1
|
Zhuang T, Gao C, Zhao W, Yu H, Liu Y, Zhang N, Li N, Ji M. A minimal transcription template-based amplification-free CRISPR-Cas13a strategy for DNA detection. Biosens Bioelectron 2025; 270:116918. [PMID: 39577177 DOI: 10.1016/j.bios.2024.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
CRISPR-Cas13a has shown great potential for the rapid and accurate detection of pathogen nucleic acids. However, conventional CRISPR-Cas13a-based assays typically require pre-amplification, which can introduce aerosol contamination and operational complexities. In this study, we developed a Minimalist transcription template-based Amplification-free CRISPR-Cas13a strategy for DNA detection (MAD). This strategy facilitates the release of pathogen DNA and its annealing with primers from nasopharyngeal swab samples in a straightforward manner, followed by T7 transcription and CRISPR-Cas13a detection, completing the entire process within 40 min. MAD eliminates the need for DNA extraction and pre-amplification while maintaining high sensitivity after optimization, allowing for result visualization via lateral flow strips. Furthermore, evaluation of 167 clinical pediatric samples identified 18 positive cases of human adenovirus, demonstrating a 99.4% concordance in detection compared to standard qPCR. We believe that MAD offers new insights into CRISPR-Cas diagnostics and, due to its simplicity, rapidity, and safety, is poised for widespread application in clinical practice.
Collapse
Affiliation(s)
- Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chang Gao
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wenwu Zhao
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hairong Yu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yun Liu
- Nanjing Qinhuai District Center for Disease Control and Prevention, Nanjing, Jiangsu, 210001, China
| | - Ning Zhang
- Nanjing Qinhuai District Center for Disease Control and Prevention, Nanjing, Jiangsu, 210001, China.
| | - Ning Li
- Nanjing Jiangning District Center for Disease Control and Prevention, Nanjing, Jiangsu, 211199, China.
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
2
|
Huang D, He Y, Xu C, Shen P, Li M, Fang M, Xu Z, Fang X. DNAzyme-Triggered Equilibrium Transfer with Self-Activated CRISPR-Cas12a Biosensor Enables One-Pot Diagnosis of Nucleic Acids. Anal Chem 2025; 97:3026-3035. [PMID: 39889213 DOI: 10.1021/acs.analchem.4c06066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Integrating recombinase-polymerase amplification (RPA) with CRISPR-Cas12a holds significant potential to simplify and improve nucleic acid diagnostic procedures. However, current strategies face limitations, such as complexity, reduced efficiency, and potential compromises in Cas12a activity. In response, we developed a DNAzyme-triggered equilibrium transfer with a self-activated CRISPR-Cas12a biosensor (DESCRIBER) for integrated nucleic acid detection. This platform features varying balance points to minimize interference between RPA and Cas12a in one pot and maximize their activity at different stages. Initially, the reaction focused on RPA, while Cas12a was silenced by circular-crRNA (C-crRNA). Then, DNAzyme, the activator, was generated during the RPA process, which linearizes C-crRNA to activate Cas12a and transfer the equilibrium toward signal readout. Meanwhile, activated Cas12a can further linearize C-crRNA to promote self-activation and accelerate equilibrium transfer. According to this principle, highly sensitive detection of the HIV-1 genome, as low as 500 CPs/mL, was achieved within 1 h while maintaining universality in detecting common subtypes and specificity against opportunistic infectious pathogens. Compared with qRT-PCR, it also exhibited good accuracy in detecting 35 spiked samples. Overall, we believe that the proposed strategy will enhance existing CRISPR systems to promote their practical applications in clinical diagnosis.
Collapse
Affiliation(s)
- Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
| | - Yichen He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
| | - Chutian Xu
- Department of Biomedical Engineering, Boston University, Boston 02215, United States
| | - Peijie Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
| | - Min Li
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Mengjun Fang
- Innovation Centre for Child Health, Binjiang Institution of Zhejiang University, Hangzhou 310051, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Hangzhou FasTech Biotechnology Company Limited, Hangzhou 310005, China
| | - Xiangming Fang
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
3
|
Wang X, Zhao C, Yin N, Wang X, Shu Y, Wang J. Dual miRNAs Imaging Platform Based on HRCA-Cas12a by Replacing PAM with Bubble to Reduce False Positive. Anal Chem 2025; 97:3053-3062. [PMID: 39876777 DOI: 10.1021/acs.analchem.4c06162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Detection and imaging of dual miRNAs based on AND logic gates can improve the accuracy of the early diagnosis of disease. However, a single target may lead to false positive. Hence, this work rationally integrates hyperbranched rolling circle amplification (HRCA) with Cas12a by replacing the PAM sequence with a bubble to sensitively detect and image miRNA-10b and miRNA-21 based on the AND logic gate. When miRNA-10b and miRNA-21 are both present, the two padlocks are linked into circular DNA as a template for RCA. Long ssDNA products are generated under the catalysis of phi29 DNA polymerase, which are cis-cleaved by Cas12a and activated the trans-cleavage of Cas12a to generate fluorescent signals. Subsequently, the primer hybridizes with the products of cis-cleavage and is extended as the dsDNA substrate of Cas12a to produce more fluorescent signals. However, a single target produces significant fluorescent signals leading to false positive due to the presence of protospacer adjacent motif (PAM) on the padlock. After PAM is removed from the padlock, the primer and RCA products form bubbles to replace PAM, which activate Cas12a without affecting sensitivity and reduce false positive. The introduction of a primer enables the second utilization of phi29 and Cas12a, increasing the signal-to-noise ratio. HRCA and Cas12a exhibit optimal activity in the T4 ligase buffer, achieving one-pot detection of dual miRNAs. In addition, the HRCA-Cas12a method enables the intracellular visualization of dual miRNAs. It exhibits the ability to distinguish different types of cancer cells based on the expression level of miRNAs.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Nana Yin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xue Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
4
|
Mai Z, Zhou T, Lin Z. Detecting CYP2C19 genes through an integrated CRISPR/Cas13a-assisted system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1382-1388. [PMID: 39836103 DOI: 10.1039/d4ay01930j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
CYP2C19 gene single nucleotide polymorphisms (SNPs) should be considered in the clinical use of clopidogrel as they have important guiding value for predicting the risk of bleeding and thrombosis after clopidogrel treatment. The CRISPR/Cas system is increasingly used for SNP detection owing to its single-nucleotide mismatch specificity. Simultaneous detection of multiple SNPs for rapid identification of the CYP2C19 genotype is important, but there is no method to detect a wide variety of CYP2C19 SNPs. This study proposes a new integrated system that integrates the PCR reaction and CRISPR/Cas detection of three CYP2C19 genes on a device, achieving rapid, sensitive, and specific detection. In our design, magnetic beads with three different sizes capture target nucleic acid from the sample, which are dragged through different areas by magnetic force, for PCR amplification reaction and CRISPR/Cas13a detection of CYP2C19*2, CYP2C19*3 and CYP2C19*17 genes. Note that magnetic beads were sorted via microporous PC membranes of different apertures. This study exhibits a broad clinical application prospect and provides a favorable tool for clinical clopidogrel administration.
Collapse
Affiliation(s)
- Zhaokang Mai
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| | - Tao Zhou
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Zhang X, Zhou L, Ge X, Gao P, Zhou Q, Han J, Guo X, Zhang Y, Yang H. Advances in the diagnostic techniques of African swine fever. Virology 2025; 603:110351. [PMID: 39693789 DOI: 10.1016/j.virol.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
African swine fever (ASF) is a highly contagious disease of pigs caused by African swine fever virus, which poses a huge threat to the global swine industry and is therefore listed as a notifiable disease by the World Organization for Animal Health. Due to the global lack of safe and efficacious vaccines and therapeutic drugs, early diagnosis of cases, whether on-site or laboratory, are crucial for the prevention and control of ASF. Therefore, rapid and reliable diagnosis and detection have become the main means to combat ASF. In this paper, various diagnostic techniques developed globally for ASF diagnosis, including etiological, molecular biological and serological diagnostic techniques, as well as conventional and novel diagnostic techniques, were comprehensively reviewed, and the main advantages and disadvantages of currently commonly used diagnostic techniques were introduced. It is expected that this paper will provide references for selecting appropriate ASF diagnostic techniques in different application scenarios, and also provide directions for the development of innovative diagnostic techniques for ASF in the future.
Collapse
Affiliation(s)
- Xin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiongqiong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Cheng ZH, Luo XY, Yu SS, Min D, Zhang SX, Li XF, Chen JJ, Liu DF, Yu HQ. Tunable control of Cas12 activity promotes universal and fast one-pot nucleic acid detection. Nat Commun 2025; 16:1166. [PMID: 39885211 PMCID: PMC11782535 DOI: 10.1038/s41467-025-56516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
The CRISPR-based detection methods have been widely applied, yet they remain limited by the non-universal nature of one-pot diagnostic approaches. Here, we report a universal one-pot fluorescent method for the detection of epidemic pathogens, delivering results within 15-20 min. This method uses heparin sodium to precisely tunes the cis-cleavage capability of Cas12 via interference with the Cas12a-crRNA binding process, thereby generating significant fluorescence due to the accumulation of isothermal amplification products. Additionally, this universal assay accommodates both classic and suboptimal PAMs, as well as various Cas12a subtypes such as LbCas12a, AsCas12a, and AapCas12b. Such a robust method demonstrates sensitivity and specificity exceeding 95% in the detection of monkeypox pseudovirus, influenza A virus, and SARS-CoV-2 from saliva or wastewater samples, when compared with qPCR or RT-qPCR. Moreover, the cost of heparin sodium per thousand uses is $0.01 to $0.04 only. Collectively, this universal and fast one-pot approach based on heparin sodium offers potential possibilities for point-of-care testing.
Collapse
Affiliation(s)
- Zhou-Hua Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Xi-Yan Luo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Sheng-Song Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Shu-Xia Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 350001, Fujian, China
| | - Xiao-Fan Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 350001, Fujian, China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
7
|
Li X, Wang C, Chai J, Liu H, Jiang X, Li Y, Li Y. Structure-switchable branched inhibitors regulate the activity of CRISPR-Cas12a for nucleic acid diagnostics. Anal Chim Acta 2025; 1336:343515. [PMID: 39788669 DOI: 10.1016/j.aca.2024.343515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/30/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND In current years, the CRISPR (clustered regularly interspaced short palindromic repeats) based strategies have emerged as the most promising molecular tool in the field of gene editing, intracellular imaging, transcriptional regulation and biosensing. However, the recent CRISPR-based diagnostic technologies still require the incorporation of other amplification strategies (such as polymerase chain reaction) to improve the cis/trans cleavage activity of Cas12a, which complicates the detection workflow and lack of a uniform compatible system to respond to the target in one pot. RESULTS To better fully-functioning CRISPR/Cas12a, we reported a novel technique for straightforward nucleic acid detection by incorporating enzyme-responsive steric hindrance-based branched inhibitors with CRISPR/AsCas12a methodology. The construction-transferable branched inhibitors coupled with a specific overhang flap induce spatial steric effects and result in the loss of the binding ability of Cas12a, which inhibits the activity of Cas12a. Target as the input signal would trigger the site-directed APE1 enzyme incision of the inhibitors, thus transforming the conformation of the inhibitors into split activators to illumine the CRISPR/AsCas12a catalyst system. At the same time, we found that APE1 could drive the enzymatic positive feedback circuit and exhibited considerably high amplification efficiency to enhance the detection ability of nucleic acids. Besides, our method provides universal platforms and can be realized in real-time and one-pot detection of HIV-1 DNA by replacing the inhibitors and crRNA with different target recognition sequences. SIGNIFICANCE AND NOVELTY Overall, due to the high programmability of the nucleic acid network, this work proposed a feasible way to use the steric hindrance-based inhibitors as a switchable element, decorating the CRISPR/Cas12a-based strategy equipment for molecular diagnostics. Besides, this strategy could offer a simple tool for detecting trace nucleic acid, which opens avenues for future clinical application.
Collapse
Affiliation(s)
- Xingrong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China
| | - Cuixiang Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China
| | - Jiatong Chai
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China
| | - Hongmao Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China
| | - Xinli Jiang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China
| | - Yumei Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, People's Republic of China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, People's Republic of China.
| |
Collapse
|
8
|
Gao J, Huang S, Jiang J, Miao Q, Zheng R, Kang Y, Tang W, Zuo H, He J, Xie J. Dual-CRISPR/Cas12a-assisted RT-RAA visualization system for rapid on-site detection of nervous necrosis virus (NNV). Anal Chim Acta 2025; 1335:343469. [PMID: 39643320 DOI: 10.1016/j.aca.2024.343469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/27/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Nervous necrosis virus (NNV) poses a severe threat to the aquaculture industry, particularly infecting fish fry with devastating mortality rates and inflicting heavy economic losses. Traditional detection methods, such as cell culture and conventional RT-PCR, are not only time-consuming and require specialized laboratory facilities but also hard to eliminate contamination. Rapid and accurate on-site detection methods in aquaculture settings are crucial for effective control of NNV outbreaks in fish farms. RESULTS This study developed a one-tube visualization system for rapid and precise identification of NNV in a pond-side setting. This system utilizes the dual-clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-assisted reverse transcription-recombinase aided amplification (RT-RAA) detection method, employing fluorescence intensity to indicate positive results for easy interpretation by field operators. The key to this system involved the meticulous selection of RT-RAA primer sets and CRISPR RNA (crRNA) primer sets targeting two genes of NNV, the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), distributing on two particles of genomic sequences. The assay demonstrated a speed and efficiency process within 30 min and a detection limit of 0.5 copies/μL, achieving 100 % accuracy when compared to qRT-PCR. The practical utility and effectiveness were validated by using 32 field samples. The results underscored the simplicity, rapidity, and reliability of the system, confirming its potential as a robust tool for NNV diagnosis in fish farms. SIGNIFICANCE This study introduces the first application of a dual-CRISPR/Cas12a-assisted RT-RAA visualization system for diagnosing NNV infections. The novel approach substantially enhances on-site diagnostic capabilities, offering a rapid, reliable, and cost-effective solution for fish farm operators. This innovation not only streamlines the detection process but also ensures timely intervention, thereby mitigating the impact of NNV on aquaculture.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Siyou Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Jing Jiang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Qijin Miao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Rui Zheng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Yiling Kang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Wanting Tang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China.
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China.
| |
Collapse
|
9
|
Wang W, Sun J, Gao Y, Jia XX, Ye Y, Ren S, Peng Y, Han D, Zhou H, Gao Z, Sun X. Ultra-sensitive detection of norovirus using a three-in-one CRISPR platform based on a DNA hydrogel and composite functional nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136523. [PMID: 39581026 DOI: 10.1016/j.jhazmat.2024.136523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
The ultrasensitive sensor with three optical response mechanisms was proposed for the determination of trace amounts of norovirus using a 3-in-1 GCSNAs (a gap-containing spherical nucleic acid nanoparticles) probe. A simple and highly sensitive three-mode biosensor with Raman, colorimetric, and fluorescence functions was proposed and implemented using the GCSNAs probe and a DNA hydrogel for norovirus detection. When the virus exists, the trans-cleavage activity of CRISPR-Cas12a was activated by double-stranded dsDNA (dsDNA) generated by reverse transcription and recombinase polymerase isothermal amplification (RT-RPA) to degrade the DNA hydrogel/GCSNA composition and release the three-in-one (3-in-1) probe-GCSNA, realising the triple ultrasensitive detection of norovirus. The colorimetric sensing mode allows for semi-quantitative on-site detection, which is visible to the naked eye and the quantitative detection can be achieved by conducting grayscale analysis using the "Colour Grab" function of a smartphone. This new triple sensor achieved the successful quantification of norovirus at concentrations as low as the femtomolar scale with an excellent selectivity and accuracy. Considering the colorimetric properties of rolling circle amplification (RCA)-based DNA hydrogels and GCSNAs, the proposed method has a broad application prospect in virus on-site detection in food. It should be applicable for virus detection in a wide range of fields such, as environmental analysis, medical diagnosis, and food safety. It is anticipated that this mechanism will open new avenues for the development of multimodal analyses and multifunctional sensing platforms for various applications. We anticipate that this sensing mechanism will open up a new way for the development of food safety detection.
Collapse
Affiliation(s)
- Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yifei Gao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xue Xia Jia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China.
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Hu F, Liu K, Zhang Y, Zhao S, Zhang T, Yao C, Lv X, Wang J, Liu X, Peng N. Short-Time Preamplification-Assisted One-Pot CRISPR Nucleic Acid Detection Method with Portable Self-Heating Equipment for Point-of-Care Diagnosis. Anal Chem 2025; 97:658-666. [PMID: 39754554 DOI: 10.1021/acs.analchem.4c05026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Infectious diseases, especially respiratory infections, have been significant threats to human health. Therefore, it is essential to develop rapid, portable, and highly sensitive diagnostic methods for their control. Herein, a short-time preamplified, one-pot clustered regularly interspaced short palindromic repeats (CRISPR) nucleic acid detection method (SPOC) is developed by combining the rapid recombinase polymerase amplification (RPA) with CRISPR-Cas12a to reduce the mutual interference and achieve facile and rapid molecular diagnosis. SPOC can reduce the detection time and stably detect up to 1 copy/μL of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA without affecting the detection sensitivity. A highly sensitive one-pot assay integrated with reverse transcription RPA is achieved by wrapping paraffin with a specific melting point on the lyophilized CRISPR reagent surface. A self-heating pack is designed based on thermodynamic principles to melt the paraffin and release CRISPR reagents, enabling low-cost and time-saving detection. Notably, the designed system, coupled with RNA extraction-free technology, can achieve "sample-in-answer-out" detection of the SARS-CoV-2 Orf1ab gene within 22 min using smartphone imaging. The developed assay is validated on 12 clinical samples, and the results 100% correlate with real-time polymerase chain reaction. SPOC is time-saving, is easy to operate, and can eliminate centrifugal and complex hardware devices, satisfying the demand for point-of-care diagnostics in resource-constrained settings.
Collapse
Affiliation(s)
- Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Kaihui Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, China
| | - Yunyun Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Tianyi Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Cuiping Yao
- Institute of Biomedical Photonics and Sensing, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xing Lv
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi 710032, China
| | - Jing Wang
- Institute of Biomedical Photonics and Sensing, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
11
|
Sun Y, Zhang W, Zhang H, Zhao F, Su L. CRISPR/Cas13a combined with reverse transcription and RPA for NoV GII.4 monitoring in water environments. ENVIRONMENT INTERNATIONAL 2025; 195:109195. [PMID: 39675302 DOI: 10.1016/j.envint.2024.109195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Water bodies contaminated with the norovirus (NoV) are important vectors for its transmission. Therefore, enhanced monitoring of NoV in aqueous environments plays an active role in preventing diseases. Here, we reverse transcribed viral RNA into cDNA, and then used the constructed RPA-CRISPR/Cas13a-based platform for sensitive and quantitative monitoring of NoV GII.4 in aqueous environments. The use of glycerol as a phase separator and the direct release of nucleic acids from the virus by NaOH significantly enhanced the stability of the assay and reduced its economic cost. This assay is sensitive, specific, and stable. Based on the qualitative detection method, we established a relatively accurate quantitative detection method using the plasmid as a standard. Four water samples, totaling 64 samples, were analyzed using this method and compared with the qPCR method. The results of the two methods showed 100 % concordance with no significant difference in viral load. The entire process of our established method-from viral nucleic acid extraction to the output of the results-was completed in 30 min, much less than the time required for qPCR method. This suggests that the assay can be used as an alternative to qPCR for monitoring the change of NoV GII.4 concentration in water bodies, and shows high potential for application in the immediate detection of viruses in aqueous environments and resource-limited areas.
Collapse
Affiliation(s)
- Yiqiang Sun
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Weiwei Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Houyun Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Laijin Su
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
12
|
Fu J, Mo R, Li Z, Xu S, Cheng X, Lu B, Shi S. An extraction-free one-pot assay for rapid detection of Klebsiella pneumoniae by combining RPA and CRISPR/Cas12a. Biosens Bioelectron 2025; 267:116740. [PMID: 39244837 DOI: 10.1016/j.bios.2024.116740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Klebsiella pneumoniae poses a significant threat to global public health. Traditional clinical diagnostic methods, such as bacterial culture and microscopic identification, are not suitable for point-of-care testing. In response, based on the suboptimal protospacer adjacent motifs, this study develops an extraction-free one-pot assay, named EXORCA (EXtraction-free One-pot RPA-CRISPR/Cas12a assay), designed for the immediate, sensitive and efficient detection of K. pneumoniae. The EXORCA assay can be completed within approximately 30 min at a constant temperature and allows for the visualization of results either through a fluorescence reader or directly by the naked eye under blue light. The feasibility of the assay was evaluated using twenty unextracted clinical samples, achieving a 100% (5/5) positive predictive value and a 100% (15/15) negative predictive value in comparison to qPCR. These results suggest that the EXORCA assay holds significant potential as a point-of-care testing tool for the rapid identification of pathogens, such as K. pneumonia.
Collapse
Affiliation(s)
- Jinyu Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Rurong Mo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ziyao Li
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Changping Laboratory, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Binghuai Lu
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Changping Laboratory, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
13
|
Chen L, Hu M, Zhou X. Trends in developing one-pot CRISPR diagnostics strategies. Trends Biotechnol 2025; 43:98-110. [PMID: 39095257 DOI: 10.1016/j.tibtech.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
The integration of nucleic acid amplification (NAA) with the CRISPR detection system has led to significant advancements and opportunities for development in molecular diagnostics. Nevertheless, the incompatibility between CRISPR cleavage and NAA has significantly impeded the commercialization of this technology. Currently, several one-pot detection strategies based on CRISPR systems have been devised to address concerns regarding aerosol contamination risk and operational complexity associated with step-by-step detection as well as the sensitivity limitation of conventional one-pot methods. In this review, we provide a comprehensive introduction and outlook of the various solutions of the one-pot CRISPR assay for practitioners who are committed to developing better CRISPR nucleic acid detection technologies to promote the progress of molecular diagnostics.
Collapse
Affiliation(s)
- Lin Chen
- School of Life sciences, South China Normal University, Guangzhou 510631, P. R. China
| | - Menglu Hu
- School of Life sciences, South China Normal University, Guangzhou 510631, P. R. China.
| | - Xiaoming Zhou
- School of Life sciences, South China Normal University, Guangzhou 510631, P. R. China; MOE Key laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
14
|
Yang Y, Zhai S, Zhang L, Wu Y, Li J, Li Y, Li X, Zhu L, Xu W, Wu G, Gao H. A gold nanoparticle-enhanced dCas9-mediated fluorescence resonance energy transfer for nucleic acid detection. Talanta 2025; 282:126978. [PMID: 39366243 DOI: 10.1016/j.talanta.2024.126978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas proteins coupled with pre-amplification have shown great potential in molecular diagnoses. However, the current CRISPR-based methods require additional reporters and time-consuming process. Herein, a gold nanoparticle (AuNP)-enhanced CRISPR/dCas9-mediated fluorescence resonance energy transfer (FRET) termed Au-CFRET platform was proposed for rapid, sensitive, and specific detection of nucleic acid for the first time. In the Au-CFRET sensing platform, AuNP was functionalized with dCas9 and used as nanoprobe. Target DNA was amplified with FAM-labeled primers and then precisely bound with AuNP-dCas9. The formed complex rendered the distance between AuNP acceptor and FAM donor to be short enough for the occurrence of FRET, thus resulting in fluorescence quenching. Moreover, AuNPs were demonstrated to enhance binding efficiency of dCas9 to target DNA in Au-CFRET system. The key factors regarding the FRET efficiency were analyzed and characterized in detail, including the length of donor/acceptor and the size of AuNPs. Under the optimal conditions, Au-CFRET could determinate CaMV35S promoter of genetically modified rice as low as 21 copies μL-1. Moreover, Au-CFRET sensing system coupled with one-step extraction and recombinase polymerase amplification can identify the genuine plant seeds within 30 min from sampling to results at room/body temperature without expensive equipment or technical expertise, and requires no additional exogenous reporters. Therefore, the proposed sensing platform significantly simplified the system and shortened the assay time for nucleic acid diagnoses.
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Hubei Provincial Key Laboratory for the Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shanshan Zhai
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Zhang
- Hubei Provincial Key Laboratory for the Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yuhua Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yunjing Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiaofei Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Gang Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Hongfei Gao
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
15
|
Zhao L, Zhao Z, Li N, Wang X. The nucleic acid detection using CRISPR/Cas biosensing system with micro-nano modality for point-of-care applications. Talanta 2024; 286:127457. [PMID: 39724853 DOI: 10.1016/j.talanta.2024.127457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Nucleic acid detection is considered the golden standard for diagnosing infectious diseases caused by various pathogens, including viruses, bacteria, and parasites. PCR and other amplification-based technologies are highly sensitive and specific, allowing for accurate detection and identification of low-level causative pathogens by targeting and amplifying their unique genetic segment (DNA or RNA). However, it is important to recognize that machinery-dependent diagnostic methods may only sometimes be available or practical in resource-limited settings, where direct implementation can be challenging. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based diagnostics offer a promising alternative for nucleic acid detection. These methods provide gene sequence-specific targeting, multiplexing capability, rapid result disclosure, and ease of operation, making them suitable for point-of-care (POC) applications. CRISPR-Cas-based nucleic acid detection leverages the intrinsic gene-editing capabilities of CRISPR systems to detect specific DNA or RNA sequences with high precision, ensuring high specificity in identifying pathogens. When integrated with micro- and nano-technologies, CRISPR-based diagnostics gain additional benefits, including automated microfluidic processes, enhanced multiplexed detection, improved sensitivity through nanoparticle integration, and combined detection strategies. In this review, we analyze the motivations for tailoring the CRISPR-Cas system with microfluidic formats or nanoscale materials for nucleic acid biosensing and detection. We discuss and categorize current achievements in such systems, highlighting their differences, commonalities, and opportunities for addressing challenges, particularly for POC diagnostics. Micro- and nano-technologies can significantly enhance the practical utility of the CRISPR-Cas system, enabling more comprehensive diagnostic and surveillance capabilities. By integrating these technologies, CRISPR-based diagnostics can achieve higher levels of automation, sensitivity, and multiplexing, making them invaluable tools in the global effort to diagnose and control infectious diseases.
Collapse
Affiliation(s)
- Liang Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Zihao Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Ning Li
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
16
|
Zhao Y, Li Z, Li T, Rao R, Zhu J, Hu R, Xu G, Li Y, Yang Y. SlipChip Enables the Integration of CRISPR-Cas12a and RPA for Fast and Stand-Alone HPV Detection. Anal Chem 2024. [PMID: 39696792 DOI: 10.1021/acs.analchem.4c05290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Human papillomavirus (HPV) screening is vital for the early detection and prevention of cervical cancer. However, existing methods often face challenges related to speed, simplicity, and multiplexing, especially in resource-limited settings. Here we developed a portable SlipChip-based multiplexed and rapid nucleic acid testing platform, named SMART, designed to simultaneously detect HPV16 and HPV18. SMART allows seamless integration of the RPA and Cas12a assays on the SlipChip and includes a heating membrane to regulate the on-chip assay temperatures. This allows SMART to operate as a stand-alone platform without additional control instruments. The platform also features an All-in-One imaging mode for rapid on-chip data acquisition, enhancing its performance. SMART enables sensitive detection of HPV16 and HPV18 DNA across multiple samples in just 36 min with a detection limit of approximately 6 copies per reaction. Testing of 56 clinical samples at risk of HPV infection validated SMART's performance, showing 97.7% sensitivity and 100% specificity. In summary, SMART offers a stand-alone system capable of rapidly distinguishing between the two most harmful HPV subtypes, showcasing the significant potential for rapid, multiplexed nucleic acid testing in various applications.
Collapse
Affiliation(s)
- Yin Zhao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Zheyu Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Ruotong Rao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
17
|
Wang S, Wang J, Li B, Zhang J. Photoactivable CRISPR for Biosensing and Cancer Therapy. Chembiochem 2024; 25:e202400685. [PMID: 39317648 DOI: 10.1002/cbic.202400685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Photoactivable CRISPR technology represents a transformative approach in the field of genome editing, offering unprecedented control over gene editing with high spatial and temporal precision. By harnessing the power of light to modulate the activity of CRISPR components, this innovative strategy enables precise regulation of Cas proteins, guide RNAs, and ribonucleoprotein complexes. Recent advancements in optical control methodologies, including the development of photoactivable nanocarriers, have significantly expanded the potential applications of CRISPR in biomedical fields. This Concept highlights the latest developments in designing photoactivable CRISPR systems and their promising applications in biosensing and cancer therapy. Additionally, the remaining challenges and future trends are also discussed. It is expected that the photoactivable CRISPR would facilitate translating more precise gene therapies into clinical use.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Baijiang Li
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| |
Collapse
|
18
|
Lu Z, Ye Z, Li P, Jiang Y, Han S, Ma L. An MSRE-Assisted Glycerol-Enhanced RPA-CRISPR/Cas12a Method for Methylation Detection. BIOSENSORS 2024; 14:608. [PMID: 39727873 DOI: 10.3390/bios14120608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant tumor with high prevalence in southern China. Aberrant DNA methylation, as a hallmark of cancer, is extensively present in NPC, the detection of which facilitates early diagnosis and prognostic improvement of NPC. Conventional methylation detection methods relying on bisulfite conversion have limitations such as time-consuming, complex processes and sample degradation; thus, a more rapid and efficient method is needed. METHODS We propose a novel DNA methylation assay based on methylation-sensitive restriction endonuclease (MSRE) HhaI digestion and Glycerol-enhanced recombinase polymerase amplification (RPA)-CRISPR/Cas12a detection (HGRC). MSRE has a fast digestion rate, and HhaI specifically cleaves unmethylated DNA at a specific locus, leaving the methylated target intact to trigger the downstream RPA-Cas12a detection step, generating a fluorescence signal. Moreover, the detection step was supplemented with glycerol for the separation of Cas12a-containing components and RPA- and template-containing components, which avoids over-consumption of the template and, thus, enhances the amplification efficiency and detection sensitivity. RESULTS The HGRC method exhibits excellent performance in the detection of a CNE2-specific methylation locus with a (limit of detection) LOD of 100 aM and a linear range of 100 aM to 100 fM. It also responds well to different methylation levels and is capable of distinguishing methylation levels as low as 0.1%. Moreover, this method can distinguish NPC cells from normal cells by detecting methylation in cellular genomes. This method provides a rapid and sensitive approach for NPC detection and also holds good application prospects for other cancers and diseases featuring DNA methylation as a biomarker.
Collapse
Affiliation(s)
- Zhiquan Lu
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
| | - Zilu Ye
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
| | - Ping Li
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yike Jiang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
| | - Lan Ma
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
19
|
Cao L, Chen W, Kang W, Lei C, Nie Z. Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing. Anal Bioanal Chem 2024:10.1007/s00216-024-05678-y. [PMID: 39601843 DOI: 10.1007/s00216-024-05678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
The precise target recognition and nuclease-mediated effective signal amplification capacities of CRISPR-Cas systems have attracted considerable research interest within the biosensing field. Guided by insights into their structural and biochemical mechanisms, researchers have endeavored to engineer the key biocomponents of CRISPR-Cas systems with stimulus-responsive functionalities. By the incorporation of protein/nucleic acid engineering techniques, a variety of conditional CRISPR-Cas systems whose activities depend on the presence of target triggers have been established for the efficient detection of diverse types of non-nucleic acid analytes. In this review, we summarized recent research progress in engineering Cas proteins, guide RNA, and substrate nucleic acids to possess target analyte-responsive abilities for diverse biosensing applications. Furthermore, we also discussed the challenges and future possibilities of the stimulus-responsive CRISPR-Cas systems in versatile biosensing.
Collapse
Affiliation(s)
- Linxin Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Wenhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Wenyuan Kang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
20
|
Pian H, Wang H, Wang H, Tang F, Li Z. Capillarity-powered and CRISPR/Cas12a-responsive DNA hydrogel distance sensor for highly sensitive visual detection of HPV DNA. Biosens Bioelectron 2024; 264:116657. [PMID: 39137521 DOI: 10.1016/j.bios.2024.116657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The rapid and specific identification and sensitive detection of human papillomavirus (HPV) infection is critical for preventing cervical cancer, particularly in resource-limited regions. In this work, we hope to propose a capillarity-powered and CRISPR/Cas12a-responsive DNA hydrogel distance sensor for point-of-care (POC) DNA testing. Using the thermal reversibility of DNA hydrogel and capillarity, the novel DNA hydrogel distance sensor can be rapidly and simply constructed by loading an ultra-thin CRISPR/Cas12a-responsive DNA-crosslinked hydrogel film at the end of the capillary tube. The target DNA-specific recombinase polymerase reaction (RPA) amplicons activate the trans-cleavage activity of the Cas12a enzyme, cleaving the crosslinked DNA in hydrogel film, and causing an increase of hydrogel's permeability. As a result, a sample solution containing target DNA travels into the capillary tube at a longer distance compared to the negative samples. Reading the solution traveling distance in capillary tubes, the novel sensor realizes target DNA detection without any special equipment. Benefiting from the exponential target amplification of RPA and multiple turnover response of trans-cleavage of CRISPR/Cas12a, the developed sensor can visually and specifically detect as low as 1 aM HPV 16 DNA within 30 min. These outstanding features, including exceptional sensitivity and specificity, simple and portable design, mild measurement conditions, quick turnaround time, and user-friendly read-out, make the novel distance sensor a promising option for POC diagnostic applications.
Collapse
Affiliation(s)
- Hongru Pian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Honghong Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Fu Tang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
21
|
Zhang C, Zhao X, Chen X, Lin X, Huang Z, Hu J, Liu R, Lv Y. CRISPR/Cas12a assay for amol level microRNA by combining enzyme-free amplification and single particle analysis. Chem Commun (Camb) 2024; 60:13259-13262. [PMID: 39445763 DOI: 10.1039/d4cc04534c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
CRISPR/Cas systems are increasingly utilized for sensitive miRNA detection through enzyme-based pre-amplification. To address challenges such as high costs, non-specific amplification, and interference from primer residues in pre-amplification strategies, herein a dual amplification CRISPR miRNA assay was developed by combining enzyme-free HCR with single-particle analysis. Attomolar detection limits, excellent selectivity, and practicability were achieved by applying this method.
Collapse
Affiliation(s)
- Chengchao Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu, Seventh People's Hospital, Chengdu 610041, P. R. China
| | - Xiao Chen
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Xu Lin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Zili Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta, T6G 2G3, Canada
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
22
|
Mao X, Xu J, Jiang J, Li Q, Yao P, Jiang J, Gong L, Dong Y, Tu B, Wang R, Tang H, Yao F, Wang F. Iterative crRNA design and a PAM-free strategy enabled an ultra-specific RPA-CRISPR/Cas12a detection platform. Commun Biol 2024; 7:1454. [PMID: 39506042 PMCID: PMC11541961 DOI: 10.1038/s42003-024-07173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR/Cas12a is a highly promising detection tool. However, detecting single nucleotide variations (SNVs) remains challenging. Here, we elucidate Cas12a specificity through crRNA engineering and profiling of single- and double-base mismatch tolerance across three targets. Our findings indicate that Cas12a specificity depends on the number, type, location, and distance of mismatches within the R-loop. We also find that introducing a wobble base pair at position 14 of the R-loop does not affect the free energy change when the spacer length is truncated to 17 bp. Therefore, we develop a new universal specificity enhancement strategy via iterative crRNA design, involving truncated spacers and a wobble base pair at position 14 of the R-loop, which tremendously increases specificity without sacrificing sensitivity. Additionally, we construct a PAM-free one-pot detection platform for SARS-CoV-2 variants, which effectively distinguishes SNV targets across various GC contents. In summary, our work reveals new insights into the specificity mechanism of Cas12a and demonstrates significant potential for in vitro diagnostics.
Collapse
Affiliation(s)
- Xujian Mao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
| | - Jian Xu
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Jingyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Qiong Li
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Ping Yao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Jinyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Li Gong
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Yin Dong
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Bowen Tu
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Rong Wang
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Tang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
| | - Fang Yao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
- Changzhou Institute for Advanced Study of Public Health, Nanjing Medical University, Changzhou, Jiangsu, China.
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Fengming Wang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Ye X, Wu H, Liu J, Xiang J, Feng Y, Liu Q. One-pot diagnostic methods based on CRISPR/Cas and Argonaute nucleases: strategies and perspectives. Trends Biotechnol 2024; 42:1410-1426. [PMID: 39034177 DOI: 10.1016/j.tibtech.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
CRISPR/Cas and Argonaute (Ago) proteins, which target specific nucleic acid sequences, can be applied as diagnostic tools. Despite high specificity and efficiency, achieving sensitive detection often necessitates a preamplification step that involves opening the lid and multistep operation, which may elevate the risk of contamination and prove inadequate for point-of-care testing. Hence, various one-pot detection strategies have been developed that enable preamplification and sensing in a single operation. We outline the challenges of one-pot detection with Cas and Ago proteins, present several main implementation strategies, and discuss future prospects. This review offers comprehensive insights into this vital field and explores potential improvements to detection methods that will be beneficial for human health.
Collapse
Affiliation(s)
- Xingyu Ye
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoyang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinghan Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Xiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
24
|
Kang J, Kim H, Lee Y, Lee H, Park Y, Jang H, Kim J, Lee M, Jeong B, Byun J, Kim SJ, Lim E, Jung J, Woo E, Kang T, Park K. Unveiling Cas12j Trans-Cleavage Activity for CRISPR Diagnostics: Application to miRNA Detection in Lung Cancer Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402580. [PMID: 39354694 PMCID: PMC11600238 DOI: 10.1002/advs.202402580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/25/2024] [Indexed: 10/03/2024]
Abstract
Cas12j, a hypercompact and efficient Cas protein, has potential for use in CRISPR diagnostics, but has not yet been used because the trans-cleavage activity of Cas12j is veiled. Here, the trans-cleavage behavior of Cas12j1, 2, and 3 variants and evaluate their suitability for nucleic acid detection is unveiled. The target preferences and mismatch specificities of the Cas12j variants are precisely investigated and the optimal Cas12j reaction conditions are determined. As a result, the EXP-J assay for miRNA detection by harnessing the robust trans-cleavage activity of Cas12j on short ssDNA is developed. The EXP-J method demonstrates exceptional detection capabilities for miRNAs, proving that Cas12j can be a pivotal component in molecular diagnostics. Furthermore, the translational potential of the EXP-J assay is validated by detecting oncogenic miRNAs in plasma samples from lung cancer patients. This investigation not only elucidates the trans-cleavage characteristics of Cas12j variants, but also advances the Cas12j-based diagnostic toolkit.
Collapse
Affiliation(s)
- Ju‐Eun Kang
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of Proteome Structural BiologyKRIBB School of BioscienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Hansol Kim
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
| | - Young‐Hoon Lee
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of Proteome Structural BiologyKRIBB School of BioscienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Ha‐Yeong Lee
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Yeonkyung Park
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
| | - Jae‐Rin Kim
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of Proteome Structural BiologyKRIBB School of BioscienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Min‐Young Lee
- Department of Nano‐Bio Convergence, Surface Materials DivisionKorea Institute of Materials Science (KIMS)ChangwonGyeongsangnam‐do51508Republic of Korea
| | - Byeong‐Ho Jeong
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineSamsung Medical CenterSungkyunkwan University (SKKU) School of MedicineSeoul06351Republic of Korea
| | - Ju‐Young Byun
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
| | - Seung Jun Kim
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Eun‐Kyung Lim
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
- School of PharmacySKKUSuwonGyeongi‐do16419Republic of Korea
- Department of NanobiotechnologyKRIBB School of Biotechnology, USTDaejeon34113Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
- School of PharmacySKKUSuwonGyeongi‐do16419Republic of Korea
- Department of NanobiotechnologyKRIBB School of Biotechnology, USTDaejeon34113Republic of Korea
| | - Eui‐Jeon Woo
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of Proteome Structural BiologyKRIBB School of BioscienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
- Disease Target Structure Research CenterKRIBBDaejeon34141Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
- School of PharmacySKKUSuwonGyeongi‐do16419Republic of Korea
| | - Kwang‐Hyun Park
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of Proteome Structural BiologyKRIBB School of BioscienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
- Disease Target Structure Research CenterKRIBBDaejeon34141Republic of Korea
| |
Collapse
|
25
|
Shen S, Wang W, Ma Y, Wang S, Zhang S, Cai X, Chen L, Zhang J, Li Y, Wu X, Wei J, Zhao Y, Huang A, Niu S, Wang D. Affinity molecular assay for detecting Candida albicans using chitin affinity and RPA-CRISPR/Cas12a. Nat Commun 2024; 15:9304. [PMID: 39468064 PMCID: PMC11519397 DOI: 10.1038/s41467-024-53693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Invasive fungal infections (IFIs) pose a significant threat to immunocompromised individuals, leading to considerable morbidity and mortality. Prompt and accurate diagnosis is essential for effective treatment. Here we develop a rapid molecular diagnostic method that involves three steps: fungal enrichment using affinity-magnetic separation (AMS), genomic DNA extraction with silicon hydroxyl magnetic beads, and detection through a one-pot system. This method, optimized to detect 30 CFU/mL of C. albicans in blood and bronchoalveolar lavage (BAL) samples within 2.5 h, is approximately 100 times more sensitive than microscopy-based staining. Initial validation using clinical samples showed 93.93% sensitivity, 100% specificity, and high predictive values, while simulated tests demonstrated 95% sensitivity and 100% specificity. This cost-effective, highly sensitive technique offers potential for use in resource-limited clinical settings and can be easily adapted to differentiate between fungal species and detect drug resistance.
Collapse
Affiliation(s)
- Shimei Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory Medicine, Chongqing Red Cross Hospital (Jiangbei District People's Hospital), Chongqing, China
| | - Wen Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, China
| | - Yuanyan Ma
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shilei Wang
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shaocheng Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xuefei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jin Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yalan Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoli Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yanan Zhao
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Deqiang Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, Chongqing, China.
| |
Collapse
|
26
|
Zhang J, Qin L, Chang Y, He Y, Zhao W, Zhao Y, Ding Y, Gao J, Zhao X. One-Pot Assay for Rapid Detection of Stenotrophomonas maltophilia by RPA-CRISPR/Cas12a. ACS Synth Biol 2024; 13:3400-3412. [PMID: 39358950 DOI: 10.1021/acssynbio.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Stenotrophomonas maltophilia (S. maltophilia, SMA) is a common opportunistic pathogen that poses a serious threat to the food industry and human health. Traditional detection methods for SMA are time-consuming, have low detection rates, require complex and expensive equipment and professional technical personnel for operation, and are unsuitable for on-site detection. Therefore, establishing an efficient on-site detection method has great significance in formulating appropriate treatment strategies and ensuring food safety. In the present study, a rapid one-pot detection method was established for SMA using a combination of Recombinase Polymerase Amplification (RPA) and CRISPR/Cas12a, referred to as ORCas12a-SMA (one-pot RPA-CRISPR/Cas12a platform). In the ORCas12a-SMA detection method, all components were added into a single tube simultaneously to achieve one-pot detection and address the problems of nucleic acid cross-contamination and reduced sensitivity caused by frequent cap opening during stepwise detection. The ORCas12a-SMA method could detect at least 3 × 10° copies·μL-1 of SMA genomic DNA within 30 min at 37 °C. Additionally, this method exhibited sensitivity compared to the typical two-step RPA-CRISPR/Cas12a method. Overall, the ORCas12a-SMA detection offered the advantages of rapidity, simplicity, high sensitivity and specificity, and decreased need for complex large-scale instrumentation. This assay is the first application of the one-pot platform based on the combination of RPA and CRISPR/Cas12a in SMA detection and is highly suitable for point-of-care testing. It helps reduce losses in the food industry and provides assistance in formulating timely and appropriate antimicrobial treatment plans.
Collapse
Affiliation(s)
- Jiangli Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province/Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ling Qin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yingying Chang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province/Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yulong He
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Weichao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Yongyou Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yanan Ding
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Jin Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Xiting Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province/Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
27
|
Tan M, Yi X, Liao C, Zhou Z, Ren B, Liang L, Li X, Wei G. Establishment of a platform based on dual RPA combined with CRISPR/Cas12a for the detection of Klebsiella pneumoniae and its KPC resistance gene. Front Bioeng Biotechnol 2024; 12:1447963. [PMID: 39416281 PMCID: PMC11480703 DOI: 10.3389/fbioe.2024.1447963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Carbapenem resistant Klebsiella pneumoniae (CRKP) can cause serious hospital- and community-acquired infections. Treatment for CRKP infection is limited, resulting in prolonged hospitalization and high consultation costs. The KPC genotype has the highest detection rate of CRKP, and its mortality rate is higher than the overall mortality rate of CRKP. However, traditional testing methods have disadvantages such as long time and reliance on complex and sophisticated instruments, which are not conducive to rapid screening for CRKP. Therefore, this study aimed to establish a detection platform for early screening of CRKP so that effective antimicrobial therapy could be administered promptly to prevent the widespread spread of CRKP. We integrated dual RPA with CRISPR/Cas12a to establish a dual platform for the detection of K. pneumoniae (Kp) rcsA-specific gene and KPC resistance gene. Four result reading methods were established, including fluorescence detection (FD), blue light irradiation detection (BLID), ultraviolet irradiation detection (UID), and lateral flow test strips (LFTS). For the rcsA gene, the LOD of FD was 1 × 10 pg/μL, and the other three methods could detect 1 × 101 pg/μL of bacterial DNA. As for the KPC gene, four resultant readout methods were able to detect 1 × 102 pg/μL of bacterial DNA. In 59 clinical strains tested, the dual RPA-CRISPR/Cas12a detection of the rcsA had 100% sensitivity, specificity, and accuracy compared to the culture method. Compared with the drug sensitivity test, the sensitivity of dual RPA-CRISPR/Cas12a detection for the KPC was 85.71%, the specificity was 100%, and the accuracy was 94.92%. In summary, our dual RPA-CRISPR/Cas12a platform proved to be rapid, precise, and convenient for the efficient detection of Kp with KPC in the laboratory or at the point of care.
Collapse
Affiliation(s)
- Meiying Tan
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Xueli Yi
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Chuan Liao
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Zihan Zhou
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Baoyan Ren
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
- Yaneng BlOscience (Shenzhen) Corporation, Guangxi, China
| | - Lina Liang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Xuebin Li
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
28
|
Gu X, Tang Q, Zhu Y, Sun C, Wu L, Ji H, Wang Q, Wu L, Qin Y. Advancements of CRISPR technology in public health-related analysis. Biosens Bioelectron 2024; 261:116449. [PMID: 38850734 DOI: 10.1016/j.bios.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Pathogens and contaminants in food and the environment present significant challenges to human health, necessitating highly sensitive and specific diagnostic methods. Traditional approaches often struggle to meet these requirements. However, the emergence of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized nucleic acid diagnostics. The present review provides a comprehensive overview of the biological sensing technology based on the CRISPR/Cas system and its potential applications in public health-related analysis. Additionally, it explores the enzymatic cleavage capabilities mediated by Cas proteins, highlighting the promising prospects of CRISPR technology in addressing bioanalysis challenges. We discuss commonly used CRISPR-Cas proteins and elaborate on their application in detecting foodborne bacteria, viruses, toxins, other chemical pollution, and drug-resistant bacteria. Furthermore, we highlight the advantages of CRISPR-based sensors in the field of public health-related analysis and propose that integrating CRISPR-Cas biosensing technology with other technologies could facilitate the development of more diverse detection platforms, thereby indicating promising prospects in this field.
Collapse
Affiliation(s)
- Xijuan Gu
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China; Xinglin College, Nantong University, Qidong, Jiangsu, 226236, PR China
| | - Qu Tang
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Chenling Sun
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Lingwei Wu
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China; School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
29
|
Liu P, Zeng J, Jiang C, Du J, Jiang L, Li S, Zeng F, Xiong E. Poly(vinylpyrrolidone)-Enhanced CRISPR-Cas System for Robust Nucleic Acid Diagnostics. Anal Chem 2024; 96:15797-15807. [PMID: 39285721 DOI: 10.1021/acs.analchem.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has opened a new path for molecular diagnostics based on RNA programmed trans-cleavage activity. However, their accessibility for highly sensitive clinical diagnostics remains insufficient. In this study, we systematically investigated the impact of various surfactants on the CRISPR-Cas12a system and found that poly(vinylpyrrolidone) (PVP), a nonionic surfactant, showed the highest enhancement effect among these tested surfactants. Additionally, the enhancement effects of PVP are compatible and versatile to CRISPR-Cas12b and Cas13a systems, improving the sensitivity of these CRISPR-Cas systems toward synthetic targets by 1-2 orders of magnitude. By integrating the PVP-enhanced CRISPR system with isothermal nucleic acid amplification, both the two- and one-step assays exhibited comparable sensitivity and specificity to gold-standard quantitative polymerase chain reaction (qPCR) in the assay of clinical human papillomavirus (HPV) samples, thereby holding significant promise for advancing clinical diagnostics and biomedical research.
Collapse
Affiliation(s)
- Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiayu Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Chengchuan Jiang
- Department of Cancer Center, Brain Hospital of Hunan Province & The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Jinlian Du
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ling Jiang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Sheng Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Fanxu Zeng
- Department of Cancer Center, Brain Hospital of Hunan Province & The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
30
|
Wang T, Li A, Zhao H, Wu Q, Guo J, Tian H, Wang J, Que Y, Xu L. A novel system with robust compatibility and stability for detecting Sugarcane yellow leaf virus based on CRISPR-Cas12a. Microbiol Spectr 2024; 12:e0114924. [PMID: 39120142 PMCID: PMC11370245 DOI: 10.1128/spectrum.01149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024] Open
Abstract
Sugarcane yellow leaf virus (SCYLV) can reduce sugarcane productivity. A novel detection system based on reverse transcription-multienzyme isothermal rapid amplification (RT-MIRA) combined with CRISPR-Cas12a, named RT-MIRA-CRISPR-Cas12a, was developed. This innovative approach employs crude leaf extract directly as the reaction template, streamlining the extraction process for simplicity and speed. Combining RT-MIRA and CRISPR-Cas12a in one reaction tube increases the ease of operation while reducing the risk of aerosol contamination. In addition, it exhibits sensitivity equivalent to qPCR, boasting a lower detection limit of 25 copies. Remarkably, the entire process, from sample extraction to reaction completion, requires only 52-57 minutes, just a thermostat water bath. The result can be observed and judged by the naked eye.IMPORTANCESugarcane yellow leaf disease (SCYLD) is an important viral disease that affects sugarcane yield. There is an urgent need for rapid, sensitive, and stable detection methods. The reverse transcription-multienzyme isothermal rapid amplification combined with CRISPR-Cas12a (RT-MIRA-CRISPR-Cas12a) method established in this study has good specificity and high sensitivity. In addition, the system showed good compatibility and stability with the crude leaf extract, as shown by the fact that the crude extract of the positive sample could still be stably detected after 1 week when placed at 4°C. RT-MIRA-CRISPR-Cas12a, reverse transcription polymerase chain reaction (RT-PCR), and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect SCYLV on 33 sugarcane leaf samples collected from the field, and it was found that the three methods reached consistent conclusions. This Cas12a-based detection method proves highly suitable for the rapid on-site detection of the SCYLV.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anzhen Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Helei Tian
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingwen Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
31
|
Khmeleva SA, Ptitsyn KG, Kurbatov LK, Timoshenko OS, Suprun EV, Radko SP, Lisitsa AV. Biosensing platforms for DNA diagnostics based on CRISPR/Cas nucleases: towards the detection of nucleic acids at the level of single molecules in non-laboratory settings. BIOMEDITSINSKAIA KHIMIIA 2024; 70:287-303. [PMID: 39324194 DOI: 10.18097/pbmc20247005287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The use of CRISPR/Cas nucleases for the development of DNA diagnostic systems in out-of-laboratory conditions (point-of-need testing, PONT) has demonstrated rapid growth in the last few years, starting with the appearance in 2017-2018 of the first diagnostic platforms known as DETECTR and SHERLOCK. The platforms are based on a combination of methods of nucleic acid isothermal amplification with selective CRISPR/Cas detection of target amplicons. This significantly improves the sensitivity and specificity of PONT, making them comparable with or even superior to the sensitivity and specificity of polymerase chain reaction, considered as the "gold standard" of DNA diagnostics. The review considers modern approaches to the coupling of CRISPR/Cas detection using Cas9, Cas12a, Cas12b, Cas13a, Cas14, and Cas3 nucleases to various methods of nucleic acid isothermal amplification, with an emphasis on works in which sensitivity at the level of single molecules (attomolar and subattomolar concentrations of the target) is achieved. The properties of CRISPR/Cas nucleases used for targeted DNA diagnostics and the features of methods of nucleic acid isothermal amplification are briefly considered in the context of the development of diagnostic biosensing platforms. Special attention is paid to the most promising directions for the development of DNA diagnostics using CRISPR/Cas nuclease.
Collapse
Affiliation(s)
- S A Khmeleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - K G Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - E V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Moscow, Russia
| | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
32
|
Wei Y, Hu Y, Wang L, Liu C, Abdullaewich YS, Yang Z, Mao H, Wan Y. Ultrasensitive detection of Salmonella typhi using a PAM-free Cas14a-based biosensor. Biosens Bioelectron 2024; 259:116408. [PMID: 38781698 DOI: 10.1016/j.bios.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The effectiveness of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas14a1, widely utilized for pathogenic microorganism detection, has been limited by the requirement of a protospacer adjacent motif (PAM) on the target DNA strands. To overcome this limitation, this study developed a Single Primer isothermal amplification integrated-Cas14a1 biosensor (SPCas) for detecting Salmonella typhi that does not rely on a PAM sequence. The SPCas biosensor utilizes a novel primer design featuring an RNA-DNA primer and a 3'-biotin-modified primer capable of binding to the same single-stranded DNA (ssDNA) in the presence of the target gene. The RNA-DNA primer undergoes amplification and is blocked at the biotin-modified end. Subsequently, strand replacement is initiated to generate ssDNA assisted by RNase H and Bst enzymes, which activate the trans-cleavage activity of Cas14a1 even in the absence of a PAM sequence. Leveraging both cyclic chain replacement reaction amplification and Cas14a1 trans-cleavage activity, the SPCas biosensor exhibits a remarkable diagnostic sensitivity of 5 CFU/mL. Additionally, in the assessment of 20 milk samples, the SPCas platform demonstrated 100% diagnostic accuracy, which is consistent with the gold standard qPCR. This platform introduces a novel approach for developing innovative CRISPR-Cas-dependent biosensors without a PAM sequence.
Collapse
Affiliation(s)
- Yangdao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yuanzhao Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Luchao Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yuldoshov Sherzod Abdullaewich
- Department of Cellulose and its Derivatives Chemistry and Technology, Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, str. A. Khodiriy 7b, Tashkent, 100128, Uzbekistan
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China.
| | - Haimei Mao
- Products Quality Supervision and Testing Institute of Hainan Province, Haikou, 570003, China.
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| |
Collapse
|
33
|
Liu J, Li N, Zhang L, Lu Y, Shen M, Zhang Y, Feng L, Jing J, Cheng J, Xu Y. A Wax Interface-Enabled One-Pot Multiplexed Nucleic Acid Testing Platform for Rapid and Sensitive Detection of Viruses and Variants. SMALL METHODS 2024; 8:e2400030. [PMID: 38716631 DOI: 10.1002/smtd.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/16/2024] [Indexed: 08/18/2024]
Abstract
High-quality, low-cost, and rapid detection is essential for the society to reopen the economy during the critical period of transition from Coronavirus Disease 2019 (COVID-19) pandemic response to pandemic control. In addition to performing sustainable and target-driven tracking of SARS-CoV-2, conducting comprehensive surveillance of variants and multiple respiratory pathogens is also critical due to the frequency of reinfections, mutation immune escape, and the growing prevalence of the cocirculation of multiple viruses. By utilizing a 0.05 cents wax interface, a Stable Interface assisted Multiplex Pathogenesis Locating Estimation in Onepot (SIMPLEone) using nested RPA and CRISPR/Cas12a enzymatic reporting system is successfully developed. This smartphone-based SIMPLEone system achieves highly sensitive one-pot detection of SARS-CoV-2 and its variants, or multiple respiratory viruses, in 40 min. A total of 89 clinical samples, 14 environmental samples, and 20 cat swab samples are analyzed by SIMPLEone, demonstrating its excellent sensitivity (3-6 copies/reaction for non-extraction detection of swab and 100-150 copies/mL for RNA extraction-based assay), accuracy (>97.7%), and specificity (100%). Furthermore, a high percentage (44.2%) of co-infection cases are detected in SARS-CoV-2-infected patients using SIMPLEone's multiplex detection capability.
Collapse
Affiliation(s)
- Jiajia Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- CapitalBiotech Technology, Beijing, 101111, China
| | - Nan Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute of Chinese Academy of Sciences, Beijing, 100190, China
| | - Li Zhang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ying Lu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Minjie Shen
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuanyue Zhang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Li Feng
- CapitalBiotech Technology, Beijing, 101111, China
| | - Juhui Jing
- CapitalBiotech Technology, Beijing, 101111, China
| | - Jing Cheng
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102200, China
| | - Youchun Xu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- CapitalBiotech Technology, Beijing, 101111, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102200, China
| |
Collapse
|
34
|
Lee HY, Min YH, Lee DG, Lee KH, Kim J, Lee MK, Byun JY, Shin YB. CRISPR/Cas12a Collateral Cleavage-Driven Transcription Amplification for Direct Nucleic Acid Detection. Anal Chem 2024. [PMID: 39018310 DOI: 10.1021/acs.analchem.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The clustered regularly interspaced short palindromic repeat/Cas (CRISPR/Cas) system is a powerful tool for nucleic acid detection owing to specific recognition as well as cis- and trans-cleavage capabilities. However, the sensitivity of CRISPR/Cas-based diagnostic approaches is determined by nucleic acid preamplification, which has several limitations. Here, we present a method for direct nucleic acid detection without preamplification, by combining the CRISPR/Cas12a system with signal enhancement based on light-up RNA aptamer transcription. We first designed two DNA templates to transcribe the light-up RNA aptamer and kleptamer (Kb) RNA: the first DNA template encodes a Broccoli RNA aptamer for fluorescence signal generation, and the Kb DNA template comprises a dsDNA T7 promoter sequence and an ssDNA sequence that encodes an antisense strand for the Broccoli RNA aptamer. Hepatitis B virus (HBV) target recognition activates a CRISPR/Cas12a complex, leading to the catalytic cleavage of the ssDNA sequence. Transcription of the added Broccoli DNA template can then produce several Broccoli RNA aptamer transcripts for fluorescence enhancement. The proposed strategy exhibited excellent sensitivity and specificity with 22.4 fM detection limit, good accuracy, and stability for determining the target HBV dsDNA in human serum samples. Overall, this newly designed signal enhancement strategy can be employed as a universal sensing platform for ultrasensitive nucleic acid detection.
Collapse
Affiliation(s)
- Ha-Yeong Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Yoo-Hong Min
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Deok-Gyu Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764, Korea
| | - Kyung-Ho Lee
- Apteasy MJ Inc., 333 Cheomdangwagi-ro, Technopark, Gwangju 61008, Korea
| | - Jinhyung Kim
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Proteome Structural Biology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Mi-Kyung Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Proteome Structural Biology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Ju-Young Byun
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Yong-Beom Shin
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
35
|
Zhang X, Wang Y, Tang Y, Yang L, Zhao C, Yang G, Wang P, Gao S. A One-Step RPA-CRISPR Assay Using crRNA Based on Suboptimal Protospacer Adjacent Motif for Vibrio vulnificus Detection. Foodborne Pathog Dis 2024; 21:458-466. [PMID: 38551156 DOI: 10.1089/fpd.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Vibrio vulnificus is a hazardous foodborne pathogen responsible for approximately 95% of seafood-related deaths. This highlights the urgent requirement for specialized detection tools to be developed and used by food enterprises and food safety authorities. The DETECTR (DNA endonuclease targeted CRISPR trans reporter) system that combines CRISPR/Cas and recombinase polymerase amplification (RPA) has been utilized to develop a molecular detection assay for V. vulnificus. However, because the incompatibility between RPA and Cas12a cleavage has not been addressed, it is a two-step assay that lacks convenience and presents contamination risk. Here, we developed a one-step RPA-CRISPR assay for V. vulnificus using a special crRNA targeting a sequence with a suboptimal protospacer adjacent motif (PAM). The entire assay, conducted at 37°C, takes only 40-60 min, yields results visualized under blue light, and exhibits exceptional specificity and sensitivity (detecting 4 pathogen genome copies per reaction). This study offers a valuable tool for detecting V. vulnificus, aiding in foodborne infection prevention, and exemplifies one-step RPA-CRISPR assays managing Cas-cleavage activity through PAM adjustments.
Collapse
Affiliation(s)
- Xue Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yue Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yixin Tang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lihong Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Chenjie Zhao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
36
|
Tan M, Liang L, Liao C, Zhou Z, Long S, Yi X, Wang C, Wei C, Cai J, Li X, Wei G. A rapid and ultra-sensitive dual readout platform for Klebsiella pneumoniae detection based on RPA-CRISPR/Cas12a. Front Cell Infect Microbiol 2024; 14:1362513. [PMID: 38994004 PMCID: PMC11236598 DOI: 10.3389/fcimb.2024.1362513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
The bacterium Klebsiella pneumoniae (Kp) was the primary pathogen of hospital-acquired infection, but the current detection method could not rapidly and conveniently identify Kp. Recombinase polymerase amplification (RPA) was a fast and convenient isothermal amplification technology, and the clustered regularly interspaced short palindromic repeats (CRISPR) system could rapidly amplify the signal of RPA and improve its limit of detection (LOD). In this study, we designed three pairs of RPA primers for the rcsA gene of Kp, amplified the RPA signal through single-strand DNA reporter cleavage by CRISPR/Cas12a, and finally analyzed the cleavage signal using fluorescence detection (FD) and lateral flow test strips (LFTS). Our results indicated that the RPA-CRISPR/Cas12a platform could specifically identify Kp from eleven common clinical pathogens. The LOD of FD and LFTS were 1 fg/μL and 10 fg/μL, respectively. In clinical sample testing, the RPA-CRISPR/Cas12a platform was consistent with the culture method and qPCR method, and its sensitivity and specificity were 100% (16/16) and 100% (9/9), respectively. With the advantages of detection speed, simplicity, and accuracy, the RPA-CRISPR/Cas12a platform was expected to be a convenient tool for the early clinical detection of Kp.
Collapse
Affiliation(s)
- Meiying Tan
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Lina Liang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Chuan Liao
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Zihan Zhou
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Shaoping Long
- Department of Clinical Laboratory, Baise People's Hospital, Guangxi, China
| | - Xueli Yi
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Chunfang Wang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Caiheng Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Jinyuan Cai
- School of Food and Chemical Engineering, Liuzhou Institute of Technology, Guangxi, China
| | - Xuebin Li
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Guangxi, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
37
|
Lesinski JM, Moragues T, Mathur P, Shen Y, Paganini C, Bezinge L, Verberckmoes B, Van Eenooghe B, Stavrakis S, deMello AJ, Richards DA. In Situ Complexation of sgRNA and Cas12a Improves the Performance of a One-Pot RPA-CRISPR-Cas12 Assay. Anal Chem 2024; 96:10443-10450. [PMID: 38864271 PMCID: PMC11210716 DOI: 10.1021/acs.analchem.4c01777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
Due to their ability to selectively target pathogen-specific nucleic acids, CRISPR-Cas systems are increasingly being employed as diagnostic tools. "One-pot" assays that combine nucleic acid amplification and CRISPR-Cas systems (NAAT-CRISPR-Cas) in a single step have emerged as one of the most popular CRISPR-Cas biosensing formats. However, operational simplicity comes at a cost, with one-pot assays typically being less sensitive than corresponding two-step NAAT-CRISPR-Cas assays and often failing to detect targets at low concentrations. It is thought that these performance reductions result from the competition between the two enzymatic processes driving the assay, namely, Cas-mediated cis-cleavage and polymerase-mediated amplification of the target DNA. Herein, we describe a novel one-pot RPA-Cas12a assay that circumvents this issue by leveraging in situ complexation of the target-specific sgRNA and Cas12a to purposefully limit the concentration of active Cas12a during the early stages of the assay. Using a clinically relevant assay against a DNA target for HPV-16, we show how this in situ format reduces competition between target cleavage and amplification and engenders significant improvements in detection limit when compared to the traditional one-pot assay format, even in patient-derived samples. Finally, to gain further insight into the assay, we use experimental data to formulate a mechanistic model describing the competition between the Cas enzyme and nucleic acid amplification. These findings suggest that purposefully limiting cis-cleavage rates of Cas proteins is a viable strategy for improving the performance of one-pot NAAT-CRISPR-Cas assays.
Collapse
Affiliation(s)
- Jake M. Lesinski
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Thomas Moragues
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Prerit Mathur
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Yang Shen
- Institute
of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Carolina Paganini
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Léonard Bezinge
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Bo Verberckmoes
- Faculty
of Medicine and Health Sciences, Department of Public Health and Primary
Care, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
| | - Bodine Van Eenooghe
- Faculty
of Medicine and Health Sciences, Department of Public Health and Primary
Care, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
| | - Stavros Stavrakis
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Andrew J. deMello
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Daniel A. Richards
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
38
|
Hu H, Liu L, Wei XY, Duan JJ, Deng JY, Pei DS. Revolutionizing aquatic eco-environmental monitoring: Utilizing the RPA-Cas-FQ detection platform for zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172414. [PMID: 38631624 DOI: 10.1016/j.scitotenv.2024.172414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The integration of recombinase polymerase amplification (RPA) with CRISPR/Cas technology has revolutionized molecular diagnostics and pathogen detection due to its unparalleled sensitivity and trans-cleavage ability. However, its potential in the ecological and environmental monitoring scenarios for aquatic ecosystems remains largely unexplored, particularly in accurate qualitative/quantitative detection, and its actual performance in handling complex real environmental samples. Using zooplankton as a model, we have successfully optimized the RPA-CRISPR/Cas12a fluorescence detection platform (RPA-Cas-FQ), providing several crucial "technical tips". Our findings indicate the sensitivity of CRISPR/Cas12a alone is 5 × 109 copies/reaction, which can be dramatically increased to 5 copies/reaction when combined with RPA. The optimized RPA-Cas-FQ enables reliable qualitative and semi-quantitative detection within 50 min, and exhibits a good linear relationship between fluorescence intensity and DNA concentration (R2 = 0.956-0.974***). Additionally, we developed a rapid and straightforward identification procedure for single zooplankton by incorporating heat-lysis and DNA-barcode techniques. We evaluated the platform's effectiveness using real environmental DNA (eDNA) samples from the Three Gorges Reservoir, confirming its practicality. The eDNA-RPA-Cas-FQ demonstrated strong consistency (Kappa = 0.43***) with eDNA-Metabarcoding in detecting species presence/absence in the reservoir. Furthermore, the two semi-quantitative eDNA technologies showed a strong positive correlation (R2 = 0.58-0.87***). This platform also has the potential to monitor environmental pollutants by selecting appropriate indicator species. The novel insights and methodologies presented in this study represent a significant advancement in meeting the complex needs of aquatic ecosystem protection and monitoring.
Collapse
Affiliation(s)
- Huan Hu
- Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Li Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xing-Yi Wei
- Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jin-Jing Duan
- Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing 400025, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
39
|
Li Z, Feng W, Zhu Z, Lu S, Lin M, Dong J, Wang Z, Liu F, Chen Q. Cas-OPRAD: a one-pot RPA/PCR CRISPR/Cas12 assay for on-site Phytophthora root rot detection. Front Microbiol 2024; 15:1390422. [PMID: 38903797 PMCID: PMC11188302 DOI: 10.3389/fmicb.2024.1390422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Phytophthora sojae is a devastating plant pathogen that causes soybean Phytophthora root rot worldwide. Early on-site and accurate detection of the causal pathogen is critical for successful management. In this study, we have developed a novel and specific one-pot RPA/PCR-CRISPR/Cas12 assay for on-site detection (Cas-OPRAD) of Phytophthora root rot (P. sojae). Compared to the traditional RPA/PCR detection methods, the Cas-OPRAD assay has significant detection performance. The Cas-OPRAD platform has excellent specificity to distinguish 33 P. sojae from closely related oomycetes or fungal species. The PCR-Cas12a assay had a consistent detection limit of 100 pg. μL-1, while the RPA-Cas12a assay achieved a detection limit of 10 pg. μL-1. Furthermore, the Cas-OPRAD assay was equipped with a lateral flow assay for on-site diagnosis and enabled the visual detection of P. sojae on the infected field soybean samples. This assay provides a simple, efficient, rapid (<1 h), and visual detection platform for diagnosing Phytophthora root rot based on the one-pot CRISPR/Cas12a assay. Our work provides important methods for early and accurate on-site detection of Phytophthora root rot in the field or customs fields.
Collapse
Affiliation(s)
- Zhiting Li
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Wanzhen Feng
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Zaobing Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shengdan Lu
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Mingze Lin
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Jiali Dong
- Sanya Institute of China Agricultural University, Sanya, China
| | - Zhixin Wang
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Post-Entry Quarantine Center for Tropical Plant, Haikou, China
| | - Fuxiu Liu
- Post-Entry Quarantine Center for Tropical Plant, Haikou, China
| | - Qinghe Chen
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
40
|
Liu P, Lin Y, Zhuo X, Zeng J, Chen B, Zou Z, Liu G, Xiong E, Yang R. Universal crRNA Acylation Strategy for Robust Photo-Initiated One-Pot CRISPR-Cas12a Nucleic Acid Diagnostics. Angew Chem Int Ed Engl 2024; 63:e202401486. [PMID: 38563640 DOI: 10.1002/anie.202401486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Spatiotemporal regulation of clustered regularly interspaced short palindromic repeats (CRISPR) system is attractive for precise gene editing and accurate molecular diagnosis. Although many efforts have been made, versatile and efficient strategies to control CRISPR system are still desirable. Here, we proposed a universal and accessible acylation strategy to regulate the CRISPR-Cas12a system by efficient acylation of 2'-hydroxyls (2'-OH) on crRNA strand with photolabile agents (PLGs). The introduction of PLGs confers efficient suppression of crRNA function and rapid restoration of CRISPR-Cas12a reaction upon short light exposure regardless of crRNA sequences. Based on this strategy, we constructed a universal PhotO-Initiated CRISPR-Cas12a system for Robust One-pot Testing (POIROT) platform integrated with recombinase polymerase amplification (RPA), which showed two orders of magnitude more sensitive than the conventional one-step assay and comparable to the two-step assay. For clinical sample testing, POIROT achieved high-efficiency detection performance comparable to the gold-standard quantitative PCR (qPCR) in sensitivity and specificity, but faster than the qPCR method. Overall, we believe the proposed strategy will promote the development of many other universal photo-controlled CRISPR technologies for one-pot assay, and even expand applications in the fields of controllable CRISPR-based genomic editing, disease therapy, and cell imaging.
Collapse
Affiliation(s)
- Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Yating Lin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Xiaohua Zhuo
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Jiayu Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, P. R. China
| | - Zhen Zou
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| |
Collapse
|
41
|
Shi J, Lei C, Fan W, Sun Y, Liu C. Ultrasensitive protein and exosome analysis based on a rolling circle amplification assisted-CRISPR/Cas12a strategy. Talanta 2024; 273:125906. [PMID: 38490023 DOI: 10.1016/j.talanta.2024.125906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/15/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
CRISPR/Cas12a system has attracted extensive concern in biosensing due to its high specificity and programmability. Nevertheless, existing Cas12a-based assays mainly focus on nucleic acid detection and have limitations in non-nucleic acid biomarker analysis. To broaden the application prospect of the CRISPR/Cas technology, a cascade Cas12a biosensing platform is reported by combining dual-functionalized gold nanoparticles (FGNPs)-assisted rolling circle amplification (RCA) and Cas12a trans-cleavage activity (GAR-Cas) for ultrasensitive protein and exosome analysis. FGNPs serve as a critical component in the transduction of protein or exosome recognition information into nucleic acid amplification events to produce Cas12a activators. In the GAR-Cas assay, by integrating the triple cascade amplification of FGNPs-assisted transduction, RCA, and Cas12a signal amplification, ultralow abundance of target molecules can arouse numerous concatemers to activate Cas12a trans-cleavage activity to release intense fluorescence, allowing the ultrasensitive detection of as low as 1 fg/mL (∼41 aM) cTnI and 5 exosomes per μL. Furthermore, the presented strategy can be applied to detect exosome levels from clinical samples, showing excellent performance in distinguishing cancer patients from healthy individuals. The GAR-Cas sensing platform exhibits great potential in clinical diagnosis and enlarges biosensing toolboxes based on CRISPR/Cas technology for non-nucleic acid target analysis.
Collapse
Affiliation(s)
- Jingjing Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China
| | - Chao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China.
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China.
| |
Collapse
|
42
|
Wang Y, Chen H, Pan Q, Wang J, Jiao X, Zhang Y. Development and evaluation of rapid and accurate one-tube RPA-CRISPR-Cas12b-based detection of mcr-1 and tet(X4). Appl Microbiol Biotechnol 2024; 108:345. [PMID: 38801527 PMCID: PMC11129972 DOI: 10.1007/s00253-024-13191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The emergence and quick spread of the plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 have posed a great threat to public health and raised global concerns. It is imperative to develop rapid and accurate detection systems for the onsite surveillance of mcr-1 and tet(X4). In this study, we developed one-tube recombinase polymerase amplification (RPA) and CRISPR-Cas12b integrated mcr-1 and tet(X4) detection systems. We identified mcr-1- and tet(X4)-conserved and -specific protospacers through a comprehensive BLAST search based on the NCBI nt database and used them for assembling the detection systems. Our developed one-tube RPA-CRISPR-Cas12b-based detection systems enabled the specific detection of mcr-1 and tet(X4) with a sensitivity of 6.25 and 9 copies within a detection time of ~ 55 and ~ 40 min, respectively. The detection results using pork and associated environmental samples collected from retail markets demonstrated that our developed mcr-1 and tet(X4) detection systems could successfully monitor mcr-1 and tet(X4), respectively. Notably, mcr-1- and tet(X4)-positive strains were isolated from the positive samples, as revealed using the developed detection systems. Whole-genome sequencing of representative strains identified an mcr-1-carrying IncI2 plasmid and a tet(X4)-carrying IncFII plasmid, which are known as important vectors for mcr-1 and tet(X4) transmission, respectively. Taken together, our developed one-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems show promising potential for the onsite detection of mcr-1 and tet(X4). KEY POINTS: • One-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems were developed based on identified novel protospacers. • Both detection systems exhibited high sensitivity and specification with a sample-to-answer time of less than 1 h. • The detection systems show promising potential for onsite detection of mcr-1 and tet(X4).
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Qingyun Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Jing Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Xin'an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
43
|
Liu Q, Yang M, Zhang H, Ma W, Fu X, Li H, Gao S. A colorimetric tandem combination of CRISPR/Cas12a with dual functional hybridization chain reaction for ultra-sensitive detection of Mycobacterium bovis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3220-3230. [PMID: 38717230 DOI: 10.1039/d3ay02200e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Tuberculosis caused by Mycobacterium bovis poses a global infectious threat to humans and animals. Therefore, there is an urgent need to develop a sensitive, precise, and easy-to-readout strategy. Here, a novel tandem combination of a CRISPR/Cas12a system with dual HCR (denoted as CRISPR/Cas12a-D-HCR) was constructed for detecting Mycobacterium bovis. Based on the efficient trans-cleavage activity of the active CRISPR/Cas12a system, tandem-dsDNA with PAM sites was established using two flexible hairpins, providing multiple binding sites with CRISPR/Cas12a for further amplification. Furthermore, the activation of Cas12a initiated the second hybridization chain reaction (HCR), which integrated complete G-quadruplex sequences to assemble the hemin/G-quadruplex DNAzyme. With the addition of H2O2 and ABTS, a colorimetric signal readout strategy was achieved. Consequently, CRISPR/Cas12a-D-HCR achieved a satisfactory detection linear range from 20 aM to 50 fM, and the limit of detection was as low as 2.75 aM with single mismatched recognition capability, demonstrating good discrimination of different bacterial species. Notably, the practical application performance was verified via the standard addition method, with the recovery ranging from 96.0% to 105.2% and the relative standard deviations (RSD) ranging from 0.95% to 6.45%. The proposed CRISPR/Cas12a-D-HCR sensing system served as a promising application for accurate detection in food safety and agricultural fields.
Collapse
Affiliation(s)
- Qiong Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Mei Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - He Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Wenjie Ma
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Xin Fu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Huiqing Li
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Sainan Gao
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| |
Collapse
|
44
|
Lei X, Cao S, Liu T, Wu Y, Yu S. Non-canonical CRISPR/Cas12a-based technology: A novel horizon for biosensing in nucleic acid detection. Talanta 2024; 271:125663. [PMID: 38232570 DOI: 10.1016/j.talanta.2024.125663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Nucleic acids are essential biomarkers in molecular diagnostics. The CRISPR/Cas system has been widely used for nucleic acid detection. Moreover, canonical CRISPR/Cas12a based biosensors can specifically recognize and cleave target DNA, as well as single-strand DNA serving as reporter probe, which have become a super star in recent years in the field of nucleic acid detection due to its high specificity, universal programmability and simple operation. However, canonical CRISPR/Cas12a based biosensors are hard to meet the requirements of higher sensitivity, higher specificity, higher efficiency, larger target scope, easier operation, multiplexing, low cost and diversified signal reading. Then, advanced non-canonical CRISPR/Cas12a based biosensors emerge. In this review, applications of non-canonical CRISPR/Cas12a-based biosensors in nucleic acid detection are summarized. And the principles, peculiarities, performances and perspectives of these non-canonical CRISPR/Cas12a based biosensors are also discussed.
Collapse
Affiliation(s)
- Xueying Lei
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Shengnan Cao
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Tao Liu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Yongjun Wu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Songcheng Yu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China.
| |
Collapse
|
45
|
Kim H, Jang H, Song J, Lee SM, Lee S, Kwon HJ, Kim S, Kang T, Park HG. A CRISPR/Cas12 trans-cleavage reporter enabling label-free colorimetric detection of SARS-CoV-2 and its variants. Biosens Bioelectron 2024; 251:116102. [PMID: 38350240 DOI: 10.1016/j.bios.2024.116102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
Abstract
We present a label-free colorimetric CRISPR/Cas-based method enabling affordable molecular diagnostics for SARS-CoV-2. This technique utilizes 3,3'-diethylthiadicarbocyanine iodide (DISC2(5)) which exhibits a distinct color transition from purple to blue when it forms dimers by inserting into the duplex of the thymidine adenine (TA) repeat sequence. Loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) was used to amplify target samples, which were subsequently subjected to the CRISPR/Cas12a system. The target amplicons would activate Cas12a to degrade nearby TA repeat sequences, preserving DISC2(5) in its free form to display purple as opposed to blue in the absence of the target. Based on this design approach, SARS-CoV-2 RNA was colorimetrically detected very sensitively down to 2 copies/μL, and delta and omicron variants of SARS-CoV-2 were also successfully identified. The practical diagnostic utility of this method was further validated by reliably identifying 179 clinical samples including 20 variant samples with 100% clinical sensitivity and specificity. This technique has the potential to become a promising CRISPR-based colorimetric platform for molecular diagnostics of a wide range of target pathogens.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Mo Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seoyoung Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, KRIBB, 181 Ipsin-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, 79 Gangnam-ro, Jinju, Gyeongsangnam-do, 52727, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
46
|
Yang C, Du C, Yuan F, Yu P, Wang B, Su C, Zou R, Wang J, Yan X, Sun C, Li H. CRISPR/Cas12a-derived ratiometric fluorescence sensor for high-sensitive Pb 2+ detection based on CDs@ZIF-8 and DNAzyme. Biosens Bioelectron 2024; 251:116089. [PMID: 38354496 DOI: 10.1016/j.bios.2024.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/26/2023] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Benefiting from specific target recognition and trans-cleavage capabilities, the CRISPR/Cas12a system has great application prospects in the design of highly sensitive and rapid fluorescence biosensors. The CRISPR/Cas12a-based fluorophore-quencher molecular beacons exhibit single-color emission and are easily exposed to interference from environmental factors. Herein, we design a CRISPR/Cas12a-derived ratiometric fluorescence sensor for Pb2+ detection based on embedded carbon dots@zeolitic imidazolate framework-8 (CDs@ZIF-8) composites and DNAzyme. The functions of ZIF-8 about encapsulating red emissive CDs in the inner cavity and adsorbing DNA on the outer surface are integrated to establish dual fluorescence signals, thereby reducing the possibility of interference and improving sensing accuracy. The presence of Pb2+ is converted into the change of activator by the GR5 DNAzyme to activate the CRISPR/Cas12a system, which provides signal amplification through multiple turnovers of side branch cutting, achieving highly sensitive detection of Pb2+ with a low detection limit of 18 pM. This method has the advantages of simplicity, universality, and excellent quantitative ability, and has broad prospects in sensing applications.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caiyi Du
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Feiyu Yuan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Peitong Yu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Boxu Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Changshun Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruiqi Zou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Junyang Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xu Yan
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China.
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China.
| |
Collapse
|
47
|
Xu J, Yang H, Sui Z, Yuan X, Jia L, Guo L. One-pot isothermal amplification permits recycled activation of CRISPR/Cas12a for sensing terminal deoxynucleotidyl transferase activity. Chem Commun (Camb) 2024; 60:4683-4686. [PMID: 38591968 DOI: 10.1039/d4cc00825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This study introduces a one-pot isothermal amplification assay for ultrasensitive analysis of terminal deoxynucleotidyl transferase (TdT) activity. The system realizes recycled activation of CRISPR/Cas12a, enabling exceptional signal amplification. This approach maximizes the simplicity of the detection method, offering a promising avenue for molecular disease diagnosis.
Collapse
Affiliation(s)
- Jianguo Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China.
| | - Haidong Yang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China.
| | - Zhuqi Sui
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China.
| | - Xinyue Yuan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China.
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China.
| |
Collapse
|
48
|
Ruiz R, Montagud-Martínez R, Dorta-Gorrín A, Pablo-Marcos D, Gozalo M, Calvo-Montes J, Navas J, Rodrigo G. Rapid and Accurate Detection of the SARS-CoV-2 Omicron Variant with a CRISPR-Cas12a Reaction in the RT-qPCR Pot. ACS OMEGA 2024; 9:18046-18050. [PMID: 38680362 PMCID: PMC11044157 DOI: 10.1021/acsomega.3c09717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 05/01/2024]
Abstract
Gene sequencing in back of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the current approach for discriminating infections produced by different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in the clinic. However, sequencing is often a time-consuming step, which hinders the deployment of a very fast response during a pandemic. Here, we propose to run a CRISPR-Cas12a reaction after completing the RT-qPCR and in the very same pot to detect with high specificity genetic marks characterizing variants of concern. A crRNA was appropriately designed to detect the S gene of the SARS-CoV-2 Omicron BA.1 variant. A significant response with >20-fold dynamic range was obtained for the Omicron BA.1 S gene, while the Delta S gene did not produce any detectable signal. The sensitivity of the method was analyzed with a series of diluted samples and different Cas12a nucleases. A correlation between the RT-qPCR CT values and the CRISPR-Cas12a reaction signals was observed. Variant discrimination with the CRISPR-Cas12a reaction was possible in some minutes with high accuracy from patient samples. In conclusion, CRISPR-Cas systems seem ready to be exploited in the clinic to boost personalized diagnoses and accelerate epidemiological surveillance in a cost-effective way.
Collapse
Affiliation(s)
- Raúl Ruiz
- Instituto
de Biología Integrativa de Sistemas (I2SysBio), CSIC—Universitat de València, 46980 Paterna, Spain
| | - Roser Montagud-Martínez
- Instituto
de Biología Integrativa de Sistemas (I2SysBio), CSIC—Universitat de València, 46980 Paterna, Spain
| | - Alexis Dorta-Gorrín
- Facultad
de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto
de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Daniel Pablo-Marcos
- Servicio
de Microbiología, Hospital Universitario
Marqués de Valdecilla, 39008 Santander, Spain
| | - Mónica Gozalo
- Instituto
de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain
- Servicio
de Microbiología, Hospital Universitario
Marqués de Valdecilla, 39008 Santander, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Infecciosas
(CIBERINFEC), Instituto de Salud Carlos
III, 28029 Madrid, Spain
| | - Jorge Calvo-Montes
- Instituto
de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain
- Servicio
de Microbiología, Hospital Universitario
Marqués de Valdecilla, 39008 Santander, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Infecciosas
(CIBERINFEC), Instituto de Salud Carlos
III, 28029 Madrid, Spain
| | - Jesús Navas
- Facultad
de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto
de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Guillermo Rodrigo
- Instituto
de Biología Integrativa de Sistemas (I2SysBio), CSIC—Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
49
|
Wang Y, Chen H, Lin K, Han Y, Gu Z, Wei H, Mu K, Wang D, Liu L, Jin R, Song R, Rong Z, Wang S. Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device. Nat Commun 2024; 15:3279. [PMID: 38627378 PMCID: PMC11021474 DOI: 10.1038/s41467-024-47518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
The emerging monkeypox virus (MPXV) has raised global health concern, thereby highlighting the need for rapid, sensitive, and easy-to-use diagnostics. Here, we develop a single-step CRISPR-based diagnostic platform, termed SCOPE (Streamlined CRISPR On Pod Evaluation platform), for field-deployable ultrasensitive detection of MPXV in resource-limited settings. The viral nucleic acids are rapidly released from the rash fluid swab, oral swab, saliva, and urine samples in 2 min via a streamlined viral lysis protocol, followed by a 10-min single-step recombinase polymerase amplification (RPA)-CRISPR/Cas13a reaction. A pod-shaped vest-pocket analysis device achieves the whole process for reaction execution, signal acquisition, and result interpretation. SCOPE can detect as low as 0.5 copies/µL (2.5 copies/reaction) of MPXV within 15 min from the sample input to the answer. We validate the developed assay on 102 clinical samples from male patients / volunteers, and the testing results are 100% concordant with the real-time PCR. SCOPE achieves a single-molecular level sensitivity in minutes with a simplified procedure performed on a miniaturized wireless device, which is expected to spur substantial progress to enable the practice application of CRISPR-based diagnostics techniques in a point-of-care setting.
Collapse
Affiliation(s)
- Yunxiang Wang
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Hong Chen
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Kai Lin
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, 100142, Beijing, China
| | - Yongjun Han
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Zhixia Gu
- Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Hongjuan Wei
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Kai Mu
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Dongfeng Wang
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Liyan Liu
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China.
| | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China.
| | - Zhen Rong
- Bioinformatics Center of AMMS, 100850, Beijing, China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, 100850, Beijing, China.
| |
Collapse
|
50
|
Zhao L, Wang H, Chen X, Wang L, Abulaizi W, Yang Y, Li B, Wang C, Bai X. Agarose Hydrogel-Boosted One-Tube RPA-CRISPR/Cas12a Assay for Robust Point-of-Care Detection of Zoonotic Nematode Anisakis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8257-8268. [PMID: 38530904 DOI: 10.1021/acs.jafc.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Rapid and accurate detection of the zoonotic nematode Anisakis is poised to control its epidemic. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-associated assay shows great potential in the detection of pathogenic microorganisms. The one-tube method integrated the CRISPR system with the recombinase polymerase amplification (RPA) system to avoid the risk of aerosol pollution; however, it suffers from low sensitivity due to the incompatibility of the two systems and additional manual operations. Therefore, in the present study, the agarose hydrogel boosted one-tube RPA-CRISPR/Cas12a assay was constructed by adding the CRISPR system to the agarose hydrogel, which avoided the initially low amplification efficiency of RPA caused by the cleavage of Cas12a and achieved reaction continuity. The sensitivity was 10-fold higher than that of the one-tube RPA-CRISPR/Cas12a system. This method was used for Anisakis detection within 80 min from the sample to result, achieving point-of-care testing (POCT) through a smartphone and a portable device. This study provided a novel toolbox for POCT with significant application value in preventing Anisakis infection.
Collapse
Affiliation(s)
- Lianjing Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haolu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiuqin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Liping Wang
- Jiashi County Hospitalof Uygur Medicine, Xinjiang Uyghur Autonomous Region 830057, China
| | - Wulamujiang Abulaizi
- Jiashi County Hospitalof Uygur Medicine, Xinjiang Uyghur Autonomous Region 830057, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, Puer 665000, China
| | - Benfu Li
- Yunnan Institute of Parasitic Diseases, Puer 665000, China
| | - Cunzhou Wang
- Jiashi County Hospitalof Uygur Medicine, Xinjiang Uyghur Autonomous Region 830057, China
| | - Xue Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|