1
|
He K, Cheng Z, Zhang X, Qian Z, Chen J, Li B, Meng F, Yu S, Tang K, Wu YX. Activating Two-Photon Silica Nanoamplifier-Based CHA and FRET for Accurate Ratiometric Bioimaging of Intracellular MicroRNA. Anal Chem 2024; 96:16338-16345. [PMID: 39359231 DOI: 10.1021/acs.analchem.4c03630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In situ visualization of microRNA (miRNA) in cancer cells and diseased tissues is essential for advancing our comprehension of the onset and progression of associated diseases. Two-photon (TP) imaging, as an imaging technology with high spatiotemporal resolution, deep tissue penetration, and accurate target quantification, has distinctive advantages over single-photon imaging and has attracted increasing attention. Extensive research has been conducted on two-photon dye-doped silica nanoparticles, which exhibit a large two-photon absorption (TPA) cross-section, high fluorescence quantum yield, and excellent biocompatibility. However, the low abundance of RNA in tumor cells leads to insufficient signal output. Based on functional nucleic acid, a catalyzed hairpin self-assembly (CHA) signal amplification strategy, which has simplicity, robustness, and nonenzymatic characteristics, can achieve the amplification of DNA or RNA signals. Here, a two-photon silica nanoamplifier (TP-SNA) utilizing TP dye-doped silica nanoparticles (SiNPs) and functional nucleic acid was constructed, employing triggering catalyzed hairpin self-assembly and fluorescence resonance energy transfer (FRET) for highly sensitive detection and precise TP imaging of endogenous miRNAs in tumor cells and tissues at varying depths. The TP-SNA demonstrated the capability to detect miR-203 with a detection limit of 33 pM. The maximum two-photon tissue penetration depth of the two-photon nanoamplifier was 210 μm. The two-photon nanoamplifier developed in this study makes full use of the advantages of accurate TP ratiometric bioimaging and the CHA signal amplification strategy, which shows good application value for future transformation into clinical diagnosis.
Collapse
Affiliation(s)
- Kangdi He
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zhen Cheng
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xianmiao Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhiling Qian
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Chen
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bingqian Li
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fayan Meng
- Chemistry & Physics Department, Frostburg State University, 101 Braddock Rd, Frostburg, Maryland 21532, United States
| | - Shengrong Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Yong-Xiang Wu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
2
|
Jia Y, Zhao S, Wang A, Huang J, Yang J, Yang L. Target-induced multiregion MNAzyme nanowires for ultrasensitive homogeneous detection of microRNAs. Int J Biol Macromol 2024; 277:134175. [PMID: 39067728 DOI: 10.1016/j.ijbiomac.2024.134175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
A target-induced multiregion MNAzyme nanowire system is designed for the ultrasensitive and homogeneous detection of microRNAs (miRNAs). miRNA-21 and miRNA-375 are chosen as analytes, and a miRNA-induced primer exchange reaction (PER) is utilized to construct a long DNA strand with repetitive sequences. This innovative design enables the efficient anchoring of numerous MNAzymes. This unique architecture significantly boosts the effective local concentration of MNAzymes, thereby enhancing the sensitivity and efficiency of miRNA detection. Notably, the limit of detection (LOD) achieved with our target-induced multiregion MNAzyme nanowire approach is over an order of magnitude lower than most other MNAzyme-based methods, while the MNAzyme reaction time is reduced from several hours to 50 min. The method has demonstrated successful applications in quantitatively determining the expression levels of two miRNAs in cell lysates of MCF-7, HeLa and MCF-10 A cells, highlighting its potential for assaying miRNA biomarkers in clinical samples.
Collapse
Affiliation(s)
- Yaxue Jia
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Siqi Zhao
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Anping Wang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Jing Huang
- Laboratory Department of The First Hospital of Jilin University, Changchun, P. R. China
| | - Jinlan Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Li Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China.
| |
Collapse
|
3
|
Udono H, Fan M, Saito Y, Ohno H, Nomura SIM, Shimizu Y, Saito H, Takinoue M. Programmable Computational RNA Droplets Assembled via Kissing-Loop Interaction. ACS NANO 2024; 18:15477-15486. [PMID: 38831645 PMCID: PMC11191694 DOI: 10.1021/acsnano.3c12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
DNA droplets, artificial liquid-like condensates of well-engineered DNA sequences, allow the critical aspects of phase-separated biological condensates to be harnessed programmably, such as molecular sensing and phase-state regulation. In contrast, their RNA-based counterparts remain less explored despite more diverse molecular structures and functions ranging from DNA-like to protein-like features. Here, we design and demonstrate computational RNA droplets capable of two-input AND logic operations. We use a multibranched RNA nanostructure as a building block comprising multiple single-stranded RNAs. Its branches engaged in RNA-specific kissing-loop (KL) interaction enables the self-assembly into a network-like microstructure. Upon two inputs of target miRNAs, the nanostructure is programmed to break up into lower-valency structures that are interconnected in a chain-like manner. We optimize KL sequences adapted from viral sequences by numerically and experimentally studying the base-wise adjustability of the interaction strength. Only upon receiving cognate microRNAs, RNA droplets selectively show a drastic phase-state change from liquid to dispersed states due to dismantling of the network-like microstructure. This demonstration strongly suggests that the multistranded motif design offers a flexible means to bottom-up programming of condensate phase behavior. Unlike submicroscopic RNA-based logic operators, the macroscopic phase change provides a naked-eye-distinguishable readout of molecular sensing. Our computational RNA droplets can be applied to in situ programmable assembly of computational biomolecular devices and artificial cells from transcriptionally derived RNA within biological/artificial cells.
Collapse
Affiliation(s)
- Hirotake Udono
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minzhi Fan
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoko Saito
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hirohisa Ohno
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shin-ichiro M. Nomura
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yoshihiro Shimizu
- Laboratory
for Cell-Free Protein Synthesis, RIKEN Center
for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
| | - Hirohide Saito
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Takinoue
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Research
Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative
Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
4
|
Hu J, Gao X, Gu M, Sun Y, Dong Y, Wang GL. Target mediated bioreaction to engineer surface vacancy effect on Bi 2O 2S nanosheets for photoelectrochemical detection of FEN1. Anal Chim Acta 2024; 1301:342467. [PMID: 38553124 DOI: 10.1016/j.aca.2024.342467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Photoelectrochemistry represents a promising technique for bioanalysis, though its application for the detection of Flap endonuclease 1 (FEN1) has not been tapped. Herein, this work reports the exploration of creating oxygen vacancies (Ov) in situ onto the surface of Bi2O2S nanosheets via the attachment of dopamine (DA), which underlies a new anodic PEC sensing strategy for FEN1 detection in label-free, immobilization-free and high-throughput modes. In connection to the target-mediated rolling circle amplification (RCA) reaction for modulating the release of the DA aptamer to capture DA, the detection system showed good performance toward FEN1 analysis with a linear detection range of 0.001-10 U/mL and a detection limit of 1.4 × 10-4 U/mL (S/N = 3). This work features the bioreaction engineered surface vacancy effect of Bi2O2S nanosheets as a PEC sensing strategy, which allows a simple, easy to perform, sensitive and selective method for the detection of FEN1. This sensing strategy might have wide applications in versatile bioasssays, considering the diversity of a variety of biological reactions may produce the DA aptamer.
Collapse
Affiliation(s)
- Jiangwei Hu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Gao
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mengmeng Gu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Sun
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Yang Y, Gao F, Liang Y, Guo L, Pan Y, Cao P, Zhang Y. Target-Responsive DNA Nanoclaw for the On-Site Identification of Chinese Medicines with Naked Eye. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10580-10589. [PMID: 38364286 DOI: 10.1021/acsami.3c15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The identification of Chinese medicinal herbs occupies a crucial part in the development of the food and drug market. Although molecular identification based on real-time PCR offers good versatility and uniform digital standards compared with traditional methods, such as morphology, the dependence on large-scale equipment hinders spot detection and marketable applications. In this study, we developed a DNA nanoclaw for colorimetric detection and visible on-site identification of Chinese medicines. When specific miRNA is present, the DNAzyme is activated and cleaves the substrate strand, triggering the catalytic hairpin assembly (CHA) reaction and forming branched DNA junctions on AuNP-I. This can then capture AuNP-II through hybridization and facilitate their aggregation, resulting in a noticeable color change that is observable to the naked eye. By harnessing the dual amplification of DNAzyme and CHA, this highly sensitive nanoprobe successfully achieved specific identification of Chinese medicines. This offers a new perspective for on-site testing in the herbal market.
Collapse
Affiliation(s)
- Yuanhuan Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lichao Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou Peoples Hospital, Quzhou 324000, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Chai DD, Zhuo Y, Zhao ML, Li HL, Yuan R, Wei SP. Pyrenecarboxaldehyde@Graphene Oxide Acted as a Highly Efficient ECL Emitter and Target-Triggered the Recyclable Cascade System as an Amplifier for Ultrasensitive APE1 Activity Detection. ACS Sens 2024; 9:955-961. [PMID: 38251427 DOI: 10.1021/acssensors.3c02425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Herein, pyrenecarboxaldehyde@graphene oxide (Pyc@GO) sheets with highly efficient electrochemiluminescence (ECL) as emitters were prepared by a noncovalent combination to develop a neoteric ECL biosensing platform for the ultrasensitive assessment of human apurinic/apyrimidinic endonuclease1 (APE1) activity. Impressively, the pyrenecarboxaldehyde (Pyc) molecules were able to form stable polar functional groups on the surface of GO sheets through the noncovalent π-π stacking mechanism to prevent intermolecular restacking and simultaneously generate Pyc@GO sheets. Compared with the tightly packed PAH nanocrystals, the Pyc@GO sheets significantly reduced internal filtering effects and diminished nonactivated emitters to enhance ECL intensity and achieve strong ECL emission. Furthermore, the APE1-activated initiators could trigger the recyclable cascade amplified system based on the synergistic cross-activation between catalytic hairpin assembly (CHA) and DNAzyme, which improved the signal amplification and transduction ability. Consequently, the developed ECL platform for the detection of APE1 activity displayed exceptional sensitivity with a low detection limit of 4.6 × 10-9 U·mL-1 ranging from 10-8 to 10-2 U·mL-1. Therefore, the proposed strategy holds great promise for the future development of sensitive and reliable biosensing platforms for the detection of various biomarkers.
Collapse
Affiliation(s)
- Duo-Duo Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mei-Ling Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong-Ling Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Sha-Ping Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
7
|
Zhang W, Wang W, Yu Y. Tetrahedral DNA nanostructure enhanced toehold-mediated strand displacement for highly sensitive electrochemiluminescence assay of CA125. Bioelectrochemistry 2024; 155:108572. [PMID: 37738863 DOI: 10.1016/j.bioelechem.2023.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Cancer antigen 125 (CA125) is a typical tumor marker of ovarian cancer. Here, a multi-amplified electrochemiluminescence (ECL) aptasensor was developed for efficient recognition of CA125 using tetrahedral DNA nanostructure (TDN) enhanced toehold-mediated strand displacement (TMSD) coupled with gold nanoparticles/Ru(bpy)32+/metal-organic framework (AuNPs/Ru/ZIF-MOF) signal probe. AuNPs and Ru(bpy)32+ modified ZIF-MOF acted as initial ECL signal and further used for the immobilization of TDN, the activated DNA templates on the surface of TDN were firstly hybridized with ferrocene labeled DNA probe (S6) and S5, in which, S6 acted as the energy acceptor of ECL signal from Ru(bpy)32+, making the sensor in a "signal-off" state. After the specific recognition of aptamer (AP) with CA125, DNA initiator (S7) was freed to induce the happen of TMSD by using S8 as the helper DNA, accompanying with the release of S6 from the electrode surface and the recovery of Ru(bpy)32+ ECL signal, making the sensor in a "signal-on" state. Then, S7 was recycled for the next TMSD, making the sensor highly sensitive with a detection limit of 6 × 10-3 pg/mL. Moreover, the proposed aptasensor achieved high performance for CA125 detection in human serum samples, illustrating the reliability of the sensor in clinical analysis.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Wenwen Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yueyue Yu
- Department of Ultrasound, Xinxiang Central Hospital, Xinxiang, 453000, China
| |
Collapse
|
8
|
Liu Z, Yang H, Zhang B, Li X, Wang H, Zhang Y. A cascade signal-amplified fluorescent biosensor combining APE1 enzyme cleavage-assisted target cycling with rolling circle amplification. Analyst 2023; 149:82-87. [PMID: 37997151 DOI: 10.1039/d3an01727c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A cascade signal-amplified fluorescent biosensor was developed for miRNA-21 detection by combining APE1 enzyme-assisted target recycling and rolling circle amplification strategy. A key feature of this biosensor is its dual-trigger mechanism, utilizing both tumor-endogenous miRNA-21 and the APE1 enzyme in the initial amplification step, followed by a second rolling circle amplification reaction. This dual signal amplification cascade significantly enhanced sensitivity, achieving a detection limit of 3.33 pM. Furthermore, this biosensor exhibited excellent specificity and resistance to interference, allowing it to effectively distinguish and detect the target miRNA-21 in the presence of multiple interfering miRNAs. Moreover, the biosensor maintained its robust detection capabilities in a 10% serum environment, demonstrating its potential for clinical disease diagnosis applications.
Collapse
Affiliation(s)
- Zirui Liu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongqun Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Beibei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinhao Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Yang H, Dong Q, Xu D, Feng X, He P, Song W, Zhou H. An "off-on-off" type electrochemical biosensor for detecting multiple biomarkers with DNAzyme-mediated entropy-driven catalytic and DSN enzyme-assisted recycling amplification. Anal Chim Acta 2023; 1283:341978. [PMID: 37977795 DOI: 10.1016/j.aca.2023.341978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In this work, an intelligent and versatile electrochemical biosensor was constructed to detect two types of biomarkers by utilizing "off-on-off" switching. Firstly, human apurinic/apyrimidinic endonuclease1(APE1) mediated specific cleavage of the AP site, initiating activation DNAzyme and entropy-driven catalytic (EDC) reaction. Subsequently, large amounts of ferrocene labeled single-stranded DNA was released and captured with a remarkable electrochemical signal, achieving "off-on" state. In the presence of microRNA 21(miRNA-21), the DNA/RNA heteroduplexes were formed and cleaved by duplex-specific nuclease (DSN) with recovery the target miRNA-21, causing the current suppression in an "on-off" state. This sensor achieved highly sensitive detection of APE1 and miRNA-21 with a detection limit of 2.5 mU·mL-1 and 1.33 × 10-20 M, respectively, and also exhibited good selectivity, reproducibility and stability. Moreover, this proposed biosensor made it possible to realize analysis of multiple types of biomarkers on a single sensor, which improved utilization and analysis efficiency compared to traditional sensors. This study might open a new avenue to design multifunctional sensing platform for biological research and early disease diagnosis.
Collapse
Affiliation(s)
- Huan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qi Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dandan Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xinmiao Feng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Peng He
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Weiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
10
|
Zeng Y, Peng R, Hu Y, Luo P, Yang R, Li J, Zheng J. Endogenous Enzyme-Activatable Spherical Nucleic Acids for Spatiotemporally Controlled Signal Amplification Molecular Imaging and Combinational Tumor Therapy. Anal Chem 2023; 95:14710-14719. [PMID: 37728636 DOI: 10.1021/acs.analchem.3c02831] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Due to the adjustable hybridization activity, antinuclease digestion stability, and superior endocytosis, spherical nucleic acids (SNAs) have been actively developed as probes for molecular imaging and the development of noninvasive diagnosis and image-guided surgery. However, since highly expressed biomarkers in tumors are not negligible in normal tissues, an inevitable background signal and the inability to precisely release probes at the chosen region remain a challenge for SNAs. Herein, we proposed a rationally designed, endogenous enzyme-activatable functional SNA (Ep-SNA) for spatiotemporally controlled signal amplification molecular imaging and combinational tumor therapy. The self-assembled amphiphilic polymer micelles (SM-ASO), which were obtained by a simple and rapid copper-free strain-promoted azide-alkyne cycloaddition click reaction between dibenzocyclooctyne-modified antisense oligonucleotide and azide-containing aliphatic polymer polylactic acid, were introduced as the core elements of Ep-SNA. This Ep-SNA was then constructed by connecting two apurinic/apyrimidinic (AP) site-containing trailing DNA hairpins, which could occur via a hybridization chain reaction in the presence of low-abundance survivin mRNA to SM-ASO through complementary base pairing. Notably, the AP site-containing trailing DNA hairpins also empowered the SNA with the feasibility of drug delivery. Once this constructed intelligent Ep-SNA nanoprobe was specifically cleaved by the highly expressed cytoplasmic human apurinic/apyrimidinic endonuclease 1 in tumor cells, three key elements (trailing DNA hairpins, antisense oligonucleotide, and doxorubicin) could be released to enable subsequent high-sensitivity survivin mRNA imaging and combinational cancer therapy (gene silencing and chemotherapy). This strategy shows great application prospects of SNAs as a precise platform for the integration of disease diagnosis and treatment and can contribute to basic biomedical research.
Collapse
Affiliation(s)
- Youhui Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruiying Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Pan Luo
- Yueyang Central Hospital, Yueyang 414020, China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
11
|
Huang X, Li Z, Tong Y, Zhang Y, Shen T, Chen M, Huang Z, Shi Y, Wen S, Liu SY, Guo J, Zou X, Dai Z. DNAzyme-Amplified Cascade Catalytic Hairpin Assembly Nanosystem for Sensitive MicroRNA Imaging in Living Cells. Anal Chem 2023; 95:11793-11799. [PMID: 37402285 DOI: 10.1021/acs.analchem.3c02071] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Sensitive imaging of microRNAs (miRNAs) in living cells is significant for accurate cancer clinical diagnosis and prognosis research studies, but it is challenged by inefficient intracellular delivery, instability of nucleic acid probes, and limited amplification efficiency. Herein, we engineered a DNAzyme-amplified cascade catalytic hairpin assembly (CHA)-based nanosystem (DCC) that overcomes these challenges and improves the imaging sensitivity. This enzyme-free amplification nanosystem is based on the sequential activation of DNAzyme amplification and CHA. MnO2 nanosheets were used as nanocarriers for the delivery of nucleic acid probes, which can resist the degradation by nucleases and supply Mn2+ for the DNAzyme reaction. After entering into living cells, the MnO2 nanosheets can be decomposed by intracellular glutathione (GSH) and release the loaded nucleic acid probes. In the presence of target miRNA, the locking strand (L) was hybridized with target miRNA, and the DNAzyme was released, which then cleaved the substrate hairpin (H1). This cleavage reaction resulted in the formation of a trigger sequence (TS) that can activate CHA and recover the fluorescence readout. Meanwhile, the DNAzyme was released from the cleaved H1 and bound to other H1 for new rounds of DNAzyme-based amplification. The TS was also released from CHA and involved in the new cycle of CHA. By this DCC nanosystem, low-abundance target miRNA can activate many DNAzyme and generate numerous TS for CHA, resulting in sensitive and selective analysis of miRNAs with a limit of detection of 5.4 pM, which is 18-fold lower than that of the traditional CHA system. This stable, sensitive, and selective nanosystem holds great potential for miRNA analysis, clinical diagnosis, and other related biomedical applications.
Collapse
Affiliation(s)
- Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zihao Li
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Taorong Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhan Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Shaoqiang Wen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianhe Guo
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
12
|
Chao Q, Zhang Y, Li Q, Jiao L, Sun X, Chen X, Zhu L, Yang Q, Shang C, Kong RM, Fan GC, Song ZL, Luo X. Compute-and-Release Logic-Gated DNA Cascade Circuit for Accurate Cancer Cell Imaging. Anal Chem 2023; 95:7723-7734. [PMID: 37133978 DOI: 10.1021/acs.analchem.3c00898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Accurate identification of cancer cells is an essential prerequisite for cancer diagnosis and subsequent effective curative interventions. The logic-gate-assisted cancer imaging system that allows a comparison of expression levels between biomarkers, rather than just reading biomarkers as inputs, returns a more comprehensive logical output, improving its accuracy for cell identification. To fulfill this key criterion, we develop a compute-and-release logic-gated double-amplified DNA cascade circuit. This novel system, CAR-CHA-HCR, consists of a compute-and-release (CAR) logic gate, a double-amplified DNA cascade circuit (termed CHA-HCR), and a MnO2 nanocarrier. CAR-CHA-HCR, a novel adaptive logic system, is designed to logically output the fluorescence signals after computing the expression levels of intracellular miR-21 and miR-892b. Only when miR-21 is present and its expression level is above the threshold CmiR-21 > CmiR-892b, the CAR-CHA-HCR circuit performs a compute-and-release operation on free miR-21, thereby outputting enhanced fluorescence signals to accurately image positive cells. It is capable of comparing the relative concentrations of two biomarkers while sensing them, thus allowing accurate identification of positive cancer cells, even in mixed cell populations. Such an intelligent system provides an avenue for highly accurate cancer imaging and is potentially envisioned to perform more complex tasks in biomedical studies.
Collapse
Affiliation(s)
- Qiqi Chao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuxi Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Luzhen Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xufeng Sun
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuxu Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lina Zhu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian Yang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chengwen Shang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rong-Mei Kong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhi-Ling Song
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
13
|
Wang J, Chen X, Qu D, Zhang X, Wang L, Guo Z, Liu S. An enzyme-responsive electrochemical DNA biosensor achieving various dynamic range by using only-one immobilization probe. Anal Chim Acta 2023; 1251:340999. [PMID: 36925289 DOI: 10.1016/j.aca.2023.340999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Developing a simple and easy-to-operate biosensor with tunable dynamic range would provide enormous opportunities to promote the diagnostic applications. Herein, an enzyme-responsive electrochemical DNA biosensor is developed by using only-one immobilization probe. The immobilization probe was designed with a two-loop hairpin-like structure that contained the mutually independent target recognition and enzyme (EcoRI restriction endonuclease) responsive domains. The target recognition was based on a toehold-mediated strand displacement reaction strategy. The toehold region was initially caged in the loop of the immobilization probe and showed a relatively low binding affinity with target, which was improved via EcoRI cleavage of immobilization probe to liberate the toehold region. The EcoRI cleavage operation for immobilization probe demonstrated the well regulation ability in detection performance. It showed a largely extended dynamic range, a significantly lowered detection limit and better discrimination ability toward the mismatched sequences whether in two buffers (with high or low salt concentrations) or in the serum system. The advantages also includes simplicity in probe design, and facile biosensor fabrication and operation. It thus opens a new avenue for the development of the modulated DNA biosensor and hold a great potential for the diagnostic applications and drug monitoring.
Collapse
Affiliation(s)
- Jianru Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xue Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dengfeng Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China
| | - Xiaofan Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China.
| | - Zongxia Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
14
|
Zhou B, Jia BX, Zhang MJ, Tan YJ, Liang WY, Gan X, Li HT, Yang X, Shen XC. Zn 2+-interference and H 2S-mediated gas therapy based on ZnS-tannic acid nanoparticles synergistic enhancement of cell apoptosis for specific treatment of prostate cancer. Colloids Surf B Biointerfaces 2023; 226:113313. [PMID: 37075522 DOI: 10.1016/j.colsurfb.2023.113313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Zn2+ and H2S are essential to maintain normal prostate function, and sometimes can evolve into weapons to attack and destroy prostate cancer (PCa) cells. Nevertheless, how to achieve the targeted and effective release of Zn2+ and H2S, and reverse the concentration distribution within PCa tumor cells still highly challenging. Herein, combined with these pathological characteristics of prostate, we proposed a tumor microenvironment (TME) responsive Zn2+-interference and H2S-mediated gas synergistic therapy strategy based on a nanoplatform of tannic acid (TA) modified zinc sulfide nanoparticles (ZnS@TA) for the specific treatment of PCa. Once the constructed pH-responsive ZnS@TA internalized by cancer cells, it would instantaneously decomposed in acidic TME, and explosively release excess Zn2+ and H2S exceeding the cell self-regulation threshold. Meanwhile, the in situ produced Zn2+ and H2S synergistic enhancement of cell apoptosis, which is evidenced to increase levels of Bax and Bax/Bcl-2 ratio, release of Cytochrome c in cancer cells, contributing to inhibit the growth of tumor. Moreover, the TA in cooperation with Zn2+ specifically limits the migration and invasion of PCa cells. Both in vitro and in vivo results demonstrate that the Zn2+-interference in combination with H2S-mediated gas therapy achieves an excellent anti-tumor performance. Overall, this nanotheranostic synergistic therapy provides a promising direction for exploring new strategies for cancer treatment based on specific tumor pathological characteristics, and provides a new vision for promoting practical cancer therapy.
Collapse
Affiliation(s)
- Bo Zhou
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541199, People's Republic of China.
| | - Ben-Xu Jia
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541199, People's Republic of China
| | - Ming-Jin Zhang
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541199, People's Republic of China
| | - Yan-Jun Tan
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541199, People's Republic of China
| | - Wei-Yuan Liang
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541199, People's Republic of China
| | - Xiang Gan
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541199, People's Republic of China
| | - Hong-Tao Li
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541199, People's Republic of China
| | - Xiaoli Yang
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541199, People's Republic of China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China.
| |
Collapse
|
15
|
Deng F, Pan J, Liu Z, Zeng L, Chen J. Programmable DNA biocomputing circuits for rapid and intelligent screening of SARS-CoV-2 variants. Biosens Bioelectron 2023; 223:115025. [PMID: 36542937 PMCID: PMC9759469 DOI: 10.1016/j.bios.2022.115025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
The frequent emergence of SARS-CoV-2 variants increased viral transmissibility and reduced protection afforded by vaccines. The rapid, multichannel, and intelligent screening of variants is critical to minimizing community transmissions. DNA molecular logic gates have attracted wide attention in recent years due to the powerful information processing capabilities and molecular data biocomputing functions. In this work, some molecular switches (MSs) were connected with each other to implement arbitrary binary functions by emulating the threshold switching of MOS transistors and the decision tree model. Using specific sequences of different SARS-CoV-2 variants as inputs, the MSs net was used to build several molecular biocomputing circuits, including NOT, AND, OR, INHIBIT, XOR, half adder, half subtractor, full adder, and full subtractor. Four fluorophores (FAM, Cy3, ROX, and Cy5) were employed in the logic systems to realize the multichannel monitoring of the logic operation results. The logic response is fast and can be finished with 10 min, which facilitates the rapid wide-population screening for SARS-CoV-2 variants. Importantly, the logic results can be directly observed by the naked eye under a portable UV lamp, thus providing a simple and intelligent method to enable high-frequency point-of-care diagnostics, particularly in low-resource communities.
Collapse
Affiliation(s)
- Fang Deng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiafeng Pan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China; School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
16
|
Peng Y, Pang H, Gao Z, Li D, Lai X, Chen D, Zhang R, Zhao X, Chen X, Pei H, Tu J, Qiao B, Wu Q. Kinetics-accelerated one-step detection of MicroRNA through spatially localized reactions based on DNA tile self-assembly. Biosens Bioelectron 2023; 222:114932. [PMID: 36462429 DOI: 10.1016/j.bios.2022.114932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
The localization of isothermal amplification systems has elicited extensive attention due to the enhanced reaction kinetics when detecting ultra-trace small-molecule nucleic acids. Therefore, the seek for an appropriate localization cargo of spatially confined reactions is urgent. Herein, we have developed a novel approach to localize the catalytic hairpin assembly (CHA) system into the DNA tile self-assembly nanostructure. Thanks to the precise programming and robust probe loading capacity, this strategy achieved a 2.3 × 105-fold higher local reaction concentration than a classical CHA system with enhanced reaction kinetics in theory. From the experimental results, this strategy could reach the reaction plateau faster and get access to a magnified effect of 1.57-6.99 times higher in the linear range of microRNA (miRNA) than the simple CHA system. Meanwhile, this strategy satisfied the demand for the one-step detection of miRNA in cell lysates at room temperature with good sensitivity and specificity. These features indicated its excellent potential for ultra-trace molecule detection in clinical diagnosis and provided new insights into the field of bioassays based on DNA tile self-assembly nanotechnology.
Collapse
Affiliation(s)
- Yanan Peng
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Huajie Pang
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Zhijun Gao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Dongxia Li
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Xiangde Lai
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Rui Zhang
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Xuan Zhao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China; Department of Clinical Laboratory, Hainan Cancer Hospital, Haikou, 570311, China
| | - Xinping Chen
- Department of Clinical Laboratory, Hainan Cancer Hospital, Haikou, 570311, China
| | - Hua Pei
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Bin Qiao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China.
| | - Qiang Wu
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
17
|
Özay B, Murphy SD, Stopps EE, Gedeon T, McCalla SE. Positive feedback drives a secondary nonlinear product burst during a biphasic DNA amplification reaction. Analyst 2022; 147:4450-4461. [PMID: 36164933 PMCID: PMC10026376 DOI: 10.1039/d2an01067d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isothermal DNA amplification reactions are used in a broad variety of applications, from diagnostic assays to DNA circuits, with greater speed and less complexity than established PCR technologies. We recently reported a unique, high gain, biphasic isothermal DNA amplification reaction, called the Ultrasensitive DNA Amplification Reaction (UDAR). Here we present a detailed analysis of the UDAR reaction pathways that initiates with a first phase followed by a nonlinear product burst, which is caused by an autocatalytic secondary reaction. The experimental reaction output was reproduced using an ordinary differential equation model based on detailed reaction mechanisms. This model provides insight on the relative importance of each reaction mechanism during both phases, which could aid in the design of product output during DNA amplification reactions.
Collapse
Affiliation(s)
- Burcu Özay
- Department of Chemical and Biological Engineering, PO Box 173920, Bozeman, MT, USA.
| | - Shannon D Murphy
- Department of Mathematical Sciences, P.O. Box 172400, Bozeman, MT, USA
| | - Esther E Stopps
- Department of Chemical and Biological Engineering, PO Box 173920, Bozeman, MT, USA.
| | - Tomáš Gedeon
- Department of Mathematical Sciences, P.O. Box 172400, Bozeman, MT, USA
| | - Stephanie E McCalla
- Department of Chemical and Biological Engineering, PO Box 173920, Bozeman, MT, USA.
| |
Collapse
|
18
|
Huang X, Zhang Y, Chen J, Zhang L, Xu Y, Yin W, Shi Y, Liu SY, Zou X, Dai Z. Dual-Locked DNAzyme Platform for In Vitro and In Vivo Discrimination of Cancer Cells. Anal Chem 2022; 94:12221-12230. [PMID: 36000958 DOI: 10.1021/acs.analchem.2c02788] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imaging of tumor-associated microRNAs (miRNAs) can provide abundant information for cancer diagnosis, whereas the occurrence of trace amounts of miRNAs in normal cells inevitably causes an undesired false-positive signal in the discrimination of cancer cells during miRNA imaging. In this study, we propose a dual-locked (D-locked) platform consisting of the enzyme/miRNA-D-locked DNAzyme sensor and the honeycomb MnO2 nanosponge (hMNS) nanocarrier for highly specific cancer cell imaging. For a proof-of-concept demonstration, apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 were chosen as key models. The hMNS nanocarrier can efficiently release the D-locked DNAzyme sensor in living cells due to the decomposition of hMNS by glutathione, which can also supply Mn2+ for DNAzyme cleavage. Ascribing to the smart design of the D-locked DNAzyme sensor, the fluorescence signal can only be generated by the synergistic response of APE1 and miR-21 that are overexpressed in cancer cells. Compared with the miRNA single-locked DNAzyme sensor and the small-molecule (ATP)/miRNA D-locked DNAzyme sensor, the proposed enzyme (APE1)/miRNA D-locked DNAzyme sensor exhibited 2.6-fold and 2.4-fold higher discrimination ratio (Fcancer/Fnormal) for cancer cell discrimination, respectively. Owing to the superior performance, the D-locked strategy can selectively generate a fluorescence signal in cancer cells, facilitating accurate discrimination of cancer both in vitro and in vivo. Furthermore, this D-locked platform is easily adaptable toward other target molecules by redesigning the DNA sequences. The outstanding performance and expansibility of this D-locked platform holds promising prospects for cancer diagnosis and related biomedical applications.
Collapse
Affiliation(s)
- Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lang Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wen Yin
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|