1
|
Lee SJ, Yu KK, Hwang SM, Oh S, Song NW, Jung HS, Han OH, Shim JH. Chemical Analysis of an Isotopically Labeled Molecule Using Two-Dimensional NMR Spectroscopy at 34 μT. ACS OMEGA 2023; 8:37302-37308. [PMID: 37841117 PMCID: PMC10568728 DOI: 10.1021/acsomega.3c05128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Low-field nuclear magnetic resonance (NMR) spectroscopy, conducted at or below a few millitesla, provides only limited spectral information due to its inability to resolve chemical shifts. Thus, chemical analysis based on this technique remains challenging. One potential solution to overcome this limitation is the use of isotopically labeled molecules. However, such compounds, particularly their use in two-dimensional (2D) NMR techniques, have rarely been studied. This study presents the results of both experimental and simulated correlation spectroscopy (COSY) on 1-13C-ethanol at 34.38 μT. The strong heteronuclear coupling in this molecule breaks the magnetic equivalence, causing all J-couplings, including homonuclear coupling, to split the 1H spectrum. The obtained COSY spectrum clearly shows the spectral details. Furthermore, we observed that homonuclear coupling between 1H spins generated cross-peaks only when the associated 1H spins were coupled to identical 13C spin states. Our findings demonstrate that a low-field 2D spectrum, even with a moderate spectral line width, can reveal the J-coupling networks of isotopically labeled molecules.
Collapse
Affiliation(s)
- Seong-Joo Lee
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Kwon Kyu Yu
- Center
for Superconducting Quantum Computing System, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Seong-min Hwang
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Sangwon Oh
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Nam Woong Song
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Hak-Sung Jung
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Oc Hee Han
- Western
Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Hyun Shim
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
- Department
of Applied Measurement Science, University
of Science and Technology, Daejeon 34113, Republic
of Korea
| |
Collapse
|
2
|
Chuchkova L, Bodenstedt S, Picazo-Frutos R, Eills J, Tretiak O, Hu Y, Barskiy DA, de Santis J, Tayler MCD, Budker D, Sheberstov KF. Magnetometer-Detected Nuclear Magnetic Resonance of Photochemically Hyperpolarized Molecules. J Phys Chem Lett 2023:6814-6822. [PMID: 37486855 DOI: 10.1021/acs.jpclett.3c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Photochemically induced dynamic nuclear polarization (photo-CIDNP) enables nuclear spin ordering by irradiating samples with light. Polarized spins are conventionally detected via high-field chemical-shift-resolved NMR (above 0.1 T). In this Letter, we demonstrate in situ low-field photo-CIDNP measurements using a magnetically shielded fast-field-cycling NMR setup detecting Larmor precession via atomic magnetometers. For solutions comprising mM concentrations of the photochemically polarized molecules, hyperpolarized 1H magnetization is detected by pulse-acquired NMR spectroscopy. The observed NMR line widths are about 5 times narrower than normally anticipated in high-field NMR and are systematically affected by light irradiation during the acquisition period, reflecting a reduction of the transverse relaxation time constant, T2*, on the order of 10%. Magnetometer-detected photo-CIDNP spectroscopy enables straightforward observation of spin-chemistry processes in the ambient field range from a few nT to tens of mT. Potential applications of this measuring modality are discussed.
Collapse
Affiliation(s)
- Liubov Chuchkova
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - Sven Bodenstedt
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Román Picazo-Frutos
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - James Eills
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Oleg Tretiak
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - Yinan Hu
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Danila A Barskiy
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - Jacopo de Santis
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Michael C D Tayler
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Dmitry Budker
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- Department of Physics, University of California, Berkeley, California 94720-7300, United States
| | - Kirill F Sheberstov
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| |
Collapse
|
3
|
Stern Q, Sheberstov K. Simulation of NMR spectra at zero and ultralow fields from A to Z - a tribute to Prof. Konstantin L'vovich Ivanov. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:87-109. [PMID: 38650894 PMCID: PMC11034480 DOI: 10.5194/mr-4-87-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2024]
Abstract
Simulating NMR experiments may appear mysterious and even daunting for those who are new to the field. Yet, broken down into pieces, the process may turn out to be easier than expected. Quite the opposite, it is in fact a powerful and playful means to get insights into the spin dynamics of NMR experiments. In this tutorial paper, we show step by step how some NMR experiments can be simulated, assuming as little prior knowledge from the reader as possible. We focus on the case of NMR at zero and ultralow fields, an emerging modality of NMR in which the spin dynamics are dominated by spin-spin interactions rather than spin-field interactions, as is usually the case with conventional high-field NMR. We first show how to simulate spectra numerically. In a second step, we detail an approach to construct an eigenbasis for systems of spin-1 / 2 nuclei at zero field. We then use it to interpret the numerical simulations.
Collapse
Affiliation(s)
- Quentin Stern
- Univ Lyon, ENS Lyon, UCBL, CNRS, CRMN UMR 5082, 69100,
VILLEURBANNE, France
| | - Kirill Sheberstov
- Laboratoire des biomolécules (LBM), Département de chimie, École
normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris,
France
| |
Collapse
|
4
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
5
|
Mouloudakis K, Bodenstedt S, Azagra M, Mitchell MW, Marco-Rius I, Tayler MCD. Real-Time Polarimetry of Hyperpolarized 13C Nuclear Spins Using an Atomic Magnetometer. J Phys Chem Lett 2023; 14:1192-1197. [PMID: 36715634 DOI: 10.1021/acs.jpclett.2c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We introduce a method for nondestructive quantification of nuclear spin polarization, of relevance to hyperpolarized spin tracers widely used in magnetic resonance from spectroscopy to in vivo imaging. In a bias field of around 30 nT we use a high-sensitivity miniaturized 87Rb-vapor magnetometer to measure the field generated by the sample, as it is driven by a windowed dynamical decoupling pulse sequence that both maximizes the nuclear spin lifetime and modulates the polarization for easy detection. We demonstrate the procedure applied to a 0.08 M hyperpolarized [1-13C]-pyruvate solution produced by dissolution dynamic nuclear polarization, measuring polarization repeatedly during natural decay at Earth's field. Application to real-time and continuous quality monitoring of hyperpolarized substances is discussed.
Collapse
Affiliation(s)
- Kostas Mouloudakis
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Sven Bodenstedt
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Marc Azagra
- IBEC─Institute for Bioengineering of Catalonia, 08028Barcelona, Spain
| | - Morgan W Mitchell
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- ICREA─Institució Catalana de Recerca i Estudis Avançats, 08010Barcelona, Spain
| | - Irene Marco-Rius
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Michael C D Tayler
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| |
Collapse
|