1
|
Cheng Z, Wang T, Luo M, Wu S, Hua S, Li Y, Yang Y, Zou L, Wei J, Li P. A new luminescent nickel nanocluster with solvent and ion induced emission enhancement toward heavy metal analysis. Biosens Bioelectron 2024; 264:116660. [PMID: 39142230 DOI: 10.1016/j.bios.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Expanding the family of fluorescent metal clusters beyond gold, silver, and copper has always been an issue for researchers to solve. In this study, a novel type of cysteine-capped nickel nanoclusters (Cys-Ni NCs) with bright turquoise emission was developed. The as-synthesized Ni NCs showed aggregation-induced emission enhancement (AIEE) properties across Cd2+ and various polar organic solvents. Concurrently, solvents with different viscosities were used to explore the principle of solvent-induced AIEE of Cys-Ni NCs, revealing a positive correlation between fluorescence intensity and solution viscosity. In addition, the concentration of Cd2+ that induced the AIEE effect was reduced by nearly two orders of magnitude in highly viscous solvents, indicating the possibility of Cys-Ni NCs as a promising nanomaterial platform for Cd2+ sensing analysis. Moreover, we propose a novel fluorescent sensing method for rapid detection of Cu2+ based on the carboxyl group of Cys-Ni NCs coupling with Cu2+. Further, validation of Cu2+ detecting methodologies in environmental water samples with the accuracy up to 93.94% underscores their potential as robust and efficient sensing platforms. This study expands the repertoire of fluorescent metal nanoclusters for highly sensitive and selective sensing of hazardous ions and paves the way for further exploration and wide applications in Cu2+ detection in biological and medicine fields.
Collapse
Affiliation(s)
- Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; School of Pharmaceutical Sciences, Liaoning University, Shenyang, Liaoning 110036, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Sijia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yuqing Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
2
|
Tan K, Ma H, Mu X, Wang Z, Wang Q, Wang H, Zhang XD. Application of gold nanoclusters in fluorescence sensing and biological detection. Anal Bioanal Chem 2024; 416:5871-5891. [PMID: 38436693 DOI: 10.1007/s00216-024-05220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Gold nanoclusters (Au NCs) exhibit broad fluorescent spectra from visible to near-infrared regions and good enzyme-mimicking catalytic activities. Combined with excellent stability and exceptional biocompatibility, the Au NCs have been widely exploited in biomedicine such as biocatalysis and bioimaging. Especially, the long fluorescence lifetime and large Stokes shift attribute Au NCs to good probes for fluorescence sensing and biological detection. In this review, we systematically summarized the molecular structure and fluorescence properties of Au NCs and highlighted the advances in fluorescence sensing and biological detection. The Au NCs display high sensitivity and specificity in detecting iodine ions, metal ions, and reactive oxygen species, as well as certain diseases based on the fluorescence activities of Au NCs. We also proposed several points to improve the practicability and accelerate the clinical translation of the Au NCs.
Collapse
Affiliation(s)
- Kexin Tan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huizhen Ma
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Qi Z, Pan N, Han D, He J, Li JA, Yang L, Wang X, Huang F. Enzymatic response of heparin-protamine complex: Spectroscopic investigation and application for lung adenocarcinoma cells detection. Int J Biol Macromol 2024; 277:134307. [PMID: 39084435 DOI: 10.1016/j.ijbiomac.2024.134307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Though the heparin-protamine complex (HP complex) is a crucial system utilized in clinical settings, the metabolic pathways of this complex remain inadequately understood. Herein, the enzymatic degradation of the heparin-protamine complex by trypsin and its broader implications were investigated. By utilizing fluorescent gold nanoclusters liganded with the HP complex (AuNCs-HP complex), we observed significant morphological and spectral changes during enzymatic degradation. Experiments showed that AuNCs-HP complex could be degraded and cleaved into small fragments by trypsin. Moreover, the AuNCs-HP complex demonstrated its potential as a highly sensitive spectral sensing platform, enabling precise measurement of trypsin activity with an outstanding detection limit (0.34 ng mL-1). Additionally, we explored its utility for specific tumor cell detection, focusing on lung adenocarcinoma cells, and successfully identified their presence through distinctive fluorescence changes. These remarkable findings not only contribute valuable insights into targeted degradation systems but also offer promising opportunities for cancer biomarker detection. The AuNCs-HP complex serves as an innovative tool for real-time trypsin activity monitoring, paving the way for advanced biomedical applications.
Collapse
Affiliation(s)
- Zichun Qi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Nana Pan
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Dongxue Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiahua He
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jin-Ao Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Luqi Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
4
|
Lin H, Song X, Chai OJH, Yao Q, Yang H, Xie J. Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401002. [PMID: 38521974 DOI: 10.1002/adma.202401002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Metal nanoclusters (MNCs) can be synthesized with atomically precise structures and molecule formulae due to the rapid development of nanocluster science in recent decades. The ultrasmall size range (normally < 2 nm) endows MNCs with plenty of molecular-like properties, among which photoluminescent properties have aroused extensive attention. Tracing the research and development processes of luminescent nanoclusters, various photoluminescent analysis and characterization methods play a significant role in elucidating luminescent mechanism and analyzing luminescent properties. In this review, it is aimed to systematically summarize the normally used photoluminescent characterizations in MNCs including basic parameters and methods, such as excitation/emission wavelength, quantum yield, and lifetime. For each key parameter, first its definition and meaning is introduced and then the relevant characterization methods including measuring principles and the revelation of luminescent properties from the collected data are discussed. Then, it is discussed in details how to explore the luminescent mechanism of MNCs and construct NC-based applications based on the measured data. By means of these characterization strategies, the luminescent properties of MNCs and NC-based designs can be explained quantitatively and qualitatively. Hence, this review is expected to provide clear guidance for researchers to characterize luminescent MNCs and better understand the luminescent mechanism from the measured results.
Collapse
Affiliation(s)
- Hongbin Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
5
|
Wang T, Wang Y, Liu T, Yu F, Liu L, Xiong H, Xu W, Fan X, Liu X, Jiang H, Zhang H, Wang X. Potentiating Immunogenic Cell Death in Cold Tumor with Functional Living Materials of FeAu-Methylene Blue Composites. Adv Healthc Mater 2024; 13:e2302767. [PMID: 38381808 DOI: 10.1002/adhm.202302767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Low immunogenicity, absence of tumor-infiltrating lymphocytes and immunosuppressive microenvironment of immune cold tumors are the main bottlenecks leading to unfavorable prognosis. Here, an integrated tumor bioimaging and multimodal therapeutic strategy is developed, which converts immune cold into hot by modulating oxidative stress levels, enhancing photo-killing efficacy, inducing immunogenic cell death and inhibiting the immune checkpoint. On that occasion, the unique tumor microenvironment can be harnessed to biosynthesize in situ self-assembly iron complexes and fluorescent gold nanoclusters from metal ions Fe(II) and Au(III) for active targeting and real-time visualization of the tumors, simultaneously regulating reactive oxygen species levels within tumors via peroxidase-like activity. Furthermore, methylene blue (MB)-mediated photodynamic therapy promotes the release of damage-associated molecular patterns (DAMPs), which acts as in situ tumor vaccine and further induces dendritic cells maturation, augments the infiltration of antitumor T cells and significantly impedes the primary tumor growth and proliferation. More strikingly, by synergizing with the programmed cell death receptor-1 (PD-1) checkpoint inhibitor, the immunosuppressive microenvironment is remodeled and the survival time of model mice is prolonged. In summary, this paradigm utilizes the tumor-specific microenvironment to boost robust and durable systemic antitumor immunity, providing a novel opportunity for precision cancer theranostics.
Collapse
Affiliation(s)
- Tingya Wang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Yihan Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fangfang Yu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wenwen Xu
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xin Fan
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
6
|
Pérez-Herráez I, Ferrera-González J, Zaballos-García E, González-Béjar M, Pérez-Prieto J. Raspberry-like Nanoheterostructures Comprising Glutathione-Capped Gold Nanoclusters Grown on the Lanthanide Nanoparticle Surface. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:4426-4436. [PMID: 38764750 PMCID: PMC11099914 DOI: 10.1021/acs.chemmater.3c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 05/21/2024]
Abstract
Bare lanthanide-doped nanoparticles (LnNPs), in particular, NaYF4:Yb3+,Tm3+ NPs (UCTm), have been seeded in situ with gold cations to be used in the subsequent growth of gold nanoclusters (AuNCs) in the presence of glutathione (GSH) to obtain a novel UCTm@AuNC nanoheterostructure (NHS) with a raspberry-like morphology. UCTm@AuNC displays unique optical properties (multiple absorption and emission wavelengths). Specifically, upon 350 nm excitation, it exhibits AuNC photoluminescence (PL) (500-1200 nm, λmax 650 nm) and Yb emission (λmax 980 nm); this is the first example of Yb sensitization in a UCTm@AuNC NHS. Moreover, under 980 nm excitation, it displays (i) upconverting PL of the UCTm (at the blue, red and NIR-I, ca. 800 nm, regions); (ii) two-photon PL of AuNC; and (iii) down-shifting PL of thulium (around 1470 nm). The occurrence of energy transfer from UCTm to AuNCs in the UCTm@AuNC NHS was evidenced by the drastic lengthening of the AuNC PL lifetime (τPL) (from few hundred nanoseconds to more than one hundred microseconds). Initial biological assessment of UCTm@AuNC NHSs in vitro revealed high biocompatibility and bioimaging capabilities upon near-infrared excitation.
Collapse
Affiliation(s)
- Irene Pérez-Herráez
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Juan Ferrera-González
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Elena Zaballos-García
- Department
of Organic Chemistry, Universitat de València, Av. Vicent Andrés Estellés
s/n, 46100 Burjassot, Valencia ,Spain
| | - María González-Béjar
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Julia Pérez-Prieto
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| |
Collapse
|
7
|
Yang L, Hou P, Wei J, Li B, Gao A, Yuan Z. Recent Advances in Gold Nanocluster-Based Biosensing and Therapy: A Review. Molecules 2024; 29:1574. [PMID: 38611853 PMCID: PMC11013830 DOI: 10.3390/molecules29071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Gold nanoclusters (Au NCs) with bright emission and unique chemical reactivity characters have been widely applied for optical sensing and imaging. With a combination of surface modifications, effective therapeutic treatments of tumors are realized. In this review, we summarize the recently adopted biosensing and therapy events based on Au NCs. Homogeneous and fluorometric biosensing systems toward various targets, including ions, small molecules, reactive oxygen species, biomacromolecules, cancer cells, and bacteria, in vitro and in vivo, are presented by turn-off, turn-on, and ratiometric tactics. The therapy applications are concluded in three aspects: photodynamic therapy, photothermal therapy, and as a drug carrier. The basic mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of Au NC-based biosensing and therapy systems.
Collapse
Affiliation(s)
| | | | | | | | - Aijun Gao
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Tsang CY, Zhang Y. Nanomaterials for light-mediated therapeutics in deep tissue. Chem Soc Rev 2024; 53:2898-2931. [PMID: 38265834 DOI: 10.1039/d3cs00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered drug delivery, have been widely studied due to their high specificity and effective therapy. However, conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have been made to engineer nanosystems that can generate luminescence through excitation with near-infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light, these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy in deeper tissues. In this review, we systematically report the design and mechanisms of different luminescent nanosystems excited by the 4 excitation sources, methods to enhance the generated luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.
Collapse
Affiliation(s)
- Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
9
|
Li T, Zhang Y, Wu F, Chen G, Li C, Wang Q. Rational Design of NIR-II Ratiometric Fluorescence Probes for Accurate Bioimaging and Biosensing In Vivo. SMALL METHODS 2024:e2400132. [PMID: 38470209 DOI: 10.1002/smtd.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Intravital fluorescence imaging in the second near-infrared window (NIR-II, 900-1700 nm) has emerged as a promising method for non-invasive diagnostics in complex biological systems due to its advantages of less background interference, high tissue penetration depth, high imaging contrast, and sensitivity. However, traditional NIR-II fluorescence imaging, which is characterized by the "always on" or "turn on" mode, lacks the ability of quantitative detection, leading to low reproducibility and reliability during bio-detection. In contrast, NIR-II ratiometric fluorescence imaging can realize quantitative and reliable analysis and detection in vivo by providing reference signals for fluorescence correction, generating new opportunities and prospects during in vivo bioimaging and biosensing. In this review, the current design strategies and sensing mechanisms of NIR-II ratiometric fluorescence probes for bioimaging and biosensing applications are systematically summarized. Further, current challenges, future perspectives and opportunities for designing NIR-II ratiometric fluorescence probes are also discussed. It is hoped that this review can provide effective guidance for the design of NIR-II ratiometric fluorescence probes and promote its adoption in reliable biological imaging and sensing in vivo.
Collapse
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
10
|
Zhou X, Huang S, Liu W, Shang L. Metal Ion-Regulated Fluorescent Sensor Array Based on Gold Nanoclusters for Physiological Phosphate Sensing. Anal Chem 2024; 96:4224-4231. [PMID: 38421217 DOI: 10.1021/acs.analchem.3c05582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The detection of physiological phosphates (PPs) is of great importance due to their essential roles in numerous biological processes, but the efficient detection of different PPs simultaneously remains challenging. In this work, we propose a fluorescence sensor array for detecting PPs based on metal-ion-regulated gold nanoclusters (AuNCs) via an indicator-displacement assay. Zn2+ and Eu3+ are selected to assemble with two different AuNCs, resulting in quenching or enhancing their fluorescence. Based on the competitive interaction of metal ions with AuNCs and PPs, the fluorescence of AuNCs will be recovered owing to the disassembly of AuNC-metal ion ensembles. Depending on different PPs' distinct fluorescence responses, a four-channel sensor array was established. The array not only exhibits good discrimination capability for eight kinds of PPs (i.e., ATP, ADP, AMP, GTP, CTP, UTP, PPi, and Pi) via linear discriminant analysis but also enables quantitative detection of single phosphate (e.g., ATP) in the presence of interfering PPs mixtures. Moreover, potential application of the present sensor array for the discrimination of different PPs in real samples (e.g., cell lysates and serum) was successfully demonstrated with a good performance. This work illustrates the great potential of a metal ion-regulated sensor array as a new and efficient sensing platform for differential sensing of phosphates as well as other disease-related biomolecules.
Collapse
Affiliation(s)
- Xiaomeng Zhou
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Saijin Huang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
11
|
Huang Y, Chen S, Huang W, Zhuang X, Zeng J, Rong M, Niu L. Visualized test of environmental water pollution and meat freshness: Design of Au NCs-CDs-test paper/PVA film for ratiometric fluorescent sensing of sulfide. Food Chem 2024; 432:137292. [PMID: 37657332 DOI: 10.1016/j.foodchem.2023.137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Hydrogen sulfide (H2S) is an environmental pollutant, and also the major released gas during the decay of meat products. To protect the ecological environment and human health, the establishment of a swift, convenient, and accurate detection method for H2S becomes essential. However, existing methods are still suffering from complex synthesis, high toxicity, poor visualization, and high detection limit. Herein, Au NCs-CDs nanocomposite-based test paper and polyvinyl alcohol (PVA) film are combined with a smartphone for sensitive and specific sulfide visualized monitoring. After the addition of sulfide, the fluorescence color changes from orange to green, achieving a quantitative linearity towards sulfide from 5 nM to 30 μM, with a low detection limit of 4.20 nM. The proposed method shows practicability in natural water samples. Furthermore, distinct fluorescence color variation is shown towards H2S originating from spoiled meat, showing the potential application prospect of Au NCs-CDs-PVA film as a meat freshness detector.
Collapse
Affiliation(s)
- Yi Huang
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shiming Chen
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wei Huang
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoting Zhuang
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiahao Zeng
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mingcong Rong
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Li Niu
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices/Guangzhou Key Laboratory of Sensing Materials and Devices/Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
13
|
Wen X, Bi S, Wang C, Zeng S. An Activated Structure Transformable Ratiometric Photoacoustic Nanoprobe for Real-Time Dynamic Monitoring of H 2S In Vivo. NANO LETTERS 2023; 23:10642-10650. [PMID: 37955992 DOI: 10.1021/acs.nanolett.3c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
H2S has emerged as a promising biomarker for many diseases such as colon cancer and metformin-induced hepatotoxicity. Real-time monitoring of H2S levels in vivo is significant for early accurate diagnosis of these diseases. Herein, a new accurate and reliable nanoprobe (Au NRs@Ag) was designed for real-time dynamic ratiometric photoacoustic (PA) imaging of H2S in vivo based on the endogenous H2S-triggered local surface plasmon resonance (LSPR) red-shift. The Au NRs@Ag nanoprobe can be readily converted into Au NRs@Ag2S via the endogenous H2S-activated in situ sulfurative reaction, subsequently leading to a significant red-shift of the LSPR wavelength from 808 to 980 nm and enabling accurate ratiometric PA (PA980/PA808) imaging of H2S. Moreover, dynamic ratiometric PA imaging of metformin-induced hepatotoxicity was also successfully achieved by the designed PA imaging strategy. These findings provide the possibility of designing a new ratiometric PA imaging strategy for dynamic in situ monitoring of H2S-related diseases.
Collapse
Affiliation(s)
- Xingwang Wen
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| | - Shenghui Bi
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| | - Chunxia Wang
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| | - Songjun Zeng
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
14
|
Yang Z, Yang X, Guo Y, Kawasaki H. A Review on Gold Nanoclusters for Cancer Phototherapy. ACS APPLIED BIO MATERIALS 2023; 6:4504-4517. [PMID: 37828759 DOI: 10.1021/acsabm.3c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its noninvasive properties, high efficiency, improved selectivity, and reduced side effects. Gold nanoclusters (AuNCs) have the advantages of high biocompatibility, high biosafety, excellent photoresponse, and high tumor penetration ability. This review analyzes the use of AuNCs in tumor phototherapy in recent years from three aspects, namely, AuNCs in PDT, AuNCs in PTT, and AuNCs in combination therapy, and presents the high potential of AuNCs in cancer phototherapy. This review aims to provide readers with the unique advantages, diversified application approaches, and bright application prospects of AuNCs in phototherapy and to provide insights into strategies for applying AuNCs to tumor phototherapy.
Collapse
Affiliation(s)
- Zhuoren Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiebingqing Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| | - Hideya Kawasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| |
Collapse
|
15
|
Li S, Yang N, Ma Q, Li S, Tong S, Luo J, Song X, Yang H. Tailoring Oxidation Responsiveness of Gold Nanoclusters via Ligand Engineering for Imaging Acute Kidney Injury. Anal Chem 2023; 95:16153-16159. [PMID: 37877516 DOI: 10.1021/acs.analchem.3c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Gold nanoclusters (AuNCs) have shown great promise for in vivo imaging because of their definable structure, tunable photoluminescence (PL), and desired renal clearance. However, current understanding of the responsiveness of AuNCs to biological substances is still limited, which may hamper their biomedical applications. Herein, we explore the oxidation responsiveness of near-infrared II (NIR-II) luminescent AuNCs capped with two different ligands, which can be optimized for high-efficiency NIR-II PL imaging of mice acute kidney injury (AKI) featuring high-level peroxynitrite anions (ONOO-). We found that in the presence of ONOO-, N-acetylcysteine-capped AuNCs (NAC-AuNCs) tended to be oxidized more easily than that capped with the macromolecular mercapto-β-cyclodextrin (CDS-AuNCs), resulting in the aggregation of NAC-AuNCs into large-sized assemblies, which was not observed in CDS-AuNCs. The oxidation-triggered morphology, composition, and NIR-II PL changes in NAC-AuNCs were then systematically studied. We finally demonstrated that NAC-AuNCs can be implemented for sensitive NIR-II PL imaging of mice AKI, facilitated by the synergetic in situ AuNC aggregation and decreased glomerular filtration rate (GFR) in the injured kidney, which outperforms the methods solely based on the decreased GFR effect. Therefore, this work highlights the critical significance of ligand engineering in AuNCs and may motivate future design of AuNCs for diverse bioimaging applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Nangen Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiuping Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shijie Li
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Shufen Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jiewei Luo
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
16
|
Liu Y, Liang F, Sun J, Sun R, Liu C, Deng C, Seidi F. Synthesis Strategies, Optical Mechanisms, and Applications of Dual-Emissive Carbon Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2869. [PMID: 37947715 PMCID: PMC10650469 DOI: 10.3390/nano13212869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Tuning the optical properties of carbon dots (CDs) and figuring out the mechanisms underneath the emissive phenomena have been one of the most cutting-edge topics in the development of carbon-based nanomaterials. Dual-emissive CDs possess the intrinsic dual-emission character upon single-wavelength excitation, which significantly benefits their multi-purpose applications. Explosive exploitations of dual-emissive CDs have been reported during the past five years. Nevertheless, there is a lack of a systematic summary of the rising star nanomaterial. In this review, we summarize the synthesis strategies and optical mechanisms of the dual-emissive CDs. The applications in the areas of biosensing, bioimaging, as well as photoelectronic devices are also outlined. The last section presents the main challenges and perspectives in further promoting the development of dual-emissive CDs. By covering the most vital publications, we anticipate that the review is of referential significance for researchers in the synthesis, characterization, and application of dual-emissive CDs.
Collapse
Affiliation(s)
- Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (F.L.); (J.S.); (R.S.); (C.L.); (C.D.); (F.S.)
| | | | | | | | | | | | | |
Collapse
|
17
|
Dar MS, Tabish TA, Thorat ND, Swati G, Sahu NK. Photothermal therapy using graphene quantum dots. APL Bioeng 2023; 7:031502. [PMID: 37614868 PMCID: PMC10444203 DOI: 10.1063/5.0160324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
The rapid development of powerful anti-oncology medicines have been possible because of advances in nanomedicine. Photothermal therapy (PTT) is a type of treatment wherein nanomaterials absorb the laser energy and convert it into localized heat, thereby causing apoptosis and tumor eradication. PTT is more precise, less hazardous, and easy-to-control in comparison to other interventions such as chemotherapy, photodynamic therapy, and radiation therapy. Over the past decade, various nanomaterials for PTT applications have been reviewed; however, a comprehensive study of graphene quantum dots (GQDs) has been scantly reported. GQDs have received huge attention in healthcare technologies owing to their various excellent properties, such as high water solubility, chemical stability, good biocompatibility, and low toxicity. Motivated by the fascinating scientific discoveries and promising contributions of GQDs to the field of biomedicine, we present a comprehensive overview of recent progress in GQDs for PTT. This review summarizes the properties and synthesis strategies of GQDs including top-down and bottom-up approaches followed by their applications in PTT (alone and in combination with other treatment modalities such as chemotherapy, photodynamic therapy, immunotherapy, and radiotherapy). Furthermore, we also focus on the systematic study of in vitro and in vivo toxicities of GQDs triggered by PTT. Moreover, an overview of PTT along with the synergetic application used with GQDs for tumor eradication are discussed in detail. Finally, directions, possibilities, and limitations are described to encourage more research, which will lead to new treatments and better health care and bring people closer to the peak of human well-being.
Collapse
Affiliation(s)
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Nuffield Department of Women's and Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - G. Swati
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
18
|
Zhou T, Zha M, Tang H, Li K, Jiang X. Controlling NIR-II emitting gold organic/inorganic nanohybrids with tunable morphology and surface PEG density for dynamic visualization of vascular dysfunction. Chem Sci 2023; 14:8842-8849. [PMID: 37621431 PMCID: PMC10445439 DOI: 10.1039/d3sc02290k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/16/2023] [Indexed: 08/26/2023] Open
Abstract
Luminescent Au nanoparticles (AuNPs) and their organic/inorganic nanohybrids are of interest due to their favorable properties and promising biomedical applications. However, most existing AuNP-based hybrid nanostructures cannot satisfy high efficiency in synthesis, deep tissue penetration, and long blood circulation simultaneously, thus cannot be employed in dynamic monitoring of biomedical applications. In this paper, using Pluronic F127 as a template, we report a robust approach for one-pot synthesis of AuNP-based organic/inorganic nanohybrids (AuNHs) with bright luminescence in the second near-infrared (NIR-II) window, tunable shape, and controllable surface polyethylene glycol (PEG) density. The nanohybrids could be controlled from a necklace-like shape with a dense brush PEG configuration to a spherical structure with a brush PEG coating, which greatly impacts the in vivo biological behavior. Compared to spherical AuNHs, the necklace-shaped AuNHs present a higher quantum yield and longer blood circulation, which are superior to most of the individual AuNPs. With these outstanding features, the necklace-shaped AuNHs could achieve real-time, dynamic visualization of vascular dysfunction, capable of directing the precise administration of thrombolytics (a medicine for the breakdown of blood clots). These findings could provide a powerful guide for designing novel NIR-II nanoprobes toward in vivo dynamic information visualization.
Collapse
Affiliation(s)
- Tingyao Zhou
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
- Institute for Advanced Study, Shenzhen University No. 3688 Nanhai Avenue, Nanshan District Shenzhen Guangdong 518060 P. R. China
| | - Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Hao Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
19
|
Santhoshkumar S, Madhu M, Tseng WB, Tseng WL. Gold nanocluster-based fluorescent sensors for in vitro and in vivo ratiometric imaging of biomolecules. Phys Chem Chem Phys 2023; 25:21787-21801. [PMID: 37577965 DOI: 10.1039/d3cp02714g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gold nanoclusters (AuNCs) are promising nanomaterials for ratiometric fluorescent probes due to their tunable fluorescence wavelengths dependent on size and structure, as well as their biocompatibility and resistance to photobleaching. By incorporating an additional fluorescence spectral peak, dual-emission AuNC-based fluorescent probes have been developed to enhance the signal output reproducibility. These probes can be fabricated by integrating various luminescent nanomaterials with AuNCs. This review focuses on the preparation methods and applications of ratiometric fluorescent probes derived from AuNCs and other fluorescent nanomaterials or fluorescent dyes for both in vitro and in vivo bioimaging of target analytes. Additionally, the review delves into the sensing mechanisms of AuNC-based ratiometric probes, their synthetic strategies, and the challenges encountered when using AuNCs for ratiometric bioimaging. Moreover, we explore the application of protein-stabilized AuNCs and thiolate-capped AuNC-based ratiometric fluorescent probes for biosensing and bioimaging. Two primary methods for assembling AuNCs and fluorophores into ratiometric fluorescent probes are discussed: triggered assembly and self-assembly. Finally, we address the challenges and issues associated with ratiometric bioimaging using AuNCs and propose future directions for further advancing AuNCs as ratiometric imaging agents.
Collapse
Affiliation(s)
- S Santhoshkumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
- Department of Environmental Engineering, Da-Yeh University, No. 168, University Rd., Dacun, Changhua 515006, Taiwan.
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| |
Collapse
|
20
|
Yan X, Zhong W, Qu S, Li Z, Shang L. Photochromic Tungsten Oxide Quantum Dots-based Fluorescent Photoswitches towards Dual-mode Anti-counterfeiting Application. J Colloid Interface Sci 2023; 646:855-862. [PMID: 37235931 DOI: 10.1016/j.jcis.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Development of new anti-counterfeiting technology to increase the difficulty of imitation and decoding is becoming increasingly important, but still remains challenging yet. In this work, we report the design of new fluorescence photoswitches based on photochromic tungsten oxide quantum dots (WO3 QDs) for dual-mode anti-counterfeiting applications. Complexing photochromic WO3 QDs with fluorescent gold nanoclusters (AuNCs) enables the construction of a photoswitchable fluorescence system (WO3-AuNCs) based on fluorescence resonance energy transfer. Detailed spectral and photophysical characterization showed that WO3 QDs well-retain the photochromic properties within the WO3-AuNCs composite. Importantly, photoresponsive and highly reversible switching of both color and fluorescence signals was successfully achieved by simply alternating the irradiation with UV and visible light. Potential utility of photoswitchable WO3-AuNCs composite as novel dual-mode anti-counterfeiting materials has been successfully demonstrated, including photoswitchable ink, rewritable paper and number encryption. Compared with other anti-counterfeiting materials, the present photochromic WO3 QDs-based fluorescent switches are easily synthesized and handled, and they can provide dual security mode (color and fluorescence). This work provides a generable WO3 QDs-assisted strategy of fabricating advanced fluorescence photoswitches for versatile optical counterfeiting applications.
Collapse
Affiliation(s)
- Xiaojian Yan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Shaohua Qu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Ziqian Li
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China; Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University, Chongqing 401135, China.
| |
Collapse
|
21
|
Afshari MJ, Cheng X, Duan G, Duan R, Wu S, Zeng J, Gu Z, Gao M. Vision for Ratiometric Nanoprobes: In Vivo Noninvasive Visualization and Readout of Physiological Hallmarks. ACS NANO 2023; 17:7109-7134. [PMID: 37036400 DOI: 10.1021/acsnano.3c01641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lesion areas are distinguished from normal tissues surrounding them by distinct physiological characteristics. These features serve as biological hallmarks with which targeted biomedical imaging of the lesion sites can be achieved. Although tremendous efforts have been devoted to providing smart imaging probes with the capability of visualizing the physiological hallmarks at the molecular level, the majority of them are merely able to derive anatomical information from the tissues of interest, and thus are not suitable for taking part in in vivo quantification of the biomarkers. Recent advances in chemical construction of advanced ratiometric nanoprobes (RNPs) have enabled a horizon for quantitatively monitoring the biological abnormalities in vivo. In contrast to the conventional probes whose dependency of output on single-signal profiles restricts them from taking part in quantitative practices, RNPs are designed to provide information in two channels, affording a self-calibration opportunity to exclude the analyte-independent factors from the outputs and address the issue. Most of the conventional RNPs have encountered several challenges regarding the reliability and sufficiency of the obtained data for high-performance imaging. In this Review, we have summarized the recent progresses in developing highly advanced RNPs with the capabilities of deriving maximized information from the lesion areas of interest as well as adapting themselves to the complex biological systems in order to minimize microenvironmental-induced falsified signals. To provide a better outlook on the current advanced RNPs, nanoprobes based on optical, photoacoustic, and magnetic resonance imaging modalities for visualizing a wide range of analytes such as pH, reactive species, and different derivations of amino acids have been included. Furthermore, the physicochemical properties of the RNPs, the major constituents of the nanosystems and the analyte recognition mechanisms have been introduced. Moreover, the alterations in the values of the ratiometric signal in response to the analyte of interest as well as the time at which the highest value is achieved, have been included for most of RNPs discussed in this Review. Finally, the challenges as well as future perspectives in the field are discussed.
Collapse
Affiliation(s)
- Mohammad Javad Afshari
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaju Cheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Guangxin Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruixue Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Shuwang Wu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Jianfeng Zeng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
22
|
Huang Y, Chen K, Liu L, Ma H, Zhang X, Tan K, Li Y, Liu Y, Liu C, Wang H, Zhang XD. Single Atom-Engineered NIR-II Gold Clusters with Ultrahigh Brightness and Stability for Acute Kidney Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300145. [PMID: 37058089 DOI: 10.1002/smll.202300145] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Near-infrared-II (NIR-II) imaging has shown great potential for monitoring the pathological progression and deep tissue imaging but is limited to present unmet NIR-II agent. Present fluorophores show a promising prospect for NIR-II imaging, but brightness and photostability are still highly challenging during real-time monitoring. In this work, atom-engineered NIR-II Au24 Cd1 clusters with ultrahigh brightness, stability, and photostability are developed via single atomic Cd doping. Single atom Cd substitutions contribute to Cd 4d state in HOMO and redistribution of energy level near the gap, exhibiting 56-fold fluorescence enhancement of Au24 Cd1 clusters. Meanwhile, single atomic Cd reinforces CdAu bond energy, formation energy, and stabilized cluster structure, leading to persistent stability for up to 1 month without decay, as well as excellent photostability of 1 h without photobleaching, much longer than clinically approved indocyanine green (<5 min). In vivo imaging shows gold clusters can monitor acute kidney injury (AKI) even after 72 h of injury, enabling evaluating progression at a very long window. Meanwhile, the bioactive gold clusters can alleviate AKI-induced oxidative stress damage and acute neuroinflammation. Single atom-engineered gold clusters exhibit molecular tracking and diagnostic prospect in kidney-related diseases.
Collapse
Affiliation(s)
- You Huang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Xiaoning Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Kexin Tan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yuan Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ying Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Changlong Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
23
|
Xin Q, Ma H, Wang H, Zhang X. Tracking tumor heterogeneity and progression with near-infrared II fluorophores. EXPLORATION (BEIJING, CHINA) 2023; 3:20220011. [PMID: 37324032 PMCID: PMC10191063 DOI: 10.1002/exp.20220011] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Heterogeneous cells are the main feature of tumors with unique genetic and phenotypic characteristics, which can stimulate differentially the progression, metastasis, and drug resistance. Importantly, heterogeneity is pervasive in human malignant tumors, and identification of the degree of tumor heterogeneity in individual tumors and progression is a critical task for tumor treatment. However, current medical tests cannot meet these needs; in particular, the need for noninvasive visualization of single-cell heterogeneity. Near-infrared II (NIR-II, 1000-1700 nm) imaging exhibits an exciting prospect for non-invasive monitoring due to the high temporal-spatial resolution. More importantly, NIR-II imaging displays more extended tissue penetration depths and reduced tissue backgrounds because of the significantly lower photon scattering and tissue autofluorescence than traditional the near-infrared I (NIR-I) imaging. In this review, we summarize systematically the advances made in NIR-II in tumor imaging, especially in the detection of tumor heterogeneity and progression as well as in tumor treatment. As a non-invasive visual inspection modality, NIR-II imaging shows promising prospects for understanding the differences in tumor heterogeneity and progression and is envisioned to have the potential to be used clinically.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
- Department of PathologyTianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of SciencesTianjin UniversityTianjinChina
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
| | - Xiao‐Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of SciencesTianjin UniversityTianjinChina
| |
Collapse
|
24
|
Xiang H, He S, Zhao G, Zhang M, Lin J, Yang L, Liu H. Gold Nanocluster-Based Ratiometric Probe with Surface Structure Regulation-Triggered Sensing of Hydrogen Sulfide in Living Organisms. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12643-12652. [PMID: 36856682 DOI: 10.1021/acsami.2c19057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of reliable probes for in vivo detection of hydrogen sulfide (H2S) with high sensitivity and selectivity is of great significance due to its key roles in many pathological and physiological processes. Herein, it was found that H2S could finely regulate surface structure of gold nanoclusters (AuNCs) through reduction of surface Au(I)-ligand motifs and further quench their fluorescence by a two-stage kinetic reaction process. Stage I showed the H2S-assisted surface Au(I)-ligand reduction and Au(0) core growth with a rapid fluorescence decrease; stage II showed the surface structure optimization and reconstruction with a relatively slow fluorescence quenching. By virtue of the excellent fluorescence response of AuNCs to H2S, a novel ratiometric fluorescence probe (RBDA) for sensing H2S was designed through electrostatic attraction-induced fluorescence resonance energy transfer (FRET) between AuNCs and rhodamine B. The probe was facilely prepared, showing a straightforward, rapid ratiometric fluorescence response to H2S with built-in self-calibration. It presented the high detection sensitivity with a detection limit (LOD) of 56 nM and an excellent sensing selectivity for H2S over various other biological species. The probe was demonstrated to possess high biostability, low cytotoxicity, good cell and issue penetrability, and favorable biocompatibility. It realizes successful monitoring of both exogenous and endogenous H2S levels in living cells and zebrafish.
Collapse
Affiliation(s)
- Hui Xiang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P.R. China
| | - Shiyu He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P.R. China
| | - Gan Zhao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P.R. China
| | - Mengting Zhang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P.R. China
| | - Jian Lin
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P.R. China
| | - Lina Yang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P.R. China
| | - Honglin Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P.R. China
| |
Collapse
|
25
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
26
|
Hu S, Huang L, Zhou L, Wu T, Zhao S, Zhang L. Single-Excitation Triple-Emission Down-/Up-Conversion Nanoassemblies for Tumor Microenvironment-Enhanced Ratiometric NIR-II Fluorescence Imaging and Chemo-/Photodynamic Combination Therapy. Anal Chem 2023; 95:3830-3839. [PMID: 36706236 DOI: 10.1021/acs.analchem.2c05333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tumor microenvironment-mediated ratiometric second near-infrared (NIR-II) fluorescence imaging and photodynamic therapy contribute to accurate diagnosis and highly efficient therapy of deep tumors. However, it is challenging to integrate these functions into one nanodrug due to the difficulty in preparing triple-emission nanoprobes. In this work, single-excitation triple-emission (wavelength at 660, 1060, and 1550 nm) down-/up-conversion nanoassemblies were prepared by conjugating dual-ligands-stabilized gold nanoclusters (cgAuNCs) into down-/up-conversion nanoparticles (D/UCNPs), which simultaneously realized ratiometric NIR-II fluorescence imaging and chemo-/photodynamic combination therapy toward tumors upon exposure to an 808 nm laser. The presence of dual ligands endowed cgAuNCs with an enhanced NIR-II fluorescence response to endogenous glutathione, allowing in situ ratiometric NIR-II fluorescence imaging of tumors using the prepared nanoassemblies. Additionally, the stabilizing ligand cyclodextrin of cgAuNCs facilitated the loading of the antitumor drug doxorubicin, and D/UCNPs could be modified with the photosensitizer methylene blue. Such a spatially separated functionalization method enabled chemo-/photodynamic combination therapy. This study provides new insights into the design of multifunctional nanoplatforms for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shengqiang Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Lixian Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Liuyan Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Tingchan Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| |
Collapse
|
27
|
Bonačić-Koutecký V, Le Guével X, Antoine R. Engineering Liganded Gold Nanoclusters as Efficient Theranostic Agents for Cancer Applications. Chembiochem 2023; 24:e202200524. [PMID: 36285807 DOI: 10.1002/cbic.202200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Luminescent gold nanoclusters are rapidly gaining attention as efficient theranostic targets for imaging and therapeutics. Indeed, their ease of synthesis, their tunable optical properties and tumor targeting make them potential candidates for sensitive diagnosis and efficacious therapeutic applications. This concept highlights the key components for designing gold nanoclusters as efficient theranostics focusing on application in the field of oncology.
Collapse
Affiliation(s)
- Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia.,Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Xavier Le Guével
- Institute for Advanced Biosciences, Univ. Grenoble Alpes/INSERM1209/CNRS-UMR5309, Grenoble, France
| | - Rodolphe Antoine
- Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS Univ. Lyon, 69622, Villeurbanne cedex, France
| |
Collapse
|
28
|
Li T, Cao K, Yang X, Liu Y, Wang X, Wu F, Chen G, Wang Q. An oral ratiometric NIR-II fluorescent probe for reliable monitoring of gastrointestinal diseases in vivo. Biomaterials 2023; 293:121956. [PMID: 36543049 DOI: 10.1016/j.biomaterials.2022.121956] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Early monitoring of gastrointestinal diseases via orally delivered NIR-II ratiometric fluorescent probes represents a promising noninvasive diagnostic modality, but is challenging due to the limitation of harsh digestive environment. Here, we report a single-component NIR-II ratiometric molecular nanoprobe (LC-1250 NP) to monitor gastrointestinal disease with high specificity to its biomarker H2O2 via oral administration. LC-1250 NP displays stable fluorescence in the channel of 1250 long-pass (F1250LP) before and after the gastrointestinal disease detection as the reference, while it presents significantly enhanced fluorescence signal in the response channel of 1150 nm short-pass (F1150SP) in diseased gastrointestinal environment due to the intramolecular cyclization of LC-1250 molecules activated by H2O2. The fluorescence ratio (F1150SP/F1250LP) increases linearly with the concentration of H2O2 with a low detection limit of 20 nM. Therefore, when delivered orally, LC-1250 NP can accurately map the diseased areas and surmount the false-positive interference from biological heterogeneity by NIR-II ratiometric fluorescence imaging, providing sensitive and reliable evaluation for the progress of gastroenteritis.
Collapse
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kaili Cao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaohu Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yongyang Liu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xingyu Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Liang H, Yang K, Yang Y, Hong Z, Li S, Chen Q, Li J, Song X, Yang H. A Lanthanide Upconversion Nanothermometer for Precise Temperature Mapping on Immune Cell Membrane. NANO LETTERS 2022; 22:9045-9053. [PMID: 36326607 DOI: 10.1021/acs.nanolett.2c03392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell temperature monitoring is of great importance to uncover temperature-dependent intracellular events and regulate cellular functions. However, it remains a great challenge to precisely probe the localized temperature status in living cells. Herein, we report a strategy for in situ temperature mapping on an immune cell membrane for the first time, which was achieved by using the lanthanide-doped upconversion nanoparticles. The nanothermometer was designed to label the cell membrane by combining metabolic labeling and click chemistry and can leverage ratiometric upconversion luminescence signals to in situ sensitively monitor temperature variation (1.4% K-1). Moreover, a purpose-built upconversion hyperspectral microscope was utilized to synchronously map temperature changes on T cell membrane and visualize intracellular Ca2+ influx. This strategy was able to identify a suitable temperature status for facilitating thermally stimulated calcium influx in T cells, thus enabling high-efficiency activation of immune cells. Such findings might advance understandings on thermally dependent biological processes and their regulation methodology.
Collapse
Affiliation(s)
- Hanyu Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Kaidong Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yating Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Juan Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
31
|
Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Sun L, Shi S, Wu Z, Huang Y, Ji C, Grimes CA, Feng X, Cai Q. Lanthanide/Cu 2-xSe Nanoparticles for Bacteria-Activated NIR-II Fluorescence Imaging of Infection. ACS Sens 2022; 7:2235-2242. [PMID: 35876580 DOI: 10.1021/acssensors.2c00683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A material system enabling specific NIR-II fluorescence imaging of Gram-positive bacteria is described. The material system is based on the electrostatic binding of Cu2-xSe and vancomycin-modified NaGdF4:Nd,Yb@NaGdF4 downconversion nanoparticles (DCNPs), the fluorescence of which is weak owing to the spectral overlap of Cu2-xSe absorption with the DCNP NIR emission. The presence of Gram-positive bacteria precisely disconnects the bond between vancomycin-modified DCNPs and Cu2-xSe, thus enabling a strong fluorescent signal. In vivo studies show that the material system can be specifically activated at the site of Gram-positive bacterial infection but is essentially nonfluorescent in the area of Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Leilei Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Sisi Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zeming Wu
- Inner Mongolia Environmental Monitoring Center, Hohhot 010011, P. R. China
| | - Yao Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chenhui Ji
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Craig A Grimes
- Flux Photon Corporation, 5950 Shiloh Road East, Alpharetta, Georgia 30005, United States
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
33
|
Dan Q, Yuan Z, Zheng S, Ma H, Luo W, Zhang L, Su N, Hu D, Sheng Z, Li Y. Gold Nanoclusters-Based NIR-II Photosensitizers with Catalase-like Activity for Boosted Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14081645. [PMID: 36015272 PMCID: PMC9416189 DOI: 10.3390/pharmaceutics14081645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Photodynamic therapy (PDT) under fluorescence imaging as a selective and non-invasive treatment approach has been widely applied for the therapy of cancer and bacterial infections. However, its treatment efficiency is hampered by high background fluorescence in the first near-infrared window (NIR-I, 700–900 nm) and oxygen-dependent photosensitizing activity of traditional photosensitizers. In this work, we employ gold nanoclusters (BSA@Au) with the second near-infrared (NIR-II, 1000–1700 nm) fluorescence and catalase-like activity as alternative photosensitizers to realize highly efficient PDT. The bright NIR-II fluorescence of BSA@Au enables the visualization of PDT for tumor with a high signal-to-background ratio (SBR = 7.3) in 4T1 tumor-bearing mouse models. Furthermore, the catalase-like activity of BSA@Au endows its oxygen self-supplied capability, contributing to a five-fold increase in the survival period of tumor-bearing mice receiving boosted PDT treatment compared to that of the control group. Moreover, we further demonstrate that BSA@Au-based PDT strategy can be applied to treat bacterial infections. Our studies show the great potential of NIR-II BSA@Au as a novel photosensitizer for boosted PDT against cancer and bacterial infections.
Collapse
Affiliation(s)
- Qing Dan
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Si Zheng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huanrong Ma
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ning Su
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zonghai Sheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (Z.S.); (Y.L.)
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Z.S.); (Y.L.)
| |
Collapse
|
34
|
Li W, Xingzhuo zhou, Yan W, Wang R, Yang Z, Hu Y, Liu Y, Jia Z, Li Y. Lysozyme-encapsulated gold nanoclusters for ultrasensitive detection of folic acid and in vivo imaging. Talanta 2022; 251:123789. [DOI: 10.1016/j.talanta.2022.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
35
|
Abstract
Gold nanoclusters (AuNCs) have become a promising material for bioimaging detection because of their tunable photoluminescence, large Stokes shift, low photobleaching, and good biocompatibility. Last decade, great efforts have been made to develop AuNCs for enhanced imaging contrast and multimodal imaging. Herein, an updated overview of recent advances in AuNCs was present for visible fluorescence (FL) imaging, near-infrared fluorescence (NIR-FL) imaging, two-photon near-infrared fluorescence (TP-NIR-FL) imaging, computed tomography (CT) imaging, positron emission tomography (PET) imaging, magnetic resonance imaging (MRI), and photoacoustic (PA) imaging. The justification of AuNCs applied in bioimaging mentioned above applications was discussed, the performance location of different AuNCs were summarized and highlighted in an unified parameter coordinate system of corresponding bioimaging, and the current challenges, research frontiers, and prospects of AuNCs in bioimaging were discussed. This review will bring new insights into the future development of AuNCs in bio-diagnostic imaging.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xiaobing Gao
- General Hospital of Central Theater Command, Wuhan 430070, China
| | - Wenrui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yao Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Corresponding author
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Corresponding author
| |
Collapse
|
36
|
Aminopeptidase N Activatable Nanoprobe for Tracking Lymphatic Metastasis and Guiding Tumor Resection Surgery via Optoacoustic/NIR-II Fluorescence Dual-Mode Imaging. Anal Chem 2022; 94:8449-8457. [DOI: 10.1021/acs.analchem.2c01241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|