accelerating photoelectric conversion efficiency of the sensing process under light irradiation. Once the target AFP was introduced into the biosensing interface assistant, with a specific recognition interaction of AFP antibody, a drastically photocurrent response was generated, in view of the apparent steric effects. With the concentration increase of AFP targets, more immune conjugates could be confined onto the biosensing interface, eventually leading to the quantitative decrease of photocurrent intensity. Combined with an ingenious origami design and permitting the hydrophobic/hydrophilic conversion procedure in the bioassay process, the ultrasensitive PEC detection of AFP targets was realized. Under the optimized conditions, the level of AFP could be sensitively tracked by the prepared μPAD with a liner range from 0.1 to 100 ng mL-1 and limit of detection of 0.03 ng mL-1. This work provides a great potential application for highly selective and sensitive POC testing of AFP, and finally, developments for clinical disease diagnosis.
Collapse
Affiliation(s)
- Jiali Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shenguang Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
32
|
Zhou M, Huang H, Zhao X, Cheng Z, Deng W, Tan Y, Xie Q. A Novel Signaling Strategy for an Ultrasensitive Photoelectrochemical Immunoassay Based on Electro-Fenton Degradation of Liposomes on a Photoelectrode. Anal Chem 2022; 94:13913-13920. [PMID: 36166257 DOI: 10.1021/acs.analchem.2c02827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A signaling strategy can directly determine the analytical performance and application scope of photoelectrochemical (PEC) immunoassays, so it is of great significance to develop an effective signaling strategy. The electro-Fenton reaction has been extensively used to degrade organic pollutants, but it has not been applied to PEC immunoassays. Herein, we report a novel signaling strategy for a PEC immunoassay based on electro-Fenton degradation of liposomes (Lip) on a photoelectrode. Lip vesicles are coated on Au@TiO2 core-shell photoactive material, which can prevent ascorbic acid (AA) from scavenging photogenerated holes. In the presence of a target, the immunomagnetic bead labels are converted to Fe3+ for electro-Fenton reaction, and hydroxyl radicals generated by the electro-Fenton reaction can degrade the Lip vesicles on the photoelectrode. Because of the degradation of Lip vesicles, photogenerated holes can be scavenged more effectively by AA, leading to an increase in photocurrent. Based on the electro-Fenton-regulated interface electron transfer, the sensitive "signal on" PEC immunoassay of a carcinoembryonic antigen is achieved, which features a dynamic range from 0.05 to 5 × 104 pg mL-1 and a detection limit of 0.01 pg mL-1. Our work provides a novel and efficient PEC immunoassay platform by introducing the electro-Fenton reaction into PEC analysis.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hui Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiao Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zhong Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
33
|
Xu J, Liang C, Gao W, Gao Z, Wu Z, Song YY. Photocatalysis engineered hydrophilic reactors on hydrophobic paper for the visual and colorimetric assay of alkaline phosphatase activity. Mikrochim Acta 2022; 189:343. [PMID: 35999293 DOI: 10.1007/s00604-022-05454-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Taking advantage of the intrinsic photocatalysis of TiO2, hydrophilic reactor arrays were lithographically patterned on a hydrophobic paper via a simple UV irradiation. As a proof-of-concept, alkaline phosphatase (ALP) was used as the model analyte for colorimetric analysis. As ALP can induce hydrolysis of pyrophosphate-Zn(II) framework, the released Zn2+ ions are subsequently coordinated with red-colored zincon to form blue-colored zincon-Zn(II) chelate complex, and these color differences were applied for further colorimetric assay. The sensing platform showed response to ALP ranging from 20 ~ 800 U L-1 with a detection limit of 3 U L-1, and the recoveries of ALP in serum samples were in the range 95.7 ~ 104.5% with relative standard deviations from 2.10 to 3.84%. Additionally, the distinct wettability features of the proposed sensing platform effectively prevent lateral fluid spread out of hydrophilic reactors, thus allowing not only the use of minimum amount of analyte but it has also a high potential for simultaneous quantification of multiple samples.
Collapse
Affiliation(s)
- Jingwen Xu
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Chenchen Liang
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Weina Gao
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Zhiyong Wu
- College of Sciences, Northeastern University, Shenyang, 110004, China.
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang, 110004, China.
| |
Collapse
|
34
|
Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report the proof-of-concept of molecularly imprinted polymer (MIP) functionalized Bi2S3/Ti3C2TX MXene nanocomposites for photoelectrochemical (PEC)/electrochemical (EC) dual-mode sensing of chlorogenic acid (CGA). Specifically, the in-situ growth of the Bi2S3/Ti3C2TX MXene served as a transducer substrate for molecularly imprinted polymers such as PEC and EC signal generators, due to its high surface area, suitable bandwidth and abundant active sites. In addition, the chitosan as a binder was encapsulated into MIP by means of phase inversion on a fluorine-doped tin dioxide (FTO) electrode. In the determination of CGA as an analytical model, the dual-mode sensor based on MIP functionalized Bi2S3/Ti3C2TX MXene nanocomposites had good selectivity, excellent stability and acceptable reproducibility, which displayed a linear concentration range from 0.0282 μM to 2824 μM for the PEC signal and 0.1412 μM to 22.59 μM for the EC signal with a low detection limit of 2.4 nM and 43.1 nM, respectively. Importantly, two dual-response mode with different transduction mechanisms could mutually conform to dramatically raise the reliability and accuracy of detection compared to single-mode detection. This work is a breakthrough for the design of dual-mode sensors and will provide a reasonable basis for the construction of dual-mode sensor platforms.
Collapse
|
35
|
Dang X, Shi Z, Sun Z, Li Y, Hu X, Zhao H. Ultrasensitive sandwich-type photoelectrochemcial oxytetracycline sensing platform based on MnIn2S4/WO3 (Yb, Tm) functionalized rGO film. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Dashtian K, Hajati S, Ghaedi M. Molecular Imprinted Poly(2,5-benzimidazole)-Modified VO 2-CuWO 4 Homotype Heterojunction for Photoelectrochemical Dopamine Sensing. Anal Chem 2022; 94:6781-6790. [PMID: 35467838 DOI: 10.1021/acs.analchem.2c00485] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A photoactive molecularly imprinted poly(2,5-benzimidazole)-modified vanadium dioxide-cupric tungstate (VO2-CuWO4) as an efficient photosensitive n-n type-II heterojunction thin film was electrochemically deposited on Ti substrate for the selective and robust photoelectrochemical (PEC) bioanalysis of dopamine (DA). The optical absorption of n-VO2/n-CuWO4 type-II heterojunction was capably broadened toward the visible region, which permitted superior light-harvesting and robust carriers generation, separation, and transfer processes significantly enhancing the anodic photocurrent, as confirmed by a series of PEC analyses. Findings revealed that the as-prepared label-free MIP-PEC sensor can quantitatively monitor DA in a linear range of 1 nM to 200 μM with a detection limit of 0.15 nM. This MIP-PEC sensor showed robust selectivity under conditions with high concentrations of interfering substances, which can be recovered in the real samples of urine, cocoa chocolate, and diluted yogurt, indicating its promising potential applications in biological and food samples. This work not only featured the use of photoelectrically active MIP/VO2-CuWO4 for PEC detection of DA, but also provided a new horizon for the design and implementation of functional polymers/metal oxides heterojunction materials in the field of PEC sensors and biosensors.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Shaaker Hajati
- Department of Semiconductors, Materials and Energy Research Center (MERC), Tehran 31787-316, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|