1
|
Huang T, Li J, Chen H, Sun H, Jang DW, Alam MM, Yeung KK, Zhang Q, Xia H, Duan L, Mao C, Gao Z. Rapid miRNA detection enhanced by exponential hybridization chain reaction in graphene field-effect transistors. Biosens Bioelectron 2024; 266:116695. [PMID: 39241340 DOI: 10.1016/j.bios.2024.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Scalable electronic devices that can detect target biomarkers from clinical samples hold great promise for point-of-care nucleic acid testing, but still cannot achieve the detection of target molecules at an attomolar range within a short timeframe (<1 h). To tackle this daunting challenge, we integrate graphene field-effect transistors (GFETs) with exponential target recycling and hybridization chain reaction (TRHCR) to detect oligonucleotides (using miRNA as a model disease biomarker), achieving a detection limit of 100 aM and reducing the sensing time by 30-fold, from 15 h to 30 min. In contrast to traditional linear TRHCR, our exponential TRHCR enables the target miRNA to initiate an autocatalytic system with exponential kinetics, significantly accelerating the reaction speed. The resulting reaction products, long-necked double-stranded polymers with a negative charge, are effectively detected by the GFET through chemical gating, leading to a shift in the Dirac voltage. Therefore, by monitoring the magnitude of this voltage shift, the target miRNA is quantified with high sensitivity. Consequently, our approach successfully detects 22-mer miRNA at concentrations as low as 100 aM in human serum samples, achieving the desired short timeframe of 30 min, which is congruent with point-of-care testing, and demonstrates superior specificity against single-base mismatched interfering oligonucleotides.
Collapse
Affiliation(s)
- Ting Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jingwei Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Haohan Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Honglin Sun
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dong Wook Jang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Md Masruck Alam
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kan Kan Yeung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qicheng Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China; Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, China
| | - Han Xia
- Department of Clinical Laboratory, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Zhang S, Xiao K, Zhang K, Li P, Wang L, Wu C, Xu K. Ultrasensitive aflatoxin B1 detection based on vertical organic electrochemical transistor. Food Chem 2024; 464:141648. [PMID: 39423541 DOI: 10.1016/j.foodchem.2024.141648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Herein, we presented an ultrasensitive Aflatoxin B1 (AFB1) detection platform based on vertical organic electrochemical transistor (vOECT) first time. Chitosan-graphene nanosheets nanocomposites and AFB1 antibodies were modified on commercial electrodes as immunosensors, in series with gate electrodes of vOECT, operated at enhancement mode with ultrahigh transconductance gm 94 mS to amplify current signals. When AFB1 is added, the impedance of the immunosensors increased due to antigen-antibody immune binding, resulting in a potential decrease in reaction cell. Then, the potential decrease leads to an effective gate voltage VGeff increase, contributing to a significant drain-source current IDS decrease as a consequence of ultrahigh gm of vOECT. As a result, the presented vOECT platform exhibited an ultrahigh sensitivity of ∼1 mA/dec, and an ultralow detection limit of 0.01 fg/mL (S/N = 3), superior to all previous reported values. Furthermore, the platform exhibited satisfactory stability and specificity, and was applied to detect AFB1 in corn samples.
Collapse
Affiliation(s)
- Shuai Zhang
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China; College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kai Xiao
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kejie Zhang
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Li Wang
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Caizhang Wu
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kun Xu
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China; College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
3
|
Zhao W, Zhang W, Chen J, Li H, Han L, Li X, Wang J, Song W, Xu C, Cai X, Wang L. Sensitivity-Enhancing Strategies of Graphene Field-Effect Transistor Biosensors for Biomarker Detection. ACS Sens 2024; 9:2705-2727. [PMID: 38843307 DOI: 10.1021/acssensors.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The ultrasensitive recognition of biomarkers plays a crucial role in the precise diagnosis of diseases. Graphene-based field-effect transistors (GFET) are considered the most promising devices among the next generation of biosensors. GFET biosensors possess distinct advantages, including label-free, ease of integration and operation, and the ability to directly detect biomarkers in liquid environments. This review summarized recent advances in GFET biosensors for biomarker detection, with a focus on interface functionalization. Various sensitivity-enhancing strategies have been overviewed for GFET biosensors, from the perspective of optimizing graphene synthesis and transfer methods, refinement of surface functionalization strategies for the channel layer and gate electrode, design of biorecognition elements and reduction of nonspecific adsorption. Further, this review extensively explores GFET biosensors functionalized with antibodies, aptamers, and enzymes. It delves into sensitivity-enhancing strategies employed in the detection of biomarkers for various diseases (such as cancer, cardiovascular diseases, neurodegenerative disorders, infectious viruses, etc.) along with their application in integrated microfluidic systems. Finally, the issues and challenges in strategies for the modulation of biosensing interfaces are faced by GFET biosensors in detecting biomarkers.
Collapse
Affiliation(s)
- Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Lin Han
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xinyu Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Jing Wang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
4
|
Deng M, Yang H, Zhang H, Li C, Chen J, Tang W, Wang X, Chen Z, Li J. Portable and Rapid Dual-Biomarker Detection Using Solution-Gated Graphene Field Transistors in the Accurate Diagnosis of Prostate Cancer. Adv Healthc Mater 2024; 13:e2302117. [PMID: 37922499 DOI: 10.1002/adhm.202302117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Indexed: 11/05/2023]
Abstract
Prostate-specific antigen (PSA) is the common serum-relevant biomarker for early prostate cancer (PCa) detection in clinical diagnosis. However, it is difficult to accurately diagnose PCa in the early stage due to the low specificity of PSA. Herein, a new solution-gated graphene field transistor (SGGT) biosensor with dual-gate for dual-biomarker detection is designed. The sensing mechanism is that the designed aptamers immobilized on the surface of the gate electrodes can capture PSA and sarcosine (SAR) biomolecules and induce the capacitance changes of the electric double layers of SGGT. The limit of detections of PSA and SAR biomarkers can reach 0.01 fg mL-1 , which is three-to-four orders of magnitude lower than previously reported assays. The detection time of PSA and SAR is ≈4.5 and ≈13 min, which is significantly faster than the detection time (1-2 h) of conventional methods. The clinical serum samples testing demonstrates that the biosensor can distinguish the PCa patients from the control group and the diagnosis accuracy can reach 100%. The SGGT biosensor can be integrated into the portable platform and the diagnostic results can directly display on the smartphone/Pad. Therefore, the integrated portable platform of the biosensor can distinguish cancer types through the dual-biomarker detection.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
- College of Computer and Information Engineering, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Huan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Huibin Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chaoqian Li
- College of Computer and Information Engineering, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Jingqiu Chen
- School of Computer Science and Information Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Wei Tang
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
5
|
Zhang Y, Chen D, He W, Chen N, Zhou L, Yu L, Yang Y, Yuan Q. Interface-Engineered Field-Effect Transistor Electronic Devices for Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306252. [PMID: 38048547 DOI: 10.1002/adma.202306252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Indexed: 12/06/2023]
Abstract
Promising advances in molecular medicine have promoted the urgent requirement for reliable and sensitive diagnostic tools. Electronic biosensing devices based on field-effect transistors (FETs) exhibit a wide range of benefits, including rapid and label-free detection, high sensitivity, easy operation, and capability of integration, possessing significant potential for application in disease screening and health monitoring. In this perspective, the tremendous efforts and achievements in the development of high-performance FET biosensors in the past decade are summarized, with emphasis on the interface engineering of FET-based electrical platforms for biomolecule identification. First, an overview of engineering strategies for interface modulation and recognition element design is discussed in detail. For a further step, the applications of FET-based electrical devices for in vitro detection and real-time monitoring in biological systems are comprehensively reviewed. Finally, the key opportunities and challenges of FET-based electronic devices in biosensing are discussed. It is anticipated that a comprehensive understanding of interface engineering strategies in FET biosensors will inspire additional techniques for developing highly sensitive, specific, and stable FET biosensors as well as emerging designs for next-generation biosensing electronics.
Collapse
Affiliation(s)
- Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Wang He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Liping Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Lilei Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
6
|
Garg R, Prasad D. Carbon dots and their interactions with recognition molecules for enhanced nucleic acid detection. Biochem Biophys Res Commun 2023; 680:93-107. [PMID: 37738905 DOI: 10.1016/j.bbrc.2023.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Carbon Dots (C-dots) have exceptional fluorescence and incident wavelength alteration capabilities because of their π-π* electron transitions between the surface-trapped charges. They have clear, considerate and cost-effective applications in the domain of bio-sensing, optical imaging, medical diagnostics, fluorescence chemotherapy, forensics, and environmentology. Advances in the production process of C-dots can change their optical and chemical characteristics, allowing them to interact with a variety of chemicals and ions that can be exploited for the DNA detection in point-of-care devices. In the current scenario of pathogenic disease prevention, metagenomics and industrial processes, alternative genetic material identification is critical. This review focuses on the existing carbon dots-based DNA detection technologies and their interactions with other components such as metallic salts, dyes, and biological chemicals based on their surface charge distribution (positive or negative) employed in the DNA diagnostic devices and biosensors with their operating mechanism regarding their target component. These intriguing scientific discoveries and technologies will be extensively examined to translate them into real-world solutions which will have a significant societal and economic impact on overall well-being and innovation.
Collapse
Affiliation(s)
- Rishabh Garg
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
7
|
Zhang Y, Sun C, Duan Y, Cheng S, Hu W. Carbon dots-functionalized extended gate organic field effect transistor-based biosensors for low abundance proteins. NANOSCALE 2023; 15:16458-16465. [PMID: 37791597 DOI: 10.1039/d3nr03405d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Organic field effect transistors have emerged as promising platforms for biosensing applications. However, the challenge lies in optimizing functionalization strategies for the sensing interface, enabling the simultaneous detection of low abundance proteins while maintaining device performance. Here, we designed a carbon dots-functionalized extended gate organic field effect transistor. Leveraging the advantages of facile synthesis, tunable modification, small particle size, and cost-effectiveness of carbon dots, we implemented their integration onto the electrode surface. Through harnessing the covalent interactions of functional groups on the surface of carbon dots, we achieved effective immobilization of low abundance proteins without compromising device performance. Consequently, this biosensor exhibits a remarkably low limit of detection of 2.7 pg mL-1 and demonstrates high selectivity for the carcinoembryonic antigen. These findings highlight the superior capabilities of carbon dots in enhancing biosensor performance and emphasize their potential for early cancer detection.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Insitute, Tianjin University of Technology, Tianjin 300384, China
| | - Yuchen Duan
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Shanshan Cheng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Zhang H, Deng M, Li Z, Ren Z, Zhang L, Wang M, Jiang S, Yu L, Wang X, Li J. Unamplified and Label-Free Detection of HPV16 DNA Using CRISPR-Cas12a-Functionalized Solution-Gated Graphene Transistors. Adv Healthc Mater 2023; 12:e2300563. [PMID: 37377126 DOI: 10.1002/adhm.202300563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
The persistent infection of high-risk-human papillomavirus type 16 (HPV16) is considered an essential element for suffering cervical cancer. Despite polymerase chain reaction, loop-mediated amplification, and microfluidic chips are used to detect the HPV16, these methods still exist some drawbacks including time-consuming and false positive results. The CRISPR-Cas system is widely used in the region of biological detection due to its precise targeted recognition capability. In this contribution, the novel solution-gated graphene transistor sensor is designed to realize the unamplified and label-free detection of HPV16 DNA. Using the precise recognition of the CRISPR-Cas12a system and the gate functionalization, HPV16 DNA can be precisely identified without need the amplification and labeling. The limit of detection of the sensor can be up to 8.3 × 10-18 m and the detection can be within 20 min. Additionally, the heat-Inactivated clinical samples can be clearly distinguished by the sensor the diagnosis results have a high degree of agreement with q-PCR detection.
Collapse
Affiliation(s)
- Huibin Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Minghua Deng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Ziqin Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zhanpeng Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Lei Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shupeng Jiang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Yu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xianbao Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jinhua Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
9
|
Shao W, Zeng Z, Star A. An Ultrasensitive Norfentanyl Sensor Based on a Carbon Nanotube-Based Field-Effect Transistor for the Detection of Fentanyl Exposure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37784-37793. [PMID: 37523478 PMCID: PMC10416144 DOI: 10.1021/acsami.3c05958] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
The opioid crisis is a worldwide public health crisis that has affected millions of people. In recent years, synthetic opioids, primarily illicit fentanyl, have become the primary driver of overdose deaths. There is a great need for a highly sensitive, portable, and inexpensive analytical tool that can quickly indicate the presence and relative threat of fentanyl. In this work, we develop a semiconductor enriched (sc-) single-walled carbon nanotube (SWCNT)-based field-effect transistor (FET) biosensor functionalized with norfentanyl antibodies for the sensitive detection of norfentanyl, the primary inactive metabolite of fentanyl, in urine samples. Different sensor configurations were explored in order to obtain the most optimized sensing results. Moreover, by employing the "reduced" antibody, we achieved orientated immobilization of the norfentanyl antibody and thus brought the antigen-antibody interaction closer to the sensor surface, further improving the sensitivity. The reported norfentanyl biosensors have a limit of detection in the fg/mL region in both calibration samples and synthetic urine samples, showing ultrasensitivity and high reliability.
Collapse
Affiliation(s)
- Wenting Shao
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
10
|
Zhang H, Yu H, Deng M, Ren Z, Li Z, Zhang L, Li J, Wang E, Wang X, Li J. Highly sensitive and real-time detection of sialic acid using a solution-gated graphene transistor functionalized with carbon quantum dots. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Hao J, Wang Z, Li Y, Deng Y, Fan Y, Huang Y. A novel signal amplification strategy for label-free electrochemical DNA sensor based on the interaction between α-cyclodextrin and ferrocenyl indicator. Bioelectrochemistry 2023; 151:108373. [PMID: 36702078 DOI: 10.1016/j.bioelechem.2023.108373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The synthesized ferrocene appended naphthalimide derivative (FND) exhibited great binding ability toward dsDNA, while its usage as the electrochemical hybridization indicator was restricted by the poor water solubility. Herein, a simple and effective signal amplification strategy for FND based label-free DNA biosensors was developed based on the interaction between FND and cyclodextrin. α-Cyclodextrin (α-CD), β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) were helpful to amplify the signal of the DNA biosensor, while the signal amplification effect of α-CD was better than that of β-CD and γ-CD. Under the optimum conditions, there was a 3-fold increase in the sensitivity of the DNA biosensor after the addition of α-CD. The interaction between FND and α-/β-/γ-CD was investigated by differential pulse voltammetry and fluorescence experiment. Experimental results showed that α-CD not only minimized the impact on the electrochemical activity of FND but also improved the dispersity of FND in aqueous solution. That was why the proposed biosensor showed higher sensitivity in the presence of α-CD. This strategy was universal for other ferrocenyl indicators with similar structures as used in this work.
Collapse
Affiliation(s)
- Jie Hao
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Zhenbo Wang
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yafei Li
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yaru Deng
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yanru Fan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China.
| | - Yu Huang
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
12
|
Wang L, Xu J, Liu H, Wang S, Ou W, Zhang M, Wei F, Luo S, Chen B, Zhang S, Yu K. Ultrasensitive and on-site eDNA detection for the monitoring of crown-of-thorns starfish densities at the pre-outbreak stage using an electrochemical biosensor. Biosens Bioelectron 2023; 230:115265. [PMID: 36996547 DOI: 10.1016/j.bios.2023.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The coral reef crisis has significantly intensified over the last decades, mainly due to severe outbreaks of crown-of-thorns starfish (COTS). Current ecological monitoring has failed to detect COTS densities at the pre-outbreak stage, thus preventing early intervention. In this work, we developed an effective electrochemical biosensor modified by a MoO2/C nanomaterial, as well as a specific DNA probe that could detect trace COTS environmental DNA (eDNA) at a lower detection limit (LOD = 0.147 ng/μL) with excellent specificity. The reliability and accuracy of the biosensor were validated against the standard methods by an ultramicro spectrophotometer and droplet digital PCR (p > 0.05). The biosensor was then utilized for the on-site analysis of seawater samples from SYM-LD and SY sites in the South China Sea. For the SYM-LD site suffering an outbreak, the COTS eDNA concentrations were 0.33 ng/μL (1 m, depth) and 0.26 ng/μL (10 m, depth), respectively. According to the ecological survey, the COTS density was 500 ind/hm2 at the SYM-LD site, verifying the accuracy of our measurements. At the SY site, COTS eDNA was also detected at 0.19 ng/μL, but COTS was not found by the traditional survey. Hence, larvae were possibly present in this region. Therefore, this electrochemical biosensor could be used to monitor COTS populations at the pre-outbreak stages, and potentially serve as a revolutionary early warning method. We will continue to improve this method for picomolar or even femtomolar detection of COTS eDNA.
Collapse
Affiliation(s)
- Liwei Wang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530003, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Jiarong Xu
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530003, China
| | - Hongjie Liu
- School of Resources, Environment and Materials, Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530003, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shaopeng Wang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Wenchao Ou
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Man Zhang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Fen Wei
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Songlin Luo
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Biao Chen
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Shaolong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kefu Yu
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| |
Collapse
|
13
|
Chen S, Sun Y, Fan X, Xu Y, Chen S, Zhang X, Man B, Yang C, Du J. Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives. J Nanobiotechnology 2023; 21:144. [PMID: 37122015 PMCID: PMC10148958 DOI: 10.1186/s12951-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.
Collapse
Affiliation(s)
- Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yazhe Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shanshan Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Jun Du
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
14
|
Liu G, Lv Z, Batool S, Li MZ, Zhao P, Guo L, Wang Y, Zhou Y, Han ST. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207879. [PMID: 37009995 DOI: 10.1002/smll.202207879] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | | | - Pengfei Zhao
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liangchao Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
| | - Yan Wang
- School of Microelectronics, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
15
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
17
|
Deng M, Ren Z, Zhang H, Li Z, Xue C, Wang J, Zhang D, Yang H, Wang X, Li J. Unamplified and Real-Time Label-Free miRNA-21 Detection Using Solution-Gated Graphene Transistors in Prostate Cancer Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205886. [PMID: 36480308 PMCID: PMC9896035 DOI: 10.1002/advs.202205886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The incidence of prostate cancer (PCa) in men globally increases as the standard of living improves. Blood serum biomarker prostate-specific antigen (PSA) detection is the gold standard assay that do not meet the requirements of early detection. Herein, a solution-gated graphene transistor (SGGT) biosensor for the ultrasensitive and rapid quantification detection of the early prostate cancer-relevant biomarker, miRNA-21 is reported. The designed single-stranded DNA (ssDNA) probes immobilized on the Au gate can hybridize effectively with the miRNA-21 molecules targets and induce the Dirac voltage shifts of SGGT transfer curves. The limit of detection (LOD) of the sensor can reach 10-20 M without amplification and any chemical or biological labeling. The detection linear range is from 10-20 to 10-12 M. The sensor can realize real-time detection of the miRNA-21 molecules in less than 5 min and can well distinguish one-mismatched miRNA-21 molecule. The blood serum samples from the patients without RNA extraction and amplification are measured. The results demonstrated that the biosensor can well distinguish the cancer patients from the control group and has higher sensitivity (100%) than PSA detection (58.3%). Contrastingly, it can be found that the PSA level is not directly related to PCa.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Zhanpeng Ren
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Huibin Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Ziqin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Chenglong Xue
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Dan Zhang
- School of Computer Science and Information EngineeringHubei UniversityWuhan430062P. R. China
| | - Huan Yang
- Department of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| |
Collapse
|
18
|
Yu H, Zhang H, Li J, Zhao Z, Deng M, Ren Z, Li Z, Xue C, Li MG, Chen Z. Rapid and Unamplified Detection of SARS-CoV-2 RNA via CRISPR-Cas13a-Modified Solution-Gated Graphene Transistors. ACS Sens 2022; 7:3923-3932. [PMID: 36472865 PMCID: PMC9745736 DOI: 10.1021/acssensors.2c01990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
The disease caused by severe acute respiratory syndrome coronavirus, SARS-CoV-2, is termed COVID-19. Even though COVID-19 has been out for more than two years, it is still causing a global pandemic. Due to the limitations of sample collection, transportation, and kit performance, the traditional reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method has a long detection period and high testing costs. An increased risk of infection is inevitable, since many patients may not be diagnosed in time. The CRISPR-Cas13a system can be designed for RNA identification and knockdown, as a promising platform for nucleic acid detection. Here, we designed a solution-gated graphene transistor (SGGT) biosensor based on the CRISPR-Cas13a system. Using the gene-targeting capacity of CRISPR-Cas13a and gate functionalization via multilayer modification, SARS-CoV-2 nucleic acid sequences can be quickly and precisely identified without the need for amplification or fluorescence tagging. The limit of detection (LOD) in both buffer and serum reached the aM level, and the reaction time was about 10 min. The results of the detection of COVID-19 clinical samples from throat swabs agree with RT-PCR. In addition, the interchangeable gates significantly minimize the cost and time of device fabrication. In a nutshell, our biosensor technology is broadly applicable and will be suitable for point-of-care (POC) testing.
Collapse
Affiliation(s)
- Haiyang Yu
- State Key Laboratory of Advanced Technology for
Materials Synthesis and Processing, Wuhan University of
Technology, Wuhan430070, China
- Collaborative Innovation Center for Advanced Organic
Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the
Green Preparation and Application of Functional Materials, Ministry of Education, Hubei
Key Laboratory of Polymer Materials, School of Materials Science and Engineering,
Hubei University, Wuhan430062, China
| | - Huibin Zhang
- Collaborative Innovation Center for Advanced Organic
Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the
Green Preparation and Application of Functional Materials, Ministry of Education, Hubei
Key Laboratory of Polymer Materials, School of Materials Science and Engineering,
Hubei University, Wuhan430062, China
| | - Jinhua Li
- Collaborative Innovation Center for Advanced Organic
Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the
Green Preparation and Application of Functional Materials, Ministry of Education, Hubei
Key Laboratory of Polymer Materials, School of Materials Science and Engineering,
Hubei University, Wuhan430062, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for
Materials Synthesis and Processing, Wuhan University of
Technology, Wuhan430070, China
- Sanya Science and Education Innovation Park
of Wuhan University of Technology, Sanya572000,
China
| | - Minhua Deng
- Collaborative Innovation Center for Advanced Organic
Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the
Green Preparation and Application of Functional Materials, Ministry of Education, Hubei
Key Laboratory of Polymer Materials, School of Materials Science and Engineering,
Hubei University, Wuhan430062, China
| | - Zhanpeng Ren
- Collaborative Innovation Center for Advanced Organic
Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the
Green Preparation and Application of Functional Materials, Ministry of Education, Hubei
Key Laboratory of Polymer Materials, School of Materials Science and Engineering,
Hubei University, Wuhan430062, China
| | - Ziqin Li
- Collaborative Innovation Center for Advanced Organic
Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the
Green Preparation and Application of Functional Materials, Ministry of Education, Hubei
Key Laboratory of Polymer Materials, School of Materials Science and Engineering,
Hubei University, Wuhan430062, China
| | - Chenglong Xue
- Collaborative Innovation Center for Advanced Organic
Chemical Materials Co-constructed by the Province and Ministry, Key Laboratory for the
Green Preparation and Application of Functional Materials, Ministry of Education, Hubei
Key Laboratory of Polymer Materials, School of Materials Science and Engineering,
Hubei University, Wuhan430062, China
| | - Mitch Guijun Li
- Division of Integrative Systems and Design,
The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong SAR999077, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital
of Wuhan University, Wuhan430060, China
| |
Collapse
|
19
|
Zhu X, Yan X, Yang S, Wang Y, Wang S, Tian Y. DNA-Mediated Assembly of Carbon Nanomaterials. Chempluschem 2022; 87:e202200089. [PMID: 35589623 DOI: 10.1002/cplu.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Indexed: 02/18/2024]
Abstract
Carbon nanomaterials (CNMs) have attracted extensive attentions on account of their superior electrical, mechanical, optical, and biological properties. However, the dimensional limit and irregular arrangement have hampered their further application. It is necessary to find an easy, efficient and controllable way to assemble CNMs into well-ordered array. DNA nanotechnology, owning to the advantages of precise programmability, highly structural predictability and spatial addressability, has been widely applied in the assembly of CNMs. Summarizing the progress and achievements in this field will be of great value to related studies. Herein, based on the different dimensions of CNMs containing 0-dimensional (0D) carbon dots (CDs), fullerenes, 1-dimensional (1D) carbon nanotubes (CNTs) and 2-dimensional (2D) graphene, we introduced the conjugation strategies between DNA and CNMs, their different assembly methods and their applications. In addition, we also discuss the existing challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Xurong Zhu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Shenzhen Research Institute, Nanjing University, 518000, Shenzhen, P. R. China
| | - Xuehui Yan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Shenzhen Research Institute, Nanjing University, 518000, Shenzhen, P. R. China
| | - Sichang Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Shenzhen Research Institute, Nanjing University, 518000, Shenzhen, P. R. China
| | - Yong Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Shenzhen Research Institute, Nanjing University, 518000, Shenzhen, P. R. China
| | - Shuang Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, 518055, Shenzhen, P. R. China
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- Shenzhen Research Institute, Nanjing University, 518000, Shenzhen, P. R. China
| |
Collapse
|